
Using Conjugate Symmetries to Enhance Gate-Level Simulations

Peter M Maurer
Department of Computer Science

Baylor University #97356
Waco, TX 76798-7356

Peter_Maurer@Baylor.edu

Abstract
State machine based simulation of Boolean functions is

substantially faster if the function being simulated is
symmetric. Unfortunately function symmetries are
comparatively rare. Conjugate symmetries can be used to
reduce the state space for functions that have no
detectable symmetries, allowing the benefits of symmetry
to be applied to a much wider class of functions.
Substantial improvements in simulation speed, from 30-
40% have been realized using these techniques.

1. Introduction
The efficient simulation of digital circuits is a topic of

continuing interest in Electrical Design Automation
(EDA). Simulation has been applied to virtually every
phase of the design process from high-level algorithms
down to the circuits themselves. Over the past many years,
many different techniques have been explored, and there is
an active and continuing interest in simulation problems
today. See [1-14] for a small sampling of this work.

One particularly promising set of techniques are those
that are based on metamorphic state machines[15]. In
these techniques the gate is treated as a state machine
whose state is determined by its current inputs. Regardless
of the number of inputs of a gate, when an input changes a
unary operation is performed to determine the next state.
This is possible because the state of the input is encoded as
a subroutine that will perform the required operation when
it is executed. Each net-structure contains a subroutine
pointer that is toggled every time an event is processed.
Subsequent work has extended this concept to all phases
of the simulation process[16].

The initial work in this area focused on the global
issues of efficient scheduling and reducing the number of
propagated events. More recent work has focused on the
local issue of efficient simulation of individual gates[17].
The Hyperlinear algorithm[18] represents the main thrust
of this work which is to extend the scope of individual
gate simulations to small networks of gates. Although it is
easy to group several gates together and simulate the

group as an individual gate, it is extraordinarily difficult to
obtain any real savings by doing so. For example, a direct
simulation of the function

(, , , , ,) ()f a b c d e f abc de f ′= + + would use two AND
gates an OR gate and a NOT gate. The first AND gate
would require two AND instructions while the second
would require only one. Two OR instructions and a NOT
instruction would be required to complete the simulation.
It would be possible to implement this function as an
AOI321 gate, but the simulation of the AOI would require
three AND instructions, two OR instructions, and a NOT
instruction. If we assume that these operations are
scheduled optimally, this represents a savings of zero.

In the Hyperlinear algorithm, a single state machine is
used to simulate a complex Boolean function such as
function f above. This makes the simulation of the
function almost as efficient as the simulation of a single
gate, but this technique is more successful for certain
functions than it is for others.

Although any n-input Boolean function can be
simulated using an n-dimensional hypercube with 2n
states, it is more efficient in terms of both time and space
to reduce the number of states. This is done by detecting
the symmetries of the function being simulated and
collapsing dimensions of the hypercube together. The
resulting hyperlinear structure has fewer states than the
original hypercube, but may have more than two states
along some dimensions. It the function is totally
symmetric, it can be collapsed into a linear state machine
with 1n+ states. Needless to say, the more the state
machine can be collapsed, the more efficient it will be.

Unfortunately, the symmetries that make this collapse
possible are reasonably rare. Only a small fraction of all n-
input Boolean functions are totally symmetric. Partial
symmetries can also be used, but these are also
comparatively uncommon. The Hyperlinear Algorithm
improves on this situation somewhat, because it is capable
of handling symmetric functions where one or more inputs
are inverted with respect to the others, but this still leaves
a large number of functions with no symmetries
whatsoever. Recently we have discovered a new type of

3-9810801-0-6/DATE06 © 2006 EDAA

symmetry that can be used to reduce the state space for
functions that, until now, appeared to have no symmetries
whatsoever.

Symmetry has been used in many contexts other than
simulation. It is probable that our work will have impact in
these areas as well.

