

Smart Bit-width Allocation for Low Power Optimization in a SystemC based

ASIC Design Environment1

Arindam Mallik, Debjit Sinha, Prith Banerjee†, Hai Zhou
Electrical Engineering and Computer Science

Northwestern University
Evanston, IL 60208, USA

{arindam, debjit, haizhou}@ece.northwestern.edu

†College of Engineering
University of Illinois at Chicago,

Chicago, IL 60607, USA
prith@uic.edu

Abstract
 The modern era of embedded system design is geared towards
design of low-power systems. One way to reduce power in an
ASIC implementation is to reduce the bit-width precision of its
computation units. This paper describes algorithms to optimize the
bit-widths of fixed point variables for low power in a SystemC
design environment. We propose an algorithm for optimal bit-
width precision for two variables and a greedy heuristic which
works for any number of variables. The algorithms are used in the
automation of converting floating point SystemC programs into
ASIC synthesizable SystemC programs. Expected inputs are
profiled to estimate errors in the finite precision conversions.
Experimental results on the trade-offs between quantization error,
power consumption and hardware resources used are reported on
a set of four SystemC benchmarks that are mapped onto 0.18
micron ASIC cell library from Artisan Components. We
demonstrate that it is possible to reduce the power consumption by
50% on average by allowing round-off errors to increase from
0.5% to 1%.1

1 INTRODUCTION
Power consumption has become a primary design criterion
for modern embedded systems. The majority of low power
design and analysis tools in the EDA industry target low
levels of chip design, such as the transistor, gate and RTL
levels. However, it is widely recognized that the largest
gains in power savings occur at the system level.
Reduction of the bit-width precision of computation units
such as adders and multipliers result in an immediate gain
in power savings and area of a design. However, this
adversely affects the accumulation of quantization errors
due to finite precision arithmetic. Most practical ASIC
designs of embedded applications are limited to fixed-point
arithmetic due to the cost and complexity of floating point
hardware. Consequently, we consider system level tradeoffs
in quantization errors with the area and power consumption
of the hardware implementation by varying the bit-width
precision of individual operators.
SystemC [1] is a relatively new modeling language based
on C++ that is intended to enable system level design and
IP exchange. It has been developed as a standardized
modeling language intended to enable system level design
and IP exchange at multiple abstraction levels, for systems
containing both hardware and software components.

1 This research was supported by NASA under contract 276685, and
DARPA under contract no F33615-01-C-1631.

Fixed-point numbers are frequently used in DSP
applications that target both hardware and software
implementations. However the behavioral synthesis tools
available in the market for SystemC (e.g. the Synopsys
Cocentric Compiler) are unable to synthesize fixed-point
data type. Naturally, there is a growing demand for
solutions to this problem.
This paper describes an algorithm for trading off
quantization error with power consumption and hardware
resources in a SystemC-based ASIC design environment.
We use high-level power consumption and area usage
models to formulate an error-constrained optimization
problem. We propose an algorithm for optimal bit-width
precision for two variables and extend the approach to a
greedy heuristic which works for any number of variables.
The power optimization process involves profiling input
vectors and fast simulations in addition to high level
synthesis for estimating quantization errors and optimized
power values.
The rest of the paper is organized as follows. The next
section describes related work. Section 3 presents the area,
delay and error models used in our SystemC designs.
Section 4 gives the details of the proposed optimization
algorithms. Section 5 discusses the experimental setup and
results. Section 6 concludes the paper by summarizing our
contributions.

2 RELATED WORK
 The strategies for solving floating-point conversion and
precision issues can be roughly categorized into two
groups. The first one is an analytical approach used by
algorithm developers who analyze finite word length effects
due to fixed-point arithmetic [2, 3]. The other approach is
based on bit-true simulation techniques used by hardware
designers [4].
 There has been some work in the recent literature on
automated compiler techniques for conversion of floating
point representations to fixed-point representations [5, 6].
The BITWISE compiler [7] determines the precision of all
input, intermediate and output signals in a synthesized
hardware design from a C program description. The
MATCH compiler [8] develops precision and error analysis
techniques for MATLAB programs. Synopsys has a
commercial tool called the Cocentric Fixed-Point Designer
[6], which automatically converts floating-point

