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Abstract 
   The modern era of embedded system design is geared towards 
design of low-power systems. One way to reduce power in an 
ASIC implementation is to reduce the bit-width precision of its 
computation units. This paper describes algorithms to optimize the 
bit-widths of fixed point variables for low power in a SystemC 
design environment. We propose an algorithm for optimal bit-
width precision for two variables and a greedy heuristic which 
works for any number of variables. The algorithms are used in the 
automation of converting floating point SystemC programs into 
ASIC synthesizable SystemC programs. Expected inputs are 
profiled to estimate errors in the finite precision conversions. 
Experimental results on the trade-offs between quantization error, 
power consumption and hardware resources used are reported on 
a set of four SystemC benchmarks that are mapped onto 0.18 
micron ASIC cell library from Artisan Components. We 
demonstrate that it is possible to reduce the power consumption by 
50% on average by allowing round-off errors to increase from 
0.5% to 1%.1 

1 INTRODUCTION 
Power consumption has become a primary design criterion 
for modern embedded systems. The majority of low power 
design and analysis tools in the EDA industry target low 
levels of chip design, such as the transistor, gate and RTL 
levels. However, it is widely recognized that the largest 
gains in power savings occur at the system level.  
Reduction of the bit-width precision of computation units 
such as adders and multipliers result in an immediate gain 
in power savings and area of a design. However, this 
adversely affects the accumulation of quantization errors 
due to finite precision arithmetic. Most practical ASIC 
designs of embedded applications are limited to fixed-point 
arithmetic due to the cost and complexity of floating point 
hardware. Consequently, we consider system level tradeoffs 
in quantization errors with the area and power consumption 
of the hardware implementation by varying the bit-width 
precision of individual operators.   
SystemC [1] is a relatively new modeling language based 
on C++ that is intended to enable system level design and 
IP exchange. It has been developed as a standardized 
modeling language intended to enable system level design 
and IP exchange at multiple abstraction levels, for systems 
containing both hardware and software components. 

                                                 
1 This research was supported by NASA under contract 276685, and 
DARPA under contract no F33615-01-C-1631. 

Fixed-point numbers are frequently used in DSP 
applications that target both hardware and software 
implementations. However the behavioral synthesis tools 
available in the market for SystemC (e.g. the Synopsys 
Cocentric Compiler) are unable to synthesize fixed-point 
data type. Naturally, there is a growing demand for 
solutions to this problem. 
This paper describes an algorithm for trading off 
quantization error with power consumption and hardware 
resources in a SystemC-based ASIC design environment. 
We use high-level power consumption and area usage 
models to formulate an error-constrained optimization 
problem. We propose an algorithm for optimal bit-width 
precision for two variables and extend the approach to a 
greedy heuristic which works for any number of variables. 
The power optimization process involves profiling input 
vectors and fast simulations in addition to high level 
synthesis for estimating quantization errors and optimized 
power values.  
The rest of the paper is organized as follows. The next 
section describes related work. Section 3 presents the area, 
delay and error models used in our SystemC designs. 
Section 4 gives the details of the proposed optimization 
algorithms.  Section 5 discusses the experimental setup and 
results. Section 6 concludes the paper by summarizing our 
contributions. 

2 RELATED WORK 
 The strategies for solving floating-point conversion and 
precision issues can be roughly categorized into two 
groups. The first one is an analytical approach used by 
algorithm developers who analyze finite word length effects 
due to fixed-point arithmetic [2, 3]. The other approach is 
based on bit-true simulation techniques used by hardware 
designers [4].  
 There has been some work in the recent literature on 
automated compiler techniques for conversion of floating 
point representations to fixed-point representations [5, 6].  
The BITWISE compiler [7] determines the precision of all 
input, intermediate and output signals in a synthesized 
hardware design from a C program description. The 
MATCH compiler [8] develops precision and error analysis 
techniques for MATLAB programs. Synopsys has a 
commercial tool called the Cocentric Fixed-Point Designer 
[6], which automatically converts floating-point 
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computations to fixed point within a C compilation 
framework. However, the code generated is not 
synthesizable. Constantinides [10] has developed a design 
tool to tackle both linear and nonlinear designs. Chang et al. 
[11] have developed a tool called PRECIS for precision 
analysis in MATLAB. An algorithm for automating the 
conversion of floating point MATLAB to fixed point 
MATLAB was presented in [9] using the AccelFPGA 
compiler. Their approach needs the default precision of 
variables and constants specified by the user which the 
compiler is unable to infer. Recently, Roy et al. [12] 
proposed automated algorithms to convert floating point 
MATLAB programs into fixed point MATLAB programs 
using input profiling. The work is used to tradeoff area and 
performance for quantization error. Power is not explicitly 
considered in their approach. 