2. Mathematical Background
A Boolean function 1 2(, , ,)nf a a a… is symmetric if it is

possible to rearrange the inputs 1 2, , , na a a… without
changing the output of f . AND, OR, and XOR are
symmetric Boolean functions, but there are others such as

(, , ,) 'f a b c d abcd a b c a b d a c d b c d′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + + . If it is
possible to rearrange some, but not all of the inputs then
the function is partially symmetric. The function

(, , ,)f a b c d abc d= + is partially symmetric. Symmetric
functions are sometimes called totally symmetric to
distinguish them from partially symmetric functions.
There are many other types of symmetry. To fully explore
all types of symmetry, it is necessary to use the concept of
symmetry groups.

An operation that rearranges a set of elements without
changing them is called a permutation. The set of all
permissible permutations that can be used to rearrange a
set of objects forms a mathematical entity called a group.
If there are no restrictions on how a set of elements can be
rearranged then the group in question is Sn, the symmetric
group of order n . The collection of permutations that can
be used to rearrange the inputs of a function without
changing the output is called the symmetry group of the
function. Suppose f is an n-input Boolean function. If f
is symmetric then the symmetry group of f is Sn. If f is
partially symmetric, then the symmetry group is Sk for
some k n< . If f is non-symmetric then the symmetry
group of f is

1{ }I S= where I is the identity

permutation. If the symmetry group of f is not { }I but
also not equal to kS for any 1k > then f is called weakly
symmetric. The function (, , ,)g a b c d ab cd= + is weakly
symmetric.

If we change our point of view slightly, we can take
advantage of a much wider class of symmetries. Instead of
treating (, , ,)g a b c d ab cd= + as a four-input
function, we can treat it as a function from a four-
dimensional vector space to a one-dimensional vector
space. Instead of dealing with symmetry by rearranging
the variables of a function, we rearrange the elements of
the input vector. From a practical standpoint this point of
view is identical to the original. However, treating the
input of a Boolean function as the element of a vector
space allows us to use the mathematics of linear algebra,

group theory, and group representations to analyze the
behavior of Boolean functions.

Rather than using groups of permutations as our
symmetry groups, we will use groups of non-singular
(one-to-one) linear transformations. We will consider n-
element vectors of an n-dimensional vector space over the
field GF(2). GF(2) is the integers modulo 2, which
contains the two elements 0 and 1. The AND function is
used for multiplication, while the XOR function is used
for addition.

There is a one-to-one mapping from the elements of Sn
to linear transformations over GF(2). For example Figure
1 illustrates the set of linear transformations that
corresponds to the elements of S3. This group of matrices
is algebraically identical to the group S3, and is isomorphic
to it. The first matrix leaves all vectors unchanged, the
second swaps the last two elements, the third swaps the
first two elements, the fourth swaps the first and last
elements, while the fifth and sixth rotate the vector to the
left and to the right.

1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1
0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0
0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0

           
           
           
           
           

Figure 1. The Group
3(2)SR .

The advantage of using linear transformations to
represent symmetry rather than permutations is that there
are many more non-singular linear transformations than
there are permutations. S3 contains six elements, but there
are 168 non-singular 3 3× matrices. The difference
becomes even more pronounced as n becomes larger. The
set of non-singular n n× matrices over GF(2), which is
denoted (2)nGL , contains many sets of matrices that are
isomorphic to

nS . These sets of matrices are known as
representations of

nS . The set of matrices that rearranges
the elements of an input vector is known as the standard
representation of

nS , and is denoted (2)nSR . There are
many other representations of

nS . Figure 2 gives an
alternative representation of S3. There are many others.

1 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1
0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 1 0 1
0 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0

           
           
           
           
           

Figure 2. Another Representation of 3S .

Each group of non-singular n n× permutations defines
a new type of symmetry on n-input Boolean functions.
The most important groups are the standard representation
and its subgroups followed by the groups that are
conjugate to the standard representation. Let T1 and T2 be

two n n× matrices. T1 and T2 are said to be similar if there
is a non-singular n n× matrix S, such that 1

1 2T S T S−= . T1 is
called the conjugate of T2 by S.

