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Abstract 
State machine based simulation of Boolean functions is 

substantially faster if the function being simulated is 
symmetric. Unfortunately function symmetries are 
comparatively rare. Conjugate symmetries can be used to 
reduce the state space for functions that have no 
detectable symmetries, allowing the benefits of symmetry 
to be applied to a much wider class of functions.  
Substantial improvements in simulation speed, from 30-
40% have been realized using these techniques. 

 

1. Introduction 
The efficient simulation of digital circuits is a topic of 

continuing interest in Electrical Design Automation 
(EDA). Simulation has been applied to virtually every 
phase of the design process from high-level algorithms 
down to the circuits themselves. Over the past many years, 
many different techniques have been explored, and there is 
an active and continuing interest in simulation problems 
today. See [1-14] for a small sampling of this work. 

One particularly promising set of techniques are those 
that are based on metamorphic state machines[15]. In 
these techniques the gate is treated as a state machine 
whose state is determined by its current inputs. Regardless 
of the number of inputs of a gate, when an input changes a 
unary operation is performed to determine the next state. 
This is possible because the state of the input is encoded as 
a subroutine that will perform the required operation when 
it is executed. Each net-structure contains a subroutine 
pointer that is toggled every time an event is processed. 
Subsequent work has extended this concept to all phases 
of the simulation process[16]. 

The initial work in this area focused on the global 
issues of efficient scheduling and reducing the number of 
propagated events. More recent work has focused on the 
local issue of efficient simulation of individual gates[17]. 
The Hyperlinear algorithm[18] represents the main thrust 
of this work which is to extend the scope of individual 
gate simulations to small networks of gates. Although it is 
easy to group several gates together and simulate the 

group as an individual gate, it is extraordinarily difficult to 
obtain any real savings by doing so. For example, a direct 
simulation of the function 

( , , , , , ) ( )f a b c d e f abc de f ′= + +  would use two AND 
gates an OR gate and a NOT gate. The first AND gate 
would require two AND instructions while the second 
would require only one. Two OR instructions and a NOT 
instruction would be required to complete the simulation. 
It would be possible to implement this function as an 
AOI321 gate, but the simulation of the AOI would require 
three AND instructions, two OR instructions, and a NOT 
instruction. If we assume that these operations are 
scheduled optimally, this represents a savings of zero. 

In the Hyperlinear algorithm, a single state machine is 
used to simulate a complex Boolean function such as 
function f above. This makes the simulation of the 
function almost as efficient as the simulation of a single 
gate, but this technique is more successful for certain 
functions than it is for others. 

Although any n-input Boolean function can be 
simulated using an n-dimensional hypercube with 2n  
states, it is more efficient in terms of both time and space 
to reduce the number of states. This is done by detecting 
the symmetries of the function being simulated and 
collapsing dimensions of the hypercube together. The 
resulting hyperlinear structure has fewer states than the 
original hypercube, but may have more than two states 
along some dimensions. It the function is totally 
symmetric, it can be collapsed into a linear state machine 
with 1n+  states. Needless to say, the more the state 
machine can be collapsed, the more efficient it will be. 

Unfortunately, the symmetries that make this collapse 
possible are reasonably rare. Only a small fraction of all n-
input Boolean functions are totally symmetric. Partial 
symmetries can also be used, but these are also 
comparatively uncommon. The Hyperlinear Algorithm 
improves on this situation somewhat, because it is capable 
of handling symmetric functions where one or more inputs 
are inverted with respect to the others, but this still leaves 
a large number of functions with no symmetries 
whatsoever. Recently we have discovered a new type of 
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symmetry that can be used to reduce the state space for 
functions that, until now, appeared to have no symmetries 
whatsoever. 

Symmetry has been used in many contexts other than 
simulation. It is probable that our work will have impact in 
these areas as well. 

2. Mathematical Background 
A Boolean function 1 2( , , , )nf a a a…  is symmetric if it is 

possible to rearrange the inputs 1 2, , , na a a…  without 
changing the output of f . AND, OR, and XOR are 
symmetric Boolean functions, but there are others such as  

( , , , ) 'f a b c d abcd a b c a b d a c d b c d′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + + . If it is 
possible to rearrange some, but not all of the inputs then 
the function is partially symmetric. The function 

( , , , )f a b c d abc d= +  is partially symmetric. Symmetric 
functions are sometimes called totally symmetric to 
distinguish them from partially symmetric functions. 
There are many other types of symmetry. To fully explore 
all types of symmetry, it is necessary to use the concept of 
symmetry groups. 