3 AREA, POWER AND ERROR MODELS 
This section provides an overview of the SystemC library, 
and the area, power and error models used by our 
algorithm. 

The SystemC class library provides necessary constructs to 
model system architecture including hardware timing, 
concurrency, and reactive behavior that are unavailable in 
standard C++. The behavioral synthesis tools available for 
SystemC such as the Synopsys Cocentric compiler [9] do 
not support the synthesis of fixed-point data types.  
We propose the use of the sc_int<> data type which 
represents the fixed precision signed integer to preserve the 
data precision. When we scale any parameter, a part of its 
fractional part is converted into the integer part. This 
enables us to take into consideration the effect of the 
fractional part for a parameter. We can specify the number 
of bits which would be used to store a particular integer 
variable. Higher precision in the design is introduced by 
adding more bits to a parameter of sc_int<> type.  
sc_int<12>  sample_tmp; 
The above declaration allocates 12 bits to the variable 
sample_tmp during synthesis. In our algorithm we scale the 
data to increase the precision and allocate extra bits to the 
scaled variable accordingly. Note that, we use scale-factors 
that are always powers of two. This facilitates the task of 
allocating extra bits to the variables. During the first pass 
over the program (details are provided in Section 4.1) we 
formulate several relations for bits allocated to each 
variable in the program. Due to the scaling of the input 
variables by a SCALE_FACTOR, if any variable in the 
program gets scaled by SCALE_FACTORn (n=0, 1, 2 ..) we 
allocate log2(SCALE_FACTORn ) bits to it. 
3.1.1 Error Model  
The introduction of the SystemC model enables convenient 
and fast simulation of designs by using the lightweight 
cycle-based simulation kernel. In our approach we compute 
the errors using simulations and consider non-increasing 
error values with increase in resources in the form of the bit 

length of the parameters involved in a particular design. We 
define an Error Metric E as 
E  =  | Outputfloat – Outputfixed | /  Outputfloat      
where, Outputfloat denotes the vector of floating point output 

values for training set inputs and Outputfixed denotes the 
vector of corresponding output values after scaling. 

In order to formulate an error-constrained optimization 
problem, we need high-level models of power consumption 
for each type of primary operations in system-level 
descriptions of algorithms. Adders, multipliers and registers 
are considered to be the primary candidates that consume 
power. We do not consider power consumption of 
interconnects and other input/output constructs in our 
approach.  
We assume that power consumption in CMOS circuits 
consists of dynamic power, leakage power and static power.  
At a high level, the total power consumption is directly 
proportional to the area. Consequently, optimizing the bit-
length of different parameters of a design results in low 
power consumption. Moreover, bit-length optimization of 
different parameters reduces the interconnect overhead of 
the circuit. We use two abstract function f and g to express 
the relation between the bit-widths of the parameters to area 
and power consumption respectively.   
It can be observed that there exists a partial relation among 
different design configurations within a solution space. For 
a design with k independent variables, the solution space of 
the design is k-dimensional where a particular design can 
be represented using k co-ordinates. Hence, a design X in 
that solution space can be expressed as (x1, x2, x3, …… xk). 
where xi denotes the bit-width of the i-th independent 
variable. 
If A(X), P(X) and E(X) denote the area, power 
consumption and error metric obtained for the configuration 
X, then we can claim that,  
A(X) ≤ A(Y)           If  xi  ≤  yi, for all i = 1, 2, 3, … k. 
P(X) ≤ P(Y)            If  xi  ≤  yi, for all i = 1, 2, 3, … k. 
E(X) ≥ E(Y)            If  xi  ≤  yi, for all i = 1, 2, 3, … k. 
These relations conclude that the abstract area function f 
and power function g are monotonically non-decreasing 
with bit-width of variables. 
The area of an adder is dependent on the bit-width of the 
variables involved in the operation. Assuming we need na 
and nb bits for two operands, we can formulate the area of 
an adder as -  AADDER =  fADDER (na , nb)                           (1) 
Then, the power consumption can be modeled as –  
PADDER =  AADDER.VDD