Now suppose G is any group of n n× matrices and S is
a non-singular n n× matrix. If we replace every element g
of G with its conjugate 1S gS− we obtain a new group of
matrices 1S GS− . In some cases G and 1S GS− will be
identical, but in most cases they will be different. G and

1S GS− are said to be conjugates of one another.
The conjugates of the standard representation are

especially interesting because they are easy to obtain, and
the symmetries that they produce have a useful
interpretation. Let

1 2(, , ,)nf a a a… have the symmetry group
G (a group of n n× matrices), and suppose that G is
conjugate to the standard representation. This means that

1 2(, , ,)nf a a a… is symmetric in the usual sense, with
respect to a new set of variables

1, , nb b… , where each
ib is

a linear combination of the variables
1, , na a… .

If the symmetry group of a function f is 1 (2)nK SR K− for
some non-singular n n× matrix K, then we say that f is
symmetric with respect to K. Given a particular matrix K,
detection of conjugate symmetries with respect to K is
straightforward. If f is symmetric with respect to K then
there exists a symmetric function g such that f g K= D .
The function g can be obtained by computing the inverse

1K − and composing it with f since
1 1f K g K K g− −= =D D D . Given an arbitrary function f,

however, the problem is much more difficult. Ideally, we
would like to be able to factor f into a function g and a
matrix K so that f g K= D and g is as symmetric as
possible. When we say “as symmetric as possible” we
mean that the state machine used to simulate g has a
minimal number of states.

For example, consider the totally non-symmetric
function f ac bc bd ab d a cd′ ′ ′ ′ ′ ′= + + + + , which can be
factored into g TD , where

g a cd a bd a bc ac d ab c abd′ ′ ′ ′ ′ ′= + + + + + and T is given
in Figure 3. The function f requires a 16-state machine
for simulation, but g is totally symmetric and can be
simulated with only 5 states.

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

T

 
 
 =
 
 
 

Figure 3. A Linear Transformation in GF(2).

3. Implementing Linear Transformations.
Although factoring a function f into a symmetric

function g and a linear transformation T will allow the
base function g to be simulated faster than the function f,
it is also necessary to implement the transformation T. If
there is to be any performance improvement, the
simulation time for T must be negligible. Fortunately, the
structure of our simulation technique allows us to get the
transformation T almost for free.

The basic simulation algorithm is the hyperlinear
algorithm described in reference [18]. This algorithm
represents Boolean functions as hypercubes and other n-
dimensional structures. Non-symmetric n-input functions
are represented as n-dimensional hypercubes. If the
function has symmetries they can be used to collapse two
or more dimensions of the hypercube into a linear
structure. As the dimensions of the hypercube are
collapsed, the length of each dimension increases. The
result is no longer a hypercube, but a hyperlinear structure
with each dimension representing a counting function. The
hyperlinear structure is then transformed into a state
machine that is used to represent the state of the Boolean
function.

The inputs to the Boolean function are also represented
as state machines. This is done to facilitate the
implementation of the counting machines embedded in the
hyperlinear state machine. Each input will count along a
certain dimension in the hyperlinear machine, with the
direction reversing on each consecutive event from the
same input.

Collapsing dimensions of the hypercube causes two or
more inputs to be funneled into a single input of the state
machine as in Figure 4.

A

B

C

D

Dim1

Dim3

Dim2

Input 1

Input 2

Input 3

Input 4

Figure 4. Input Modeling.

Figure 4 illustrates a state machine with three inputs
that is used to model a four-input Boolean function. Inputs
B and C are symmetric and have been collapsed into a
single input. The state machine has three inputs, A, B/C,
and D. There are two states in directions Dim1 and Dim3
and three states in direction Dim2. Figure 5 shows the
structure of the state machine. Regardless of the internal
structure of the machine, each input is represented as a
two-state input machine. These are labeled Input 1 through

Input 4 in Figure 4. There is a one-to-one correspondence
between input variables and input state machines.

Dim2

Dim1

Dim3

Figure 5. A Hyperlinear Structure.

