
Automatic ADL-based Operand Isolation for Embedded Processors

A. Chattopadhyay, B. Geukes, D. Kammler, E. M. Witte, O. Schliebusch, H. Ishebabi,
R. Leupers, G. Ascheid, H. Meyr

Integrated Signal Processing Systems
RWTH Aachen University 52056 Aachen, Germany

anupam@iss.rwth-aachen.de

Abstract

Cutting-edge applications of future embedded systems demand
highest processor performance with low power consumption to get
acceptable battery-life times. Therefore, low power optimization
techniques are strongly applied during the development of modern
Application Specific Instruction Set Processors (ASIPs). Electronic
System Level design tools based on Architecture Description Lan-
guages (ADL) offer a significant reduction in design time and ef-
fort by automatically generating the software tool-suite as well as
the Register Transfer Level (RTL) description of the processor. In
this paper, the automation of power optimization in ADL-based RTL
generation is addressed.

Operand isolation is a well-known power optimization technique
applicable at all stages of processor development. With increasing
design complexitiy several efforts have been undertaken to automate
operand isolation. In pipelined datapaths, where isolating signals
are often implicitly available, the traditional RTL-based approach
introduces unnecessary overhead. We propose an approach which
extracts high-level structural information from the ADL represen-
tation and systematically uses the available control signals. Our
experiments with state-of-the-art embedded processors show a sig-
nificant power reduction (improvement in power efficiency).

1. Introduction
Nowadays, ASIPs are ubiquitous due to the unique combination

of performance and flexibility offered by them. ADLs [8] [2] are
employed to model the ASIP in a higher level of abstraction than
RTL, thereby reducing the design effort significantly. The archi-
tectural information available in this high-level abstraction has been
successfully used to optimize the processor [13] in terms of area
or delay. However, effective power reduction techniques using the
ADL-based description are yet to be explored. On the other hand,
demand for power-efficiency, especially for mobile hand-held em-
bedded systems, is growing strongly.

Power-specific optimizations can be applied at all levels of ab-
straction during a processor design. In the gate-level design, low
power can be achieved by introducing specially designed cell li-
braries, at the RTL by introducing selective blocking of operands
or at the system level by shutting off sections of the design. In prin-
ciple, the power optimization techniques can be classified into two
major categories. In one group of power optimization techniques,
the dynamic power of a design is controlled by reducing the clock-
ing activity of the sequential elements. Exemplarily, Clock gating
[11] is a power-reduction technique based on the above principle,
which disables the clock entering into a register whenever an un-

necessary storage takes place. In the other group, the combinational
components of a design are controlled in order to minimize power
consumption. Operand Isolation is one such technique. Employ-
ing operand isolation, redundant combinational blocks of a design
are identified. Here, redundant means in temporal perspective i.e.
a combinational operation is performed at a particular time, when
its result is not getting used in the downstream circuit. By operand
isolation, these temporarily redundant operations are identified and
the operands of these operations are held at a particular value to
reduce the switching activity of the combinational circuit. This,
in turn, reduces the dynamic power significantly. The concept of
operand isolation is shown using figure 1, where a part of a data-
path is shown. Here, the leftmost adder can be labeled redundant
at a particular time, when either sel 1 or sel 2 is set to the value 0.
In that case, the primary output out 1 does not use the result of the
addition. The operators (e.g. adder), for which isolation logic can
be inserted to reduce power are termed as isolation candidates. The
signals, which control the isolation logic (IS 1 and IS 2) are termed
as isolating signal. This isolating signal is set to high, when the re-
sult of the isolation candidate is relevant in the primary output. The
rectangular box inserted before the adders represent isolation logic.
Typically AND-based, OR-based or latch-based isolation logic is
employed. For AND-based isolation and OR-based isolation, the
input operands are held at value 0 or 1 respectively. For latch-based
isolation, the input operand value of the previous cycle is held. For
both types of operand isolation, isolation logic and the circuit to
prepare the isolating signal (shown as a cloud) introduces area and
delay overhead. The power dissipation of these added circuitry may
cancel the gain achieved by operand isolation. We implemented au-
tomatic generation of logic-based operand isolation as it introduces
comparatively less area and delay overhead [9].