2.f(activity) = gADDER(na,nb)            (2)  
It has been experimentally proven that a ‘coefficient blind’ 
area model does provide good results in practice [10]. The 
number of additions required to implement a constant 
coefficient multiplier is assumed to be proportional to the 
coefficient word-length CW. If we consider a multiplier 
with ni bits as input and no bits as output, each multiplier 
would involve (no + 1)-bit addition. Hence we can 
formulate the area and the power of a multiplier as,  
AMULT = fMULT (CW, ni, no)                                   (3) 

3.1 SystemC Fundamentals 

3.2 Area and Power Model Analysis



  

 

PMULT  = gMULT (CW, ni, no )                      (4) 
The area of a unit sample delay is implemented as a 
register. Hence with an input i, the area and power model of 
a register can be formulated as , 
AREGISTER =   fREGISTER (ni)                                                (5) 
PREGISTER  =   gREGISTER (ni)   .                              (6) 
These models satisfy the above monotoic properties 

4 ALGORITHM FOR POWER OPTIMIZATION 
We now describe our automated algorithm, 
QUANTASMART, for power optimization while 
constraining the round off errors. It consists of a compiler 
pass followed by simulation and synthesis for the 
optimization purpose. First we propose a heuristic Greedy 
search algorithm followed by a Smart Search Algorithm 
which gives the optimal solution for two variables. A flow 
diagram describing the steps involved in the whole process 
of optimization is shown in Figure 1. 
We subdivide the process into three basic steps : 

• Data profiling and Inequality formation 
• Solution space recognition 
• Optimal point search within given error constraint 

The quantization algorithm can be used for various types of 
applications such as speech processing applications, filter 
applications. A small percentage of the actual inputs to a 
system are used for our algorithm. The quantization 
algorithm gives the optimal set of quantizers using the 
sample input. This is known as “training of the system”. 
Once we develop an optimized hardware using our 
algorithm, we use a larger percentage of the actual inputs to 
test our system. Thus we now test the hardware with actual 
inputs and verify that the actual quantization error is within 
the acceptable limit. While training the system we can use a 
factor of safety for the Error Metric (E) constraint (defined 
in section 3.3). For example if our E constraint of the actual 
system is 5%, and we use a factor of safety=10%, then the 
E constraint fed to the quantization algorithm is 5*(1-0.1). 
= 4.5%. For a system in which a smaller sample closely 
resembles the input signal, the factor of safety can be kept 
very low. As we train the system with a very small 
percentage of the actual inputs, this process is fast. During 
the synthesis of the design we use only integer values to 
preserve the precision of the parameters (as described in 
Section 3.1). If the inputs of the design do not contain any 
integer part, we scale it.   
Next we perform a compiler pass over the program to 
assign bit values to each variable in the program. We 
propose the following set of rules while assigning bit-length 
to any variable.  
Addition rule:              a = b + c; 
Bitlengtha   =  maximum( Bitlengthb , Bitlengthc ) + 1     
Multiplication rule :     a = b * c; 
Bitlengtha   =  (Bitlengthb + Bitlengthc)                
Loop rule : For an accumulator variable within a loop 
which iterates N (a fixed number known at compile time) 
times,     

for ( i = 0; i < N; i++) 
                    accumulator +=sample; 
Bitlengthaccumulator   =  ( Bitlengthsample + Log2 N )     

 
Figure 1. Flow Diagram of the optimization algorithm. 