Breaking the one-to-one correspondence between input
state machines and input variables is the key to creating
efficient linear transformations. Figure 6 shows how to
implement the linear transformation of Figure 3.

A

B

C

D

State 1

State 3

State 2

Input 1

Input 2

Input 3

Input 4

Figure 6. Impl. a Linear Transformation.

In Figure 6, the inputs to the state machine are A , A B+ ,
B C+ , and C D+ . The input variables and input state
machines are constructed in such a way that an event
arrives at an input state machine if and only if the
corresponding input variable changes value. Two
successive events cancel one another and neither is
propagated to the succeeding state machine. Effectively,
this performs an XOR operation on the successive inputs.
If the two successive inputs come from different variables,
this computes the XOR of the two variables. The AND
function is implemented in the wiring from input variable
to input machine. This incurs slightly more overhead than
using a single input machine per input variable, but the
speedup given by the enhanced symmetry more than
compensates for it.

4. Detecting Symmetries.
In the hyperlinear algorithm we are able to detect

arbitrarily complex symmetries by first detecting the
symmetries between pairs of variables and then combining
these into more complex symmetries. We are able to
detect two different types of symmetry, ordinary
symmetry and skew-symmetry where one variable is
inverted with respect to the other. The function

(,)g a b a b= + exhibits ordinary symmetry, while the
function (,)h a b a b′= exhibits skew-symmetry.

With conjugate symmetries, we have input variables
that are conditionally inverted with respect to one another.
For example, the function

(, , ,)f a b c d ac d a b d a b c bd bc′ ′ ′ ′ ′ ′ ′ ′= + + + + is totally
symmetric with respect to the matrix K given below. The
variables a and b are symmetric with one another, but
because the variable b is replaced with a b+ , we say that b
is conditionally inverted by a.

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

K

 
 
 =
 
 
 

In the hyperlinear symmetry detection algorithm,

variables are eliminated one at a time by symbolic
evaluation, and a hypercube is constructed from the
remaining expressions. (Despite the apparent linear nature
of this algorithm, symmetry detection is independent of
variable ordering. The one-by-one elimination of variables
is done to prevent the size of the state machine from
growing exponentially and is not essential to the detection
process.) As an example, consider the expression f given
above. If we symbolically evaluate this expression first
setting 0a = and then 1a = , we obtain two simpler
expressions that can be placed in a one-dimensional
hypercube as follows.

c d b c bd′ ′ ′+ + c d bc bd′ ′ ′ ′+ +
a=0 a=1

By eliminating the variable b in the same fashion, we

get four expressions that can be placed in a 2-dimensional
hypercube as shown in Figure 7.

d c+ c d′ ′

c d′ ′+ c d′ ′+

a=0,b=0 a=1,b=0

a=0,b=1 a=1,b=1

E F

G H

Figure 7. A 2D Hypercube.

We can determine the symmetries of the function by
comparing the vertices of the hypercube. If F=G, then a is
symmetric with b, but if E=H then a is skew-symmetric
with b. The test succeeds because an unconditional
inversion has the effect of flipping the hypercube either
horizontally or vertically, and the flip has the effect of
exchanging the diagonals. Conditional inversions have the
effect of flipping either the odd-numbered rows or the odd
numbered columns of the cube. (Rows and columns are

numbered starting with zero.) This would have the effect
of swapping F and H or G and H. In this example because
G=H, F has been swapped with H, and the function
possesses ordinary symmetry between a and b with b
conditionally inverted by a. Similarly, if F=H then a and b
are symmetric with b conditionally inverting a. If E=F or
E=G, then there is a combination of a conditional
inversion and an unconditional inversion. These tests can
easily be generalized to more complex hyperlinear
structures.