An operation that rearranges a set of elements without 
changing them is called a permutation. The set of all 
permissible permutations that can be used to rearrange a 
set of objects forms a mathematical entity called a group. 
If there are no restrictions on how a set of elements can be 
rearranged then the group in question is Sn, the symmetric 
group of order n . The collection of permutations that can 
be used to rearrange the inputs of a function without 
changing the output is called the symmetry group of the 
function. Suppose f  is an n-input Boolean function. If f  
is symmetric then the symmetry group of f  is Sn. If f  is 
partially symmetric, then the symmetry group is Sk for 
some k n< . If f  is non-symmetric then the symmetry 
group of f  is 

1{ }I S=  where I  is the identity 

permutation. If the symmetry group of f  is not { }I  but 
also not equal to kS  for any 1k >  then f  is called weakly 
symmetric. The function ( , , , )g a b c d ab cd= +  is weakly 
symmetric. 

If we change our point of view slightly, we can take 
advantage of a much wider class of symmetries. Instead of 
treating ( , , , )g a b c d ab cd= +  as a four-input 
function, we can treat it as a function from a four-
dimensional vector space to a one-dimensional vector 
space. Instead of dealing with symmetry by rearranging 
the variables of a function, we rearrange the elements of 
the input vector. From a practical standpoint this point of 
view is identical to the original. However, treating the 
input of a Boolean function as the element of a vector 
space allows us to use the mathematics of linear algebra, 

group theory, and group representations to analyze the 
behavior of Boolean functions. 

Rather than using groups of permutations as our 
symmetry groups, we will use groups of non-singular 
(one-to-one) linear transformations. We will consider n-
element vectors of an n-dimensional vector space over the 
field GF(2). GF(2) is the integers modulo 2, which 
contains the two elements 0 and 1. The AND function is 
used for multiplication, while the XOR function is used 
for addition. 

There is a one-to-one mapping from the elements of Sn 
to linear transformations over GF(2). For example Figure 
1 illustrates the set of linear transformations that 
corresponds to the elements of S3. This group of matrices 
is algebraically identical to the group S3, and is isomorphic 
to it. The first matrix leaves all vectors unchanged, the 
second swaps the last two elements, the third swaps the 
first two elements, the fourth swaps the first and last 
elements, while the fifth and sixth rotate the vector to the 
left and to the right. 

 
1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1
0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0
0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0

           
           
           
           
           

 

Figure 1. The Group 
3(2)SR . 

The advantage of using linear transformations to 
represent symmetry rather than permutations is that there 
are many more non-singular linear transformations than 
there are permutations. S3 contains six elements, but there 
are 168 non-singular 3 3×  matrices. The difference 
becomes even more pronounced as n  becomes larger. The 
set of non-singular n n×  matrices over GF(2), which is 
denoted (2)nGL , contains many sets of matrices that are 
isomorphic to 

nS . These sets of matrices are known as 
representations of 

nS . The set of matrices that rearranges 
the elements of an input vector is known as the standard 
representation of 

nS , and is denoted (2)nSR . There are 
many other representations of 

nS . Figure 2 gives an 
alternative representation of S3. There are many others. 

 
1 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1
0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 1 0 1
0 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0

           
           
           
           
           

 

Figure 2. Another Representation of 3S . 

Each group of non-singular n n×  permutations defines 
a new type of symmetry on n-input Boolean functions. 
The most important groups are the standard representation 
and its subgroups followed by the groups that are 
conjugate to the standard representation. Let T1 and T2 be 



two n n×  matrices. T1 and T2 are said to be similar if there 
is a non-singular n n×  matrix S, such that 1

1 2T S T S−= . T1 is 
called the conjugate of T2 by S.  

Now suppose G is any group of n n×  matrices and S is 
a non-singular n n×  matrix. If we replace every element g 
of G with its conjugate 1S gS−  we obtain a new group of 
matrices 1S GS− . In some cases G and 1S GS−  will be 
identical, but in most cases they will be different. G and 

1S GS−  are said to be conjugates of one another. 
The conjugates of the standard representation are 

especially interesting because they are easy to obtain, and 
the symmetries that they produce have a useful 
interpretation. Let 

1 2( , , , )nf a a a…  have the symmetry group 
G (a group of n n×  matrices), and suppose that G is 
conjugate to the standard representation. This means that 

1 2( , , , )nf a a a…  is symmetric in the usual sense, with 
respect to a new set of variables 

1, , nb b… , where each 
ib  is 

a linear combination of the variables 
1, , na a… . 