3-9810801-0-6/DATE06 © 2006 EDAA

computations to fixed point within a C compilation
framework. However, the code generated is not
synthesizable. Constantinides [10] has developed a design
tool to tackle both linear and nonlinear designs. Chang et al.
[11] have developed a tool called PRECIS for precision
analysis in MATLAB. An algorithm for automating the
conversion of floating point MATLAB to fixed point
MATLAB was presented in [9] using the AccelFPGA
compiler. Their approach needs the default precision of
variables and constants specified by the user which the
compiler is unable to infer. Recently, Roy et al. [12]
proposed automated algorithms to convert floating point
MATLAB programs into fixed point MATLAB programs
using input profiling. The work is used to tradeoff area and
performance for quantization error. Power is not explicitly
considered in their approach.

3 AREA, POWER AND ERROR MODELS
This section provides an overview of the SystemC library,
and the area, power and error models used by our
algorithm.

The SystemC class library provides necessary constructs to
model system architecture including hardware timing,
concurrency, and reactive behavior that are unavailable in
standard C++. The behavioral synthesis tools available for
SystemC such as the Synopsys Cocentric compiler [9] do
not support the synthesis of fixed-point data types.
We propose the use of the sc_int<> data type which
represents the fixed precision signed integer to preserve the
data precision. When we scale any parameter, a part of its
fractional part is converted into the integer part. This
enables us to take into consideration the effect of the
fractional part for a parameter. We can specify the number
of bits which would be used to store a particular integer
variable. Higher precision in the design is introduced by
adding more bits to a parameter of sc_int<> type.
sc_int<12> sample_tmp;
The above declaration allocates 12 bits to the variable
sample_tmp during synthesis. In our algorithm we scale the
data to increase the precision and allocate extra bits to the
scaled variable accordingly. Note that, we use scale-factors
that are always powers of two. This facilitates the task of
allocating extra bits to the variables. During the first pass
over the program (details are provided in Section 4.1) we
formulate several relations for bits allocated to each
variable in the program. Due to the scaling of the input
variables by a SCALE_FACTOR, if any variable in the
program gets scaled by SCALE_FACTORn (n=0, 1, 2 ..) we
allocate log2(SCALE_FACTORn) bits to it.
3.1.1 Error Model
The introduction of the SystemC model enables convenient
and fast simulation of designs by using the lightweight
cycle-based simulation kernel. In our approach we compute
the errors using simulations and consider non-increasing
error values with increase in resources in the form of the bit

length of the parameters involved in a particular design. We
define an Error Metric E as
E = | Outputfloat – Outputfixed | / Outputfloat
where, Outputfloat denotes the vector of floating point output

values for training set inputs and Outputfixed denotes the
vector of corresponding output values after scaling.

In order to formulate an error-constrained optimization
problem, we need high-level models of power consumption
for each type of primary operations in system-level
descriptions of algorithms. Adders, multipliers and registers
are considered to be the primary candidates that consume
power. We do not consider power consumption of
interconnects and other input/output constructs in our
approach.
We assume that power consumption in CMOS circuits
consists of dynamic power, leakage power and static power.
At a high level, the total power consumption is directly
proportional to the area. Consequently, optimizing the bit-
length of different parameters of a design results in low
power consumption. Moreover, bit-length optimization of
different parameters reduces the interconnect overhead of
the circuit. We use two abstract function f and g to express
the relation between the bit-widths of the parameters to area
and power consumption respectively.
It can be observed that there exists a partial relation among
different design configurations within a solution space. For
a design with k independent variables, the solution space of
the design is k-dimensional where a particular design can
be represented using k co-ordinates. Hence, a design X in
that solution space can be expressed as (x1, x2, x3, …… xk).
where xi denotes the bit-width of the i-th independent
variable.
If A(X), P(X) and E(X) denote the area, power
consumption and error metric obtained for the configuration
X, then we can claim that,
A(X) ≤ A(Y) If xi ≤ yi, for all i = 1, 2, 3, … k.
P(X) ≤ P(Y) If xi ≤ yi, for all i = 1, 2, 3, … k.
E(X) ≥ E(Y) If xi ≤ yi, for all i = 1, 2, 3, … k.
These relations conclude that the abstract area function f
and power function g are monotonically non-decreasing
with bit-width of variables.
The area of an adder is dependent on the bit-width of the
variables involved in the operation. Assuming we need na
and nb bits for two operands, we can formulate the area of
an adder as - AADDER = fADDER (na , nb) (1)
Then, the power consumption can be modeled as –
PADDER = AADDER.VDD