We illustrate our approach using the example SystemC 
code for an FIR filter in Figure 2. In the code, we have two 
input parameters (sample and coeff). We assign x and y bits 
to these variables respectively. Let us assume that for a 
given data input set, we need at least 7 and 8 bits to 
represent the input variables. The minimum bits needed to 
represent the inputs can be calculated using range 
propagation on the training set. Then we can form the 
inequalities:  
sampleBIT  ≥  7                   (i) 
coeffBIT   ≥  8          (ii) 
 
 
 
 
 
 
 
 
 
 

Figure 2. Example of a SystemC code segment. 
We next obtain the following inequalities:  
sample_tmpBIT = sampleBIT         (iii) 
proBIT = shiftBIT + coeffBIT + 1          (iv) 
accBIT = proBIT + log2(NUMTAPS)         (v)  
shiftBIT  = sampleBIT                  (vi)           
resultBIT  = accBIT                      (vii) 
An analysis of the equations reveals that variables acc and 
result would store the largest value. Hence, these two 
variables have to maintain the constraint on the largest 
<sc_int> that can be synthesized. This constraint gives us 
the inequalities: 
32 ≥ resultBIT         (viii) 
32 ≥ accBIT              (ix) 
 

4.1 Data Profiling and Inequality Formation

while(1) { 
    output_data_ready.write(false); 
    wait_until(input_valid.delayed() == true); 
    sample_tmp = sample.read();    sample_tmpBIT = sampleBIT = x 
    acc = 0;     acc = sample_tmp*coefs[0];    
    for(int i=NUMTAPS; i>0; i--) { 
      pro = shift[i-1]*coefs[i];             proBIT = shiftBIT + coeffBIT + 1    
     acc = acc + shift[i-1]*coefs[i];   accBIT = proBIT + log2(NUMTAPS)   
    }; 
     for(int i=NUMTAPS-1; i>=0; i--)  
            shift[i+1] = shift[i]; 
    shift[0] = sample_tmp;        shiftBIT  = sampleBIT       
    result.write(acc);                 resultBIT  = accBIT       
    output_data_ready.write(true); 
    wait(); 
  }; 



  

 

The set of inequality relations obtained describes the 
solution space satisfying the given error constraints. When 
we solve the inequalities we come up with a range within 
which we can vary the bit-length of the independent 
variables (sampleBIT , coeffBIT). We also modify the bit-
lengths used by the intermediate variables every time we 
make a change in the independent variable bit-lengths. By 
solving the 9 inequalities given in the example we get a 
range of bit-lengths within which sampleBIT and coeffBIT 
can vary. In effect this defines the solution space of the 
optimization problem. From the above example (for 
NUMTAPS = 4) we get the solution space: 
19 ≥  sampleBIT ≥  7          (x) 
20 ≥  coeffBIT  ≥ 8         (xi) 

Once we have narrowed down the solution space using 
solutions of the inequalities we start to simulate the 
synthesizable code to get an error estimation of the 
optimized design. We propose two different algorithms for 
searching the optimal point. 
4.3.1 Greedy Search Algorithm 
The first method that we use is a heuristic greedy algorithm 
followed by refined local search techniques. We model the 
problem as a search for bit precisions in an N-dimensional 
search space of independent variables 
 
 
 
 
 
 
 
Figure 3. Pseudo code of the Greedy Search Algorithm. 