If the symmetry group of a function f is 1 (2)nK SR K−  for 
some non-singular n n×  matrix K, then we say that f is 
symmetric with respect to K. Given a particular matrix K, 
detection of conjugate symmetries with respect to K is 
straightforward. If f is symmetric with respect to K then 
there exists a symmetric function g such that f g K= D . 
The function g can be obtained by computing the inverse 

1K −  and composing it with f since 
1 1f K g K K g− −= =D D D . Given an arbitrary function f, 

however, the problem is much more difficult. Ideally, we 
would like to be able to factor f into a function g and a 
matrix K so that f g K= D  and g is as symmetric as 
possible. When we say “as symmetric as possible” we 
mean that the state machine used to simulate g has a 
minimal number of states. 

For example, consider the totally non-symmetric 
function f ac bc bd ab d a cd′ ′ ′ ′ ′ ′= + + + + , which can be 
factored into g TD , where 

g a cd a bd a bc ac d ab c abd′ ′ ′ ′ ′ ′= + + + + +  and T  is given 
in Figure 3. The function f  requires a 16-state machine 
for simulation, but g is totally symmetric and can be 
simulated with only 5 states. 

 
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

T

 
 
 =
 
 
 

 

Figure 3. A Linear Transformation in GF(2). 

3. Implementing Linear Transformations. 
Although factoring a function f into a symmetric 

function g and a linear transformation T will allow the 
base function g to be simulated faster than the function  f, 
it is also necessary to implement the transformation T. If 
there is to be any performance improvement, the 
simulation time for T must be negligible. Fortunately, the 
structure of our simulation technique allows us to get the 
transformation T almost for free. 

The basic simulation algorithm is the hyperlinear 
algorithm described in reference [18]. This algorithm 
represents Boolean functions as hypercubes and other n-
dimensional structures. Non-symmetric n-input functions 
are represented as n-dimensional hypercubes. If the 
function has symmetries they can be used to collapse two 
or more dimensions of the hypercube into a linear 
structure. As the dimensions of the hypercube are 
collapsed, the length of each dimension increases. The 
result is no longer a hypercube, but a hyperlinear structure 
with each dimension representing a counting function. The 
hyperlinear structure is then transformed into a state 
machine that is used to represent the state of the Boolean 
function. 

The inputs to the Boolean function are also represented 
as state machines. This is done to facilitate the 
implementation of the counting machines embedded in the 
hyperlinear state machine. Each input will count along a 
certain dimension in the hyperlinear machine, with the 
direction reversing on each consecutive event from the 
same input. 

Collapsing dimensions of the hypercube causes two or 
more inputs to be funneled into a single input of the state 
machine as in Figure 4. 

 
A

B

C

D

Dim1

Dim3

Dim2

Input 1

Input 2

Input 3

Input 4
 

Figure 4. Input Modeling. 

Figure 4 illustrates a state machine with three inputs 
that is used to model a four-input Boolean function. Inputs 
B and C are symmetric and have been collapsed into a 
single input. The state machine has three inputs, A, B/C, 
and D. There are two states in directions Dim1 and Dim3 
and three states in direction Dim2. Figure 5 shows the 
structure of the state machine. Regardless of the internal 
structure of the machine, each input is represented as a 
two-state input machine. These are labeled Input 1 through 



Input 4 in Figure 4. There is a one-to-one correspondence 
between input variables and input state machines. 

 
Dim2

Dim1

Dim3

 
Figure 5. A Hyperlinear Structure. 

Breaking the one-to-one correspondence between input 
state machines and input variables is the key to creating 
efficient linear transformations. Figure 6 shows how to 
implement the linear transformation of Figure 3. 
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C

D
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State 2

Input 1

Input 2

Input 3

Input 4
 

Figure 6. Impl. a Linear Transformation. 