To incorporate the tests for conjugate symmetries into
the hyperlinear algorithm, we added four more tests to the
tests for ordinary and skew-symmetry. The test for
ordinary symmetry was replicated, with the indexing
reversed for odd rows of the hyperlinear structure and then
replicated again with indexing reversed for the odd
columns. The test for skew symmetry was replicated in a
similar fashion. When a test for a conditional inversion
succeeds, the conditional inversion must be removed by
reversing the odd rows or the odd columns. The matrix
that causes the conditional inversion is saved for later
processing. Once all symmetries have been detected the
product of all saved matrices is computed to form the
symmetry matrix for the entire function. To illustrate this
process, consider the function

(, , ,)f a b c d ac bc bd ab d a cd′ ′ ′ ′ ′ ′= + + + + , which exhibits
no ordinary or skew-symmetries. If we eliminate a and b,
we get the following hypercube.

cd ′ c d′ +

c d′ ′+ c d′ ′+

a=0,b=0 a=1,b=0

a=0,b=1 a=1,b=1

E F

G H

We note that the right column is reversed, indicating

that a and b are symmetric with a conditionally inverting
b. The following matrix causes this conditional inversion.

1 1 0 0
0 1 0 0

1
0 0 1 0
0 0 0 1

K

 
 
 =
 
  

We restore the last column by swapping the contents of

F and H, and collapse the hypercube into the following
hyperlinear structure.

cd ′ c d+′c d+′ ′
(a,b)=0 (a,b)=1 (a,b)=2

Next we eliminate c, giving the following.

0 11
(a,b)=0,c=0 (a,b)=1,c=0 (a,b)=2,c=0

d ′ dd ′
(a,b)=0,c=1 (a,b)=1,c=1 (a,b)=2,c=1

We observe that (a,b) is symmetric with c, with c

conditionally inverted by (a,b). We correct the conditional
inversion by reversing the center column as shown below.

0 1
(a,b)=0,c=0 (a,b)=1,c=0 (a,b)=2,c=0

d ′ d

d ′

(a,b)=0,c=1 (a,b)=1,c=1 (a,b)=2,c=1

1

The matrix responsible for this conditional inversion is

given below.

1 0 1 0
0 1 1 0

2
0 0 1 0
0 0 0 1

K

 
 
 =
 
  

We collapse the 3 2× hyperlinear structure into a
four-state linear machine, and then eliminate d, giving the
following.

0 1 01

0 1 10

This hyperlinear structure shows an ordinary symmetry

between the variables (a,b,c) and d, with d conditionally
inverted by (a,b,c). The conditional inversion is caused by
the following matrix.

1 0 0 1
0 1 0 1

3
0 0 1 1
0 0 0 1

K

 
 
 =
 
  

After reversing columns 1 and 3 (2nd and 4th from the

left) and collapsing, we get the following linear state
machine.

0 1 10 0

Finally, we compute the symmetry matrix as follows.

1 1 0 0
0 1 1 0

1 2 3
0 0 1 1
0 0 0 1

K K K K

 
 
 = =
 
  

i i

5. Experimental Data
To determine the effectiveness of conjugate

symmetries, we used two versions of the Hyperlinear
algorithm, one that was able to detect conjugate
symmetries, and one that could not. We applied both
algorithms to the Boolean function

(, , ,)f a b c d a cd ab c ad bc bd= + + + +′ ′ ′ ′ . This function
exhibits no ordinary symmetries or skew-symmetries, but
is totally symmetric with respect to the following linear
transformation.

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

K

 
 
 =
 
  

Each version of the simulation was run using 800
million input vectors on a 3.2 GHZ Intel LINUX machine
with 512 megabytes of memory. Without conjugate
symmetry, the simulation required 154 seconds to
complete, with conjugate symmetry only 95 seconds were
required, a 38% savings in execution time, a difference
comparable to the observed difference between symmetric
and non-symmetric functions in the hyperlinear algorithm.

6. Conclusion
The techniques described in this paper can be used to

detect symmetries in Boolean functions that have no
apparent symmetries. These new types of symmetries can
be exploited to speed up the simulation of these functions.
The substantial improvement in simulation speed can
significantly reduce the amount of time necessary to verify
the design of a VLSI circuit.