2.f(activity) = gADDER(na,nb) (2)
It has been experimentally proven that a ‘coefficient blind’
area model does provide good results in practice [10]. The
number of additions required to implement a constant
coefficient multiplier is assumed to be proportional to the
coefficient word-length CW. If we consider a multiplier
with ni bits as input and no bits as output, each multiplier
would involve (no + 1)-bit addition. Hence we can
formulate the area and the power of a multiplier as,
AMULT = fMULT (CW, ni, no) (3)

3.1 SystemC Fundamentals

3.2 Area and Power Model Analysis

PMULT = gMULT (CW, ni, no) (4)
The area of a unit sample delay is implemented as a
register. Hence with an input i, the area and power model of
a register can be formulated as ,
AREGISTER = fREGISTER (ni) (5)
PREGISTER = gREGISTER (ni) . (6)
These models satisfy the above monotoic properties

4 ALGORITHM FOR POWER OPTIMIZATION
We now describe our automated algorithm,
QUANTASMART, for power optimization while
constraining the round off errors. It consists of a compiler
pass followed by simulation and synthesis for the
optimization purpose. First we propose a heuristic Greedy
search algorithm followed by a Smart Search Algorithm
which gives the optimal solution for two variables. A flow
diagram describing the steps involved in the whole process
of optimization is shown in Figure 1.
We subdivide the process into three basic steps :

• Data profiling and Inequality formation
• Solution space recognition
• Optimal point search within given error constraint

The quantization algorithm can be used for various types of
applications such as speech processing applications, filter
applications. A small percentage of the actual inputs to a
system are used for our algorithm. The quantization
algorithm gives the optimal set of quantizers using the
sample input. This is known as “training of the system”.
Once we develop an optimized hardware using our
algorithm, we use a larger percentage of the actual inputs to
test our system. Thus we now test the hardware with actual
inputs and verify that the actual quantization error is within
the acceptable limit. While training the system we can use a
factor of safety for the Error Metric (E) constraint (defined
in section 3.3). For example if our E constraint of the actual
system is 5%, and we use a factor of safety=10%, then the
E constraint fed to the quantization algorithm is 5*(1-0.1).
= 4.5%. For a system in which a smaller sample closely
resembles the input signal, the factor of safety can be kept
very low. As we train the system with a very small
percentage of the actual inputs, this process is fast. During
the synthesis of the design we use only integer values to
preserve the precision of the parameters (as described in
Section 3.1). If the inputs of the design do not contain any
integer part, we scale it.
Next we perform a compiler pass over the program to
assign bit values to each variable in the program. We
propose the following set of rules while assigning bit-length
to any variable.
Addition rule: a = b + c;
Bitlengtha = maximum(Bitlengthb , Bitlengthc) + 1
Multiplication rule : a = b * c;
Bitlengtha = (Bitlengthb + Bitlengthc)
Loop rule : For an accumulator variable within a loop
which iterates N (a fixed number known at compile time)
times,

for (i = 0; i < N; i++)
 accumulator +=sample;
Bitlengthaccumulator = (Bitlengthsample + Log2 N)

Figure 1. Flow Diagram of the optimization algorithm.