In Figure 6, the inputs to the state machine are A , A B+ , 
B C+ , and C D+ . The input variables and input state 
machines are constructed in such a way that an event 
arrives at an input state machine if and only if the 
corresponding input variable changes value. Two 
successive events cancel one another and neither is 
propagated to the succeeding state machine. Effectively, 
this performs an XOR operation on the successive inputs. 
If the two successive inputs come from different variables, 
this computes the XOR of the two variables. The AND 
function is implemented in the wiring from input variable 
to input machine. This incurs slightly more overhead than 
using a single input machine per input variable, but the 
speedup given by the enhanced symmetry more than 
compensates for it. 

4. Detecting Symmetries. 
In the hyperlinear algorithm we are able to detect 

arbitrarily complex symmetries by first detecting the 
symmetries between pairs of variables and then combining 
these into more complex symmetries. We are able to 
detect two different types of symmetry, ordinary 
symmetry and skew-symmetry where one variable is 
inverted with respect to the other. The function 

( , )g a b a b= +  exhibits ordinary symmetry, while the 
function ( , )h a b a b′=  exhibits skew-symmetry. 

With conjugate symmetries, we have input variables 
that are conditionally inverted with respect to one another. 
For example, the function 

( , , , )f a b c d ac d a b d a b c bd bc′ ′ ′ ′ ′ ′ ′ ′= + + + +  is totally 
symmetric with respect to the matrix K given below. The 
variables a  and b  are symmetric with one another, but 
because the variable b is replaced with a b+ , we say that b 
is conditionally inverted by a. 

 
1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

K

 
 
 =
 
 
 

 

 
In the hyperlinear symmetry detection algorithm, 

variables are eliminated one at a time by symbolic 
evaluation, and a hypercube is constructed from the 
remaining expressions. (Despite the apparent linear nature 
of this algorithm, symmetry detection is independent of 
variable ordering. The one-by-one elimination of variables 
is done to prevent the size of the state machine from 
growing exponentially and is not essential to the detection 
process.) As an example, consider the expression f given 
above. If we symbolically evaluate this expression first 
setting 0a =  and then 1a = , we obtain two simpler 
expressions that can be placed in a one-dimensional 
hypercube as follows. 

 

c d b c bd′ ′ ′+ + c d bc bd′ ′ ′ ′+ +
a=0 a=1

 
 
By eliminating the variable b in the same fashion, we 

get four expressions that can be placed in a 2-dimensional 
hypercube as shown in Figure 7. 

 

d c+ c d′ ′

c d′ ′+ c d′ ′+

a=0,b=0 a=1,b=0

a=0,b=1 a=1,b=1

E F

G H
 

Figure 7. A 2D Hypercube. 

We can determine the symmetries of the function by 
comparing the vertices of the hypercube. If F=G, then a is 
symmetric with b, but if E=H then a is skew-symmetric 
with b. The test succeeds because an unconditional 
inversion has the effect of flipping the hypercube either 
horizontally or vertically, and the flip has the effect of 
exchanging the diagonals. Conditional inversions have the 
effect of flipping either the odd-numbered rows or the odd 
numbered columns of the cube. (Rows and columns are 



numbered starting with zero.) This would have the effect 
of swapping F and H or G and H. In this example because 
G=H, F has been swapped with H, and the function 
possesses ordinary symmetry between a and b with b 
conditionally inverted by a. Similarly, if F=H then a and b 
are symmetric with b conditionally inverting a. If E=F or 
E=G, then there is a combination of a conditional 
inversion and an unconditional inversion. These tests can 
easily be generalized to more complex hyperlinear 
structures. 

To incorporate the tests for conjugate symmetries into 
the hyperlinear algorithm, we added four more tests to the 
tests for ordinary and skew-symmetry. The test for 
ordinary symmetry was replicated, with the indexing 
reversed for odd rows of the hyperlinear structure and then 
replicated again with indexing reversed for the odd 
columns. The test for skew symmetry was replicated in a 
similar fashion. When a test for a conditional inversion 
succeeds, the conditional inversion must be removed by 
reversing the odd rows or the odd columns. The matrix 
that causes the conditional inversion is saved for later 
processing. Once all symmetries have been detected the 
product of all saved matrices is computed to form the 
symmetry matrix for the entire function. To illustrate this 
process, consider the function 

( , , , )f a b c d ac bc bd ab d a cd′ ′ ′ ′ ′ ′= + + + + , which exhibits 
no ordinary or skew-symmetries. If we eliminate a and b, 
we get the following hypercube. 