The most important benefit is the huge increase in the
number of symmetric functions that can be detected. For
example, there are 65,536 4-input Boolean functions, 32 of
which are totally symmetric. Skew symmetries increase
the number of totally symmetric functions by a factor of
16, giving 512 functions. The standard representation has
420 conjugates, substantially increasing the number of
totally and partially symmetric functions. (Some functions
are in more than one class, so it is incorrect to simply
multiply 512 times 420.)

Although we can detect all conjugate symmetries, this
is still only a fraction of the symmetries available in the
general linear group. If we combine ordinary symmetries,
skew-symmetries, and conjugate symmetries into a single
super-class, there are eight additional super-classes of
symmetric 4-input Boolean functions. The number of
super-classes increases with the number of inputs. More
work is needed to determine the physical interpretation of
these symmetries, determine their utility, and devise
algorithms to detect them.

7. References
1. Schuler, D., “Simulation of NAND Logic,” Proceedings of

COMPCON 72, Sept 1972, pp. 243-5.
2. Breuer, M. A., A. D. Friedman, Diagnosis and Reliable

Design of Digital Systems, Computer Science Press,
Woodland Hills, CA, 1976.

3. E. G. Ulrich, "Event Manipulation for Discrete Simulations
Requiring Large Numbers of Events, " JACM, V.21, N.9,
Sep. 1978, pp. 777-85.

4. Bryant, D. Beatty, K. Brace, K. Cho, T. Sheffler, "COSMOS:
A Compiled Simulator for MOS Circuits," DAC-24, 1987,
pp. 9-16.

5. Appel, A. W., “Simulating Digital Circuits with One Bit Per
Wire,” TCAD, Vol. CAD-7, pp. 987-993, Sept., 1988.

6. Heydemann, M., D. Dure, “The Logic Automation Approach
to Accurate and Efficient Gate and Functional Level
Simulation,” Proc. ICCAD-88, 1988, pp. 250-253.

7. Lewis, D. M. “A Hierarchical Compiled Code Event-Driven
Logic Simulator,” IEEE Transactions on Computer Aided
Design, Vol 10, No. 6, pp.726-737, June 1991.

8. Olukotun, K., Heinrich, M., Ofelt, D., Digital system
simulation: methodologies and examples, Proceedings of the
35th conference on Design automation, 1998, pp. 658-663.

9. Luo, Y., Wongsonegoro, T., Aziz, A., Hybrid techniques for
fast functional simulation Proceedings of the 35th conference
on Design automation, 1998, pp. 664–667.

10. Ganai, M., Aziz, A., Kuehlmann, A., Enhancing simulation
with BDDs and ATPG, Proceedings of the 36th conference
on Design automation, 1999, pp. 385-390.

11. Wilson, C., Dill, D., Reliable verification using symbolic
simulation with scalar values, Proceedings of the 37th
conference on Design automation, 2000, pp. 124-129.

12. Kölbl, A., Kukula, J., Damiano, R., Symbolic RTL
simulation, Proceedings of the 38th conference on Design
automation, 2001, pp. 47-52.

13. Cadambi, S., Mulpuri, C., Ashar, P., A fast, inexpensive and
scalable hardware acceleration technique for functional
simulation, Proceedings of the 39th conference on Design
automation, 2002, pp. 570-575.

14. Schubert, K. Improvements in functional simulation
addressing challenges in large, distributed industry projects,
Proceedings of the 40th conference on Design automation,
2003, pp. 11-14.

15. Maurer, P., “The Inversion Algorithm for Digital Simulation”
IEEE Transactions on Computer Aided Design, Vol. 16, No.
7, July 1997, pp. 762-769.

16. Maurer, P., “Event Driven Simulation Without Loops or
Conditionals,” Proceedings of ICCAD-2000, 2000, pp. 23-
26.

17. Maurer, P., “Logic simulation using networks of state
machines,” Proceedings DATE-2000, pp. 674-678, Mar.
2000.

18. Maurer, P., Efficient Event-Driven Simulation by Exploiting
the Output Observability of Gate Clusters, IEEE Transactions
on CAD, Vol. 22, No. 11, Nov., 2003, pp 1471-1486.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