4.3.2 Sub-optimal point search  
We start with the search for a sub-optimal point in the 
solution space that involves a Greedy Search Stepwise 
algorithm. In this step we try to reach a near optimal 
solution with the help of fast SystemC simulation. We 
narrow down the search for an optimal solution with a 
given error constraint into a very small solution space. We 
start with the minimum permissible bit-length allowed for 
the independent variables and adjust the intermediate 
variables using the inequality relations.  
Assuming the design has n independent variables we 
allocate extra log2(SCALE_FACTOR) bits to one of them. 
The input data corresponding to that independent variable is 
scaled by SCALE_FACTOR and the Error Metric E is 
recorded after simulating that particular configuration. The 
input variable which affects the Error value most favorably 
(i.e. made it decrease most) is picked and marked as the 
next step. We repeat the same steps for the new 
configuration obtained to reach a better solution which 
takes extra precision into account with the help of scaling. 
The process ends when we got a point which satisfies the 
given Error Constraint on the design.  

4.3.3 Local Search 
We can further optimize the solution by searching the 
neighbors of the sub-optimal point in the solution space.  
To perform that, we implement a local search at the sub-
optimal point. Here we search for other solution candidates 
among the neighbors and ultimately we would settle for the 
solution for which given error-bound is met and power 
consumption is the minimum.     
To do that, we scale down the independent variables along 
each dimension by a constant FINER_SCALE which is less 
than the SCALE_FACTOR. We calculate the Error Metric 
E value and the power consumed by each of these new 
designs. In the example given in Figure 2 we scale both the 
variables sampleBIT and coeffBIT by 64 to reach the sub-
optimal point. Now during local search procedure it is 
observed that if we save a single bit in the sampleBIT 
variable, i.e. scale down it by 2 (< SCALE_FACTOR = 4) 
we can get a solution that has the least power consumption. 
Hence for the given example, a design with sampleBIT 
scaled by 32 and coeffBIT scaled by 64 gives us the 
optimized solution. 
 
 
 
 
 
 

Figure 4. Pseudo code of the Local Search Algorithm. 
4.3.4 Smart Search Algorithm 
In the greedy search we started looking for the solution 
from the configuration where all the independent variables 
have least bit-length. This section discusses another 
approach which results in a provably optimum solution. It 
can be argued that the heuristic greedy search algorithm 
discussed in the previous section is not guaranteed to give 
an optimal solution. If one or more sub-optimal solution 
exists along the solution space boundary, it won’t give an 
optimized solution. A possible modification can be 
traversing the outer boundary of the solution space to check 
if any other optimal solution exists along the boundary. 
This results a significant increase in complexity. We 
propose a smart algorithm which can be proven to be 
optimal for designs where we have two independent 
variables. The algorithm is trivially true for designs with a 
single independent variable. For designs having more than 
two independent variables, we propose a heuristic solution. 

 
Figure 5. Illustration of the Search Algorithm. 

4.2 Solution Space Recognition 

4.3 Search Algorithm for Optimal Point

While (E > ERROR_CONSTRAINT)  { 
  For i = 1 to N = No_of_variables { 
          Scale   the  independent   variable   along                                          
          co-ordinate i by the SCALE_FACTOR and  
          simulate the design to  get Error Metric E[i]; 
       } 
  E = Minimum of E[i]; 
Change the variable along dimension i into the new scaled value; 
} 

For i = 1 to N = No_of_variables { 
      Scale down the independent variable along                                 
          dimension i by the FINER_SCALE ;   
          Simulate the design to get Error Metric E. 
       If  (E< ERROR_CONTRAINT) 
                 Estimate the power P[i]; 
       } 
  P = Minimum of P[i]; 



  

 