We illustrate our approach using the example SystemC
code for an FIR filter in Figure 2. In the code, we have two
input parameters (sample and coeff). We assign x and y bits
to these variables respectively. Let us assume that for a
given data input set, we need at least 7 and 8 bits to
represent the input variables. The minimum bits needed to
represent the inputs can be calculated using range
propagation on the training set. Then we can form the
inequalities:
sampleBIT ≥ 7 (i)
coeffBIT ≥ 8 (ii)

Figure 2. Example of a SystemC code segment.
We next obtain the following inequalities:
sample_tmpBIT = sampleBIT (iii)
proBIT = shiftBIT + coeffBIT + 1 (iv)
accBIT = proBIT + log2(NUMTAPS) (v)
shiftBIT = sampleBIT (vi)
resultBIT = accBIT (vii)
An analysis of the equations reveals that variables acc and
result would store the largest value. Hence, these two
variables have to maintain the constraint on the largest
<sc_int> that can be synthesized. This constraint gives us
the inequalities:
32 ≥ resultBIT (viii)
32 ≥ accBIT (ix)

4.1 Data Profiling and Inequality Formation

while(1) {
 output_data_ready.write(false);
 wait_until(input_valid.delayed() == true);
 sample_tmp = sample.read(); sample_tmpBIT = sampleBIT = x
 acc = 0; acc = sample_tmp*coefs[0];
 for(int i=NUMTAPS; i>0; i--) {
 pro = shift[i-1]*coefs[i]; proBIT = shiftBIT + coeffBIT + 1
 acc = acc + shift[i-1]*coefs[i]; accBIT = proBIT + log2(NUMTAPS)
 };
 for(int i=NUMTAPS-1; i>=0; i--)
 shift[i+1] = shift[i];
 shift[0] = sample_tmp; shiftBIT = sampleBIT
 result.write(acc); resultBIT = accBIT
 output_data_ready.write(true);
 wait();
 };

The set of inequality relations obtained describes the
solution space satisfying the given error constraints. When
we solve the inequalities we come up with a range within
which we can vary the bit-length of the independent
variables (sampleBIT , coeffBIT). We also modify the bit-
lengths used by the intermediate variables every time we
make a change in the independent variable bit-lengths. By
solving the 9 inequalities given in the example we get a
range of bit-lengths within which sampleBIT and coeffBIT
can vary. In effect this defines the solution space of the
optimization problem. From the above example (for
NUMTAPS = 4) we get the solution space:
19 ≥ sampleBIT ≥ 7 (x)
20 ≥ coeffBIT ≥ 8 (xi)

Once we have narrowed down the solution space using
solutions of the inequalities we start to simulate the
synthesizable code to get an error estimation of the
optimized design. We propose two different algorithms for
searching the optimal point.
4.3.1 Greedy Search Algorithm
The first method that we use is a heuristic greedy algorithm
followed by refined local search techniques. We model the
problem as a search for bit precisions in an N-dimensional
search space of independent variables

Figure 3. Pseudo code of the Greedy Search Algorithm.

4.3.2 Sub-optimal point search
We start with the search for a sub-optimal point in the
solution space that involves a Greedy Search Stepwise
algorithm. In this step we try to reach a near optimal
solution with the help of fast SystemC simulation. We
narrow down the search for an optimal solution with a
given error constraint into a very small solution space. We
start with the minimum permissible bit-length allowed for
the independent variables and adjust the intermediate
variables using the inequality relations.
Assuming the design has n independent variables we
allocate extra log2(SCALE_FACTOR) bits to one of them.
The input data corresponding to that independent variable is
scaled by SCALE_FACTOR and the Error Metric E is
recorded after simulating that particular configuration. The
input variable which affects the Error value most favorably
(i.e. made it decrease most) is picked and marked as the
next step. We repeat the same steps for the new
configuration obtained to reach a better solution which
takes extra precision into account with the help of scaling.
The process ends when we got a point which satisfies the
given Error Constraint on the design.

4.3.3 Local Search
We can further optimize the solution by searching the
neighbors of the sub-optimal point in the solution space.
To perform that, we implement a local search at the sub-
optimal point. Here we search for other solution candidates
among the neighbors and ultimately we would settle for the
solution for which given error-bound is met and power
consumption is the minimum.
To do that, we scale down the independent variables along
each dimension by a constant FINER_SCALE which is less
than the SCALE_FACTOR. We calculate the Error Metric
E value and the power consumed by each of these new
designs. In the example given in Figure 2 we scale both the
variables sampleBIT and coeffBIT by 64 to reach the sub-
optimal point. Now during local search procedure it is
observed that if we save a single bit in the sampleBIT
variable, i.e. scale down it by 2 (< SCALE_FACTOR = 4)
we can get a solution that has the least power consumption.
Hence for the given example, a design with sampleBIT
scaled by 32 and coeffBIT scaled by 64 gives us the
optimized solution.