m ux

m ux

+in_8

sel_1+
in_3

sel_1

m ux

in_9

sel_2

out_1

m ux

0

in_5

in_7

IS_1

IS_2

sel_0

in_2
in_1

Figure 1. Example of Operand Isolation
1.1 Related Work

Implementation or automation of operand isolation techniques at
various levels of abstraction has been reported in literature. Across

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



abstraction levels, the issues faced in operand isolation are quite sim-
ilar in nature. First, one has to select the candidates for operand
isolation. Second, the isolating signal has to be created or re-used
from existing circuitry. Finally, the isolation logic has to be inserted
in a suitable position of the circuit. The existing operand isolation
approaches at different abstraction levels can be reviewed in the per-
spective of the three abovementioned steps.

During the implementation of IBM PowerPC 4xx microcon-
trollers, operand isolation has been implemented manually [4].
There, nothing specific is mentioned about the candidate selection.
Typically the isolation candidates are shown to reside before a result
bus multiplexer and the control signal of the multiplexer is re-used as
the isolating signal (figure 4 of [4]). The isolating logic is inserted
immediately before the isolation candidate. Tiwari et al [17] per-
formed operand isolation automatically at gate-level. The approach
exploits the gate-level granularity by allowing the isolation to be
performed over any arbitrary logic circuit. The existing control sig-
nals are directly used as isolating signal and the isolation candidate
is selected on the basis of potential power savings. The isolation
logic is inserted at a point of circuit, where the isolating signal ar-
rives pretty earlier than the actual transition. This way of derivation
of the isolating signal limits the scope of identification of possible
isolation candidates. In a recent work by Banerjee et al [10], novel
gate-level circuits are introduced to perform operand isolation. This
approach requires special cells to perform operand isolation and it
can be complemented with high-level operand isolation schemes.

The approach adopted by Münch et al [9] allows automated RTL-
based operand isolation. In this approach, the isolation candidates
are determined on the basis of a detailed power model. The isolat-
ing signal is created out of a circuit based on the output Observabil-
ity Don’t Care (ODC) conditions of the isolation candidates. The
concept of ODC can be explained using figure 1. In case of the
rightmost adder of the figure 1, the result of the addition is not ob-
servable at out 1 when sel 2 is 0. Therefore, for the input operands
of the adder, the ODC is simply sel 2. In Münch’s approach, the iso-
lating signal for each input operand of an operator is generated from
the operator’s output ODC. For a large datapath block, the primary
inputs and outputs are defined by partitioning the complete circuit
across sequential logic boundaries.

Operand Isolation techniques have been incorporated during
high-level synthesis, too. In the approach mentioned at [6], operand
isolation is performed independent of other high-level synthesis
tasks and a blocking latch is inserted before the functional units.
Details of isolating signal generation or isolation candidate selection
are not presented. In the context of ADL-based high-level synthesis,
the RTL generator GO [16], based on the ADL nML [1], is known
to contain power-specific optimizations like disabling of functional
units. Any detailed analyses of these optimizations are not publicly
available.

1.2 Motivation
With the above discussion about available operand isolation ap-

proaches, the motivation of this work is now presented. A key issue
in operand isolation is the derivation of the isolating signal itself.
Consider figure 2 for example.

Here the steering signals (in steer 1 and in steer 2) are primary
inputs of the datapath block. The steering signals along with the
result of a local addition produce the multiplexer controlling signal
sel 2 through a selection logic. As mentioned by Münch et al [9],
the derivation of the relevant steering signals from the complex RTL
structure is often impossibly difficult. The approach taken in [9] is
to use the multiplexer control signals (e.g. sel 1) and to derive a
logic circuit generating the isolating signal. Obviously, the insertion
of logic circuit introduces area and delay overhead. In case of this

m ux

m ux

+in_6

sel_1+
in_3

sel_1

m ux

in_7

sel_2

out_1

m ux

0

in_5

in_2

sel_0

Selection
logic

in_steer_2

Selection
logic

in_steer_2
in_steer_1

in_steer_1

in_1

Figure 2. Motivation for ADL-based Operand Isolation

overhead being significant the operand isolation is not performed
at all. Thus the trade-off between power, area and delay is heav-
ily biased. Either the isolation is done at finest granularity or not
done at all. In this paper, this flexibility is introduced by deriving
the steering signals from high level architectural information. For
low-overhead coarse-grained operand isolation, the steering signal
is directly used as an isolating signal. Alternatively, with the knowl-
edge of the dataflow in the datapath blocks, ODC-based operand
isolation can be implemented. In summary, the major contribution
of this paper is to present:

• An automatic ADL-based operand isolation framework.
• A flexible operand isolation approach for pipelined proces-

sors.