Let us consider a design with two independent variables X 
and Y. After the analysis in the first two steps we deduced 
that X has a range of m bits for variance (x1 < x2 <  … < xm)   
and   Y  has a range of  n bits (y1 < y2 <… < yn). The 
solution space can be assumed to be a grid of (n x m) cells 
where each cell corresponds to a particular configuration of 
the design. The smart algorithm is as follows: 
(1) Start searching from either (x1, yn) or (xm, y1) position. 
One of the variables will have the highest permissible 
precision and the other will have the least precision.  
(2) Calculate the Error Metric E(i,j) for the point (xi, yj) 
using simulation.  
(3) If E(i,j) satisfies the error constraint and lower than 
previously recorded value, store it and decrease the bit-
length of the High Precision variable by one. Go back to 
step 2. 
(4) Otherwise, allocate an extra bit to the Low Precision 
variable and go back to step 2. 
The process will end when the High Precision variable 
can’t be reduced or the Low Precision variable can’t be 
decreased. The optimum configuration is recorded during 
the traversal. 
Proof of optimality 
We now prove that our proposed algorithm will always give 
the optimal solution. We will also prove that (m+n-1) 
simulations are sufficient to find the optimal solution using 
the smart algorithm.  
Without any loss of generality, let us assume that while 
searching we started from (x1, yn) position. So Y is the High 
Precision variable and X is the Low Precision variable. We 
claim that when the algorithm reaches a point (xi, yj) the 
optimal solution OPT of the problem can be expressed as, 
P:OPT =BEST( record, BEST{(xk,yl) | i≤ k ≤m, 1≤ l ≤ j }) 
where, OPT = Optimal solution of the problem 
record = valid configuration with minimum power 
consumption checked so far. 
BEST(S) = A solution in S satisfying the precision 
constraint and having the minimal power consumption.  
We can show that the above claim is an invariant property.  
At the start of the search the property P holds true as – 
record = {} and i = 1 , y = n. So the best solution of {(xk, yl) 
| 1≤ k ≤m, 1≤ l ≤ n} is indeed the optimal solution.  
At the end of the search we would have i > m or j < 1. Thus 
{(xk , yl) | i≤ k ≤m, 1≤ l ≤ j }={}. Hence, record=OPT. The 
algorithm actually gives the optimal solution.  
Let us assume that the property holds for a point (xi , yj) in 
the solution space. In the next iteration the algorithm can 
move in either of the two directions in the solution space. 
Case 1 : The algorithm will move along the Y direction, i.e. 
the High Precision variable. The partial order relation 
among the points in solution space suggests that all the 
points for which (y =  yj) and (x >  xi ) will also satisfy the 
error constraint. However they will consume no less power 
which excludes them to be an optimal solution. The record 
will be updated accordingly. Thus after the point moves in 
Y direction the property P still holds. 

Case 2 : The algorithm will move along the X direction i.e. 
the Low Precision variable. From the existing partial order 
we can exclude all invalid points for which (y <  yj) and (x 
=  xi ). Thus the record value won’t change and also the 
unexplored solution space will reduce. Additionally, we 
won’t exclude any point which could be a possible 
candidate of the optimal solution. The property P is still 
true after the increase of i. 

 
Figure 6. Illustration of the Smart Search Algorithm 

Therefore, using the principle of induction we can prove 
that for all points traversed by the property P will hold and 
hence at termination it is bound to give the optimal 
solution.  
Further, the algorithm always forces the High Precision 
variable direction towards reduction and Low Precision 
variable towards increase. This ensures that we can traverse 
at most (m+n-1) simulation points in the solution space. 
Thus the algorithm executes in linear time O(m + n).  
4.4.1 Selection of High and Low Precision variable 
We use a heuristic to select the High and Low Precision 
variable for the algorithm. We consider two configurations 
– Least bit-length and Largest possible bit-lengths for both 
the independent variables. For both the configurations we 
change the bit-length along each of the variable and observe 
the effect on Error Metric. If they suggest the same variable 
as more sensitive to precision then we pick that variable as 
the High Precision variable. Otherwise we pick the variable 
which has a smaller range of bit variance as the High 
Precision variable.  
4.4.2 Extension of the Algorithm to Higher Dimensions 
The smart algorithm can be proved to be optimal for 
designs with two independent variables. For designs having 
more than two independent variables, it can be proved that 
a similar approach would result a near exponential time 
complexity. Thus, we propose a heuristic approach for 
designs having more than two independent variables. Using 
the same heuristic as discussed in section 4.3.6 we would 
pick up two most sensitive variables for better precision. 
All other variables would be fixed to the highest 
permissible value and get the optimal solution. We would 
fix the two selected variables to the optimal solution 
configuration value and repeat the step with picking up two 
variable ranked next in the precision sensitivity list. This 
step would be continued till we fix all the independent 
variable bit-length.   