Figure 4. Pseudo code of the Local Search Algorithm.
4.3.4 Smart Search Algorithm
In the greedy search we started looking for the solution
from the configuration where all the independent variables
have least bit-length. This section discusses another
approach which results in a provably optimum solution. It
can be argued that the heuristic greedy search algorithm
discussed in the previous section is not guaranteed to give
an optimal solution. If one or more sub-optimal solution
exists along the solution space boundary, it won’t give an
optimized solution. A possible modification can be
traversing the outer boundary of the solution space to check
if any other optimal solution exists along the boundary.
This results a significant increase in complexity. We
propose a smart algorithm which can be proven to be
optimal for designs where we have two independent
variables. The algorithm is trivially true for designs with a
single independent variable. For designs having more than
two independent variables, we propose a heuristic solution.

Figure 5. Illustration of the Search Algorithm.

4.2 Solution Space Recognition

4.3 Search Algorithm for Optimal Point

While (E > ERROR_CONSTRAINT) {
 For i = 1 to N = No_of_variables {
 Scale the independent variable along
 co-ordinate i by the SCALE_FACTOR and
 simulate the design to get Error Metric E[i];
 }
 E = Minimum of E[i];
Change the variable along dimension i into the new scaled value;
}

For i = 1 to N = No_of_variables {
 Scale down the independent variable along
 dimension i by the FINER_SCALE ;
 Simulate the design to get Error Metric E.
 If (E< ERROR_CONTRAINT)
 Estimate the power P[i];
 }
 P = Minimum of P[i];

Let us consider a design with two independent variables X
and Y. After the analysis in the first two steps we deduced
that X has a range of m bits for variance (x1 < x2 < … < xm)
and Y has a range of n bits (y1 < y2 <… < yn). The
solution space can be assumed to be a grid of (n x m) cells
where each cell corresponds to a particular configuration of
the design. The smart algorithm is as follows:
(1) Start searching from either (x1, yn) or (xm, y1) position.
One of the variables will have the highest permissible
precision and the other will have the least precision.
(2) Calculate the Error Metric E(i,j) for the point (xi, yj)
using simulation.
(3) If E(i,j) satisfies the error constraint and lower than
previously recorded value, store it and decrease the bit-
length of the High Precision variable by one. Go back to
step 2.
(4) Otherwise, allocate an extra bit to the Low Precision
variable and go back to step 2.
The process will end when the High Precision variable
can’t be reduced or the Low Precision variable can’t be
decreased. The optimum configuration is recorded during
the traversal.
Proof of optimality
We now prove that our proposed algorithm will always give
the optimal solution. We will also prove that (m+n-1)
simulations are sufficient to find the optimal solution using
the smart algorithm.
Without any loss of generality, let us assume that while
searching we started from (x1, yn) position. So Y is the High
Precision variable and X is the Low Precision variable. We
claim that when the algorithm reaches a point (xi, yj) the
optimal solution OPT of the problem can be expressed as,
P:OPT =BEST(record, BEST{(xk,yl) | i≤ k ≤m, 1≤ l ≤ j })
where, OPT = Optimal solution of the problem
record = valid configuration with minimum power
consumption checked so far.
BEST(S) = A solution in S satisfying the precision
constraint and having the minimal power consumption.
We can show that the above claim is an invariant property.
At the start of the search the property P holds true as –
record = {} and i = 1 , y = n. So the best solution of {(xk, yl)
| 1≤ k ≤m, 1≤ l ≤ n} is indeed the optimal solution.
At the end of the search we would have i > m or j < 1. Thus
{(xk , yl) | i≤ k ≤m, 1≤ l ≤ j }={}. Hence, record=OPT. The
algorithm actually gives the optimal solution.
Let us assume that the property holds for a point (xi , yj) in
the solution space. In the next iteration the algorithm can
move in either of the two directions in the solution space.
Case 1 : The algorithm will move along the Y direction, i.e.
the High Precision variable. The partial order relation
among the points in solution space suggests that all the
points for which (y = yj) and (x > xi) will also satisfy the
error constraint. However they will consume no less power
which excludes them to be an optimal solution. The record
will be updated accordingly. Thus after the point moves in
Y direction the property P still holds.