 

cd ′ c d′ +

c d′ ′+ c d′ ′+

a=0,b=0 a=1,b=0

a=0,b=1 a=1,b=1

E F

G H
 

 
We note that the right column is reversed, indicating 

that a and b are symmetric with a conditionally inverting 
b. The following matrix causes this conditional inversion. 

 
1 1 0 0
0 1 0 0

1
0 0 1 0
0 0 0 1

K

 
 
 =
 
  

 

 
We restore the last column by swapping the contents of 

F and H, and collapse the hypercube into the following 
hyperlinear structure. 

 

cd ′ c d+′c d+′ ′
(a,b)=0 (a,b)=1 (a,b)=2

 
 
Next we eliminate c, giving the following. 
 

0 11
(a,b)=0,c=0 (a,b)=1,c=0 (a,b)=2,c=0

d ′ dd ′
(a,b)=0,c=1 (a,b)=1,c=1 (a,b)=2,c=1 

 
We observe that (a,b) is symmetric with c, with c 

conditionally inverted by (a,b). We correct the conditional 
inversion by reversing the center column as shown below. 

 

0 1
(a,b)=0,c=0 (a,b)=1,c=0 (a,b)=2,c=0

d ′ d

d ′

(a,b)=0,c=1 (a,b)=1,c=1 (a,b)=2,c=1

1
 

 
The matrix responsible for this conditional inversion is 

given below. 
 

1 0 1 0
0 1 1 0

2
0 0 1 0
0 0 0 1

K

 
 
 =
 
    

We collapse the 3 2×  hyperlinear structure into a 
four-state linear machine, and then eliminate d, giving the 
following. 

 

0 1 01

0 1 10  
 
This hyperlinear structure shows an ordinary symmetry 

between the variables (a,b,c) and d, with d conditionally 
inverted by (a,b,c). The conditional inversion is caused by 
the following matrix. 

 
1 0 0 1
0 1 0 1

3
0 0 1 1
0 0 0 1

K

 
 
 =
 
  

 

 
After reversing columns 1 and 3 (2nd and 4th from the 

left) and collapsing, we get the following linear state 
machine. 

 

0 1 10 0  
 
Finally, we compute the symmetry matrix as follows. 

1 1 0 0
0 1 1 0

1 2 3
0 0 1 1
0 0 0 1

K K K K

 
 
 = =
 
  

i i
 



5. Experimental Data 
To determine the effectiveness of conjugate 

symmetries, we used two versions of the Hyperlinear 
algorithm, one that was able to detect conjugate 
symmetries, and one that could not. We applied both 
algorithms to the Boolean function 

( , , , )f a b c d a cd ab c ad bc bd= + + + +′ ′ ′ ′ . This function 
exhibits no ordinary symmetries or skew-symmetries, but 
is totally symmetric with respect to the following linear 
transformation. 

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

K

 
 
 =
 
  

 

Each version of the simulation was run using 800 
million input vectors on a 3.2 GHZ Intel LINUX machine 
with 512 megabytes of memory. Without conjugate 
symmetry, the simulation required 154 seconds to 
complete, with conjugate symmetry only 95 seconds were 
required, a 38% savings in execution time, a difference 
comparable to the observed difference between symmetric 
and non-symmetric functions in the hyperlinear algorithm. 

6. Conclusion 
The techniques described in this paper can be used to 

detect symmetries in Boolean functions that have no 
apparent symmetries. These new types of symmetries can 
be exploited to speed up the simulation of these functions. 
The substantial improvement in simulation speed can 
significantly reduce the amount of time necessary to verify 
the design of a VLSI circuit. 

The most important benefit is the huge increase in the 
number of symmetric functions that can be detected. For 
example, there are 65,536 4-input Boolean functions, 32 of 
which are totally symmetric. Skew symmetries increase 
the number of totally symmetric functions by a factor of 
16, giving 512 functions. The standard representation has 
420 conjugates, substantially increasing the number of 
totally and partially symmetric functions. (Some functions 
are in more than one class, so it is incorrect to simply 
multiply 512 times 420.) 

Although we can detect all conjugate symmetries, this 
is still only a fraction of the symmetries available in the 
general linear group. If we combine ordinary symmetries, 
skew-symmetries, and conjugate symmetries into a single 
super-class, there are eight additional super-classes of 
symmetric 4-input Boolean functions. The number of 
super-classes increases with the number of inputs. More 
work is needed to determine the physical interpretation of 
these symmetries, determine their utility, and devise 
algorithms to detect them. 
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