4.4 Designs with two independent variables



  

 

5  EXPERIMENTAL RESULTS 
We now report the experimental results on various 
benchmark SystemC benchmarks. 

• A 16 tap Finite Impulse Response filter (fir) 
• An Interpolation FIR filter (intfir) 
• A Decimation in Time FIR filter (decfir) 
• A LMS adaptive filter (lms) 

We used SystemCTM(version 2.0.1) to simulate the 
fixed/floating point codes. We took measurements for 
optimal quantizers and E corresponding to the inputs. We 
have used sinusoidal wave input of size 2048. 
Subsequently, we used the Cocentric Behavioral Compiler 
for SystemC [9] to generate RTL VHDL from the SystemC 
benchmarks.  Using the same tool where Synopsys Design 
compiler runs in the backend, we synthesized all the 
designs into 0.18 micron technology ASIC cell library from 
Artisan Components. This gave us an idea about the area 
consumed by the optimized design. Finally, we used 
Synopsys Power Compiler to get the power values related 
to each synthesized design. We selected the design with the 
least amount of power consumption and having an E within 
a given ERROR_CONSTRAINT as the final optimized 
ASIC design.  
Table 1 shows the optimal bit-length of input parameters 
selected by the smart search algorithm followed for E 
constraints of 0.5%, 1% and 5% using simulation with 
sinusoidal inputs. We demonstrate that it is possible to 
reduce the power consumption by 200% in the best case by 
allowing round-off errors to increase from 0.5% to 1%.  
The Greedy Search heuristic gave the optimal solution in 11 
out of the 12 cases for sinusoidal input. However for 
smaller error constraints (0.5%) it took more simulations to 
reach the solution point. 

6 CONCLUSION 
This paper describes algorithms to optimize the bit-widths 
of fixed point variables for low power in a SystemC design 
environment. We propose an algorithm for optimal bit-
width precision for two variables and a greedy heuristic 
which works for any number of variables. The algorithms 
are used in the automation of converting floating point 
SystemC programs into ASIC synthesizable SystemC 
programs. The results show that it is possible to trade-off 
the quantization error with the hardware resources used in 
the ASICs very effectively. The ideas introduced in this 
paper can be extended to other programming languages 
such as MATLAB and SIMULINK and to other 
technologies such as FPGAs.  
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Machines (FCCM), 2002, Napa, CA. 
[12] S. Roy and P. Banerjee, “An Algorithm for Converting 
Floating Point Computations to Fixed Point Computations in 
MATLAB based Hardware Design,” In Proc. of Design 
Automation Conference (DAC 2004), San Diego, Jun. 2004. 
Table 1: Experimental Results of tradeoffs between 
quantization error and power-area for four benchmarks with 
sinusoidal input (Training set of 5% and Testing set of 95%; 
Factor of safety=10%) 

Error 
Constraint 

Bit-width of the 
Independent 

Variables 

Power 
Consumed 
(104 nW) 

Area 

FIR16 
E  <=  5% input= 7; coeff = 8 91.1 12454 
E  <=  1% input=9; coeff= 9 101 13243 
E <= 0.5 % input=12; coeff=14 376 19844 

INTFIR 
E  <=  5% input = 7; coeff =13 450 104209 

E  <=  1% input=10; coeff= 13 565 138909 
E <= 0.5 % input=13; coeff=14 1070 157775 

DECFIR 
E  <=  5% input=7; coeff= 13 6790 23690 
E  <=  1% input=9; coeff= 13 8980 32959 
E <= 0.5 % input=11;coeff=  13 16100 42674 

LMS 
E  <=  5% input  =   10 30900 132984 
E  <=  1% input  =   13 40700 175692 
E <= 0.5 % input  =   14 45400 197479 
Greedy Search Algorithm gave the optimal solution in 11 out of 
12 cases but with extra number of simulations  
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