Case 2 : The algorithm will move along the X direction i.e.
the Low Precision variable. From the existing partial order
we can exclude all invalid points for which (y < yj) and (x
= xi). Thus the record value won’t change and also the
unexplored solution space will reduce. Additionally, we
won’t exclude any point which could be a possible
candidate of the optimal solution. The property P is still
true after the increase of i.

Figure 6. Illustration of the Smart Search Algorithm

Therefore, using the principle of induction we can prove
that for all points traversed by the property P will hold and
hence at termination it is bound to give the optimal
solution.
Further, the algorithm always forces the High Precision
variable direction towards reduction and Low Precision
variable towards increase. This ensures that we can traverse
at most (m+n-1) simulation points in the solution space.
Thus the algorithm executes in linear time O(m + n).
4.4.1 Selection of High and Low Precision variable
We use a heuristic to select the High and Low Precision
variable for the algorithm. We consider two configurations
– Least bit-length and Largest possible bit-lengths for both
the independent variables. For both the configurations we
change the bit-length along each of the variable and observe
the effect on Error Metric. If they suggest the same variable
as more sensitive to precision then we pick that variable as
the High Precision variable. Otherwise we pick the variable
which has a smaller range of bit variance as the High
Precision variable.
4.4.2 Extension of the Algorithm to Higher Dimensions
The smart algorithm can be proved to be optimal for
designs with two independent variables. For designs having
more than two independent variables, it can be proved that
a similar approach would result a near exponential time
complexity. Thus, we propose a heuristic approach for
designs having more than two independent variables. Using
the same heuristic as discussed in section 4.3.6 we would
pick up two most sensitive variables for better precision.
All other variables would be fixed to the highest
permissible value and get the optimal solution. We would
fix the two selected variables to the optimal solution
configuration value and repeat the step with picking up two
variable ranked next in the precision sensitivity list. This
step would be continued till we fix all the independent
variable bit-length.

4.4 Designs with two independent variables

5 EXPERIMENTAL RESULTS
We now report the experimental results on various
benchmark SystemC benchmarks.

• A 16 tap Finite Impulse Response filter (fir)
• An Interpolation FIR filter (intfir)
• A Decimation in Time FIR filter (decfir)
• A LMS adaptive filter (lms)

We used SystemCTM(version 2.0.1) to simulate the
fixed/floating point codes. We took measurements for
optimal quantizers and E corresponding to the inputs. We
have used sinusoidal wave input of size 2048.
Subsequently, we used the Cocentric Behavioral Compiler
for SystemC [9] to generate RTL VHDL from the SystemC
benchmarks. Using the same tool where Synopsys Design
compiler runs in the backend, we synthesized all the
designs into 0.18 micron technology ASIC cell library from
Artisan Components. This gave us an idea about the area
consumed by the optimized design. Finally, we used
Synopsys Power Compiler to get the power values related
to each synthesized design. We selected the design with the
least amount of power consumption and having an E within
a given ERROR_CONSTRAINT as the final optimized
ASIC design.
Table 1 shows the optimal bit-length of input parameters
selected by the smart search algorithm followed for E
constraints of 0.5%, 1% and 5% using simulation with
sinusoidal inputs. We demonstrate that it is possible to
reduce the power consumption by 200% in the best case by
allowing round-off errors to increase from 0.5% to 1%.
The Greedy Search heuristic gave the optimal solution in 11
out of the 12 cases for sinusoidal input. However for
smaller error constraints (0.5%) it took more simulations to
reach the solution point.

6 CONCLUSION
This paper describes algorithms to optimize the bit-widths
of fixed point variables for low power in a SystemC design
environment. We propose an algorithm for optimal bit-
width precision for two variables and a greedy heuristic
which works for any number of variables. The algorithms
are used in the automation of converting floating point
SystemC programs into ASIC synthesizable SystemC
programs. The results show that it is possible to trade-off
the quantization error with the hardware resources used in
the ASICs very effectively. The ideas introduced in this
paper can be extended to other programming languages
such as MATLAB and SIMULINK and to other
technologies such as FPGAs.

7 REFERENCES
[1] The Open SystemCTM Initiative (OSCI), www.systemc.org
[2] K. H. Chang, and W. G. Bliss, “Finite word-length effects of
pipelined recursive digital filters,” IEEE Transactions on Signal
Processing, Aug. 1994 Page(s): 1983 –1995
[3] R. M. Gray, D. L. Neuhoff, “Quantization”, IEEE
Transactions on Information Theory, Volume: 44 Issue: 6,
October 1998, pp. 2325 –2383.

[4] H. Keding, M. Willems, M. Coors, and H. Meyr, “FRIDGE:
a fixed-point design and simulation environment” In Proc. of
Design Automation Test in Europe, 1998, pp. 429 –435, 1998.
[5] Cocentric SystemC Compiler, www.synopsys.com
[6] Cocentric Fixed Point Designer, www.synopsys.com
[7] M. Stephenson and J. Babb and S. Amarasinghe, “Bitwidth
Analysis with Application to Silicon Compilation”. In Proc. of the
SIGPLAN conference on Programming Language Design and
Implementation, Vancouver, British Columbia, June 2000.
[8] A. Nayak, M. Haldar, A. Choudhary, P. Banerjee, "Precision
And Error Analysis Of MATLAB Applications During Automated
Hardware Synthesis for FPGAs," In Proc. of Design Automation
and Test in Europe, Mar. 2001, Berlin, Germany.
[9] P. Banerjee, D. Bagchi, M. Haldar, A. Nayak, V. Kim, R.
Uribe, “Automatic Conversion of Floating Point MATLAB
Programs into Fixed Point FPGA Based Hardware Design,” In
Proc. of FPGA Based Custom Computing Machines (FCCM),
FCCM 2003, Napa Valley, CA
[10] G.A. Constantinides, “Perturbation Analysis for Word-length
Optimization,” In Proc. of FPGA Based Custom Computing
Machines (FCCM), 2003, Napa, CA
[11] M.L. Chang, S. Hauck, “Precis: A Design-Time Precision
Analysis Tool,” In Proc. of FPGA Based Custom Computing
Machines (FCCM), 2002, Napa, CA.
[12] S. Roy and P. Banerjee, “An Algorithm for Converting
Floating Point Computations to Fixed Point Computations in
MATLAB based Hardware Design,” In Proc. of Design
Automation Conference (DAC 2004), San Diego, Jun. 2004.
Table 1: Experimental Results of tradeoffs between
quantization error and power-area for four benchmarks with
sinusoidal input (Training set of 5% and Testing set of 95%;
Factor of safety=10%)

Error
Constraint

Bit-width of the
Independent

Variables

Power
Consumed
(104 nW)

Area

FIR16
E <= 5% input= 7; coeff = 8 91.1 12454
E <= 1% input=9; coeff= 9 101 13243
E <= 0.5 % input=12; coeff=14 376 19844

INTFIR
E <= 5% input = 7; coeff =13 450 104209

E <= 1% input=10; coeff= 13 565 138909
E <= 0.5 % input=13; coeff=14 1070 157775

DECFIR
E <= 5% input=7; coeff= 13 6790 23690
E <= 1% input=9; coeff= 13 8980 32959
E <= 0.5 % input=11;coeff= 13 16100 42674

LMS
E <= 5% input = 10 30900 132984
E <= 1% input = 13 40700 175692
E <= 0.5 % input = 14 45400 197479
Greedy Search Algorithm gave the optimal solution in 11 out of
12 cases but with extra number of simulations

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /Batang
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MS-Mincho
 /MSOutlook
 /MT-Extra
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /SimSun
 /Sshlinedraw
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