In addition to these, we propose a minor extension to the ODC-
based operand isolation algorithm. Consider previous figure 1. Fol-
lowing the ODC-based approach outlined at [9], the isolation logic
will be placed immediately before the isolation candidates. How-
ever, the cases where the input is already blocked for similar condi-
tions do not need another isolation. As in figure 1, IS 1 is derived
correctly from sel 1 and sel 2 (as in ODC-based approach), whereas
sel 1 is already used to isolate in 5. These situations often occur
for datapath involving bit-masking operations. Clearly, the isola-
tion logic is redundant considering logic-based isolation. We identi-
fied this redundancy manually in the generated RTL description and
eliminated the isolation overhead. A low overhead in isolation, in
turn, results in further power reduction.
The rest of the paper is organized as follows: section 2 discusses the
relevant features of ADL LISA, which is used for this work. Section
3 describes the framework for low power optimization. In section 4,
the automatic generation of operand isolation from the ADL is de-
scribed in detail. Section 5 elaborates and analyzes our case study.
We conclude with the summary and outlook.

2. ADL Structure Overview
In this section, a brief overview of the ADL LISA [8] is provided.

Furthermore, the relevant language elements and their correspond-
ing mapping to a processor are discussed.

2.1 LISA Operation Graph
In LISA, an operation is the central element to describe the tim-

ing and the behavior of a processor instruction. The instruction may
be split among several LISA operations. The resources (registers,
memories, pins etc.) are declared globally in the resource section,
which can be accessed from any LISA operation.

The LISA description is based on the principle that a specific
common behavior or common instruction encoding is described in
a single operation whereas the specialized behavior or encoding is



���������	
�

���������	
��

������	�����	
�
W riteback

ADD SUB

Arithm etic

Decode

Figure 3. LISA Operation DAG

implemented in its child operations. Specialized operations may be
referred to by more than one parent operation. The complete struc-
ture is a Directed Acyclic Graph (DAG) D = 〈V, E〉. V represents
the set of LISA operations, E the graph edges as set of child-parent
relations. These relations represent activations, which refer to the
execution of another LISA operation. Figure 3 gives an example of
a LISA operation DAG. As shown, the operations can be distributed
over several pipeline stages. A chain of operations, forming a com-
plete branch of the LISA operation DAG represents an instruction in
the modelled processor. A LISA Operation contains different sub-
sections to capture the entire processor behavior. The ones relevant
for RTL synthesis are discussed below.

Instruction Coding Description: The instruction encoding of a
LISA operation is described as a sequence of coding fields. Each
coding field is either a terminal bit sequence with “0”, “1”, “don’t
care”(X) bits or a nonterminal bit sequence referring to the coding
field of another child LISA operation.

Activations: A LISA operation can activate other operations in
the same or a later pipeline stage. In either case, the child operation
may be activated directly or via a group. A group collects several
LISA operations, with the elements being mutually exclusive. The
elements are distinguished by a unique binary coding, forming a
coding tree. The activation and instruction coding tree jointly form
the decoder in the target processor. The activation chain also pro-
vides valuable information regarding the dataflow in the complete
processor. The activation edge is transformed as a major steering
signal in the processor datapath. For each LISA operation, a cor-
responding steering signal is existent. The instruction coding tree
generates minor steering signals within the scope of one LISA Op-
eration.

Behavior Description: The behavior description of a LISA op-
eration corresponds to the datapath of the processor. Inside the be-
havior description plain C code can be used. Resources such as reg-
isters, memories, signals and pins as well as coding elements can be
accessed in the same way as ordinary variables. The behavior sec-
tion of every LISA operation is transformed into a functional block
in the RTL datapath.

3. Power Optimization Framework
Before elaborating on the power-based optimization framework,

a typical pipelined processor structure is explained. In the remaining
part of this section, we introduce the data flow graph, which is used
for operand isolation.

3.1 Processor Structure
The figure 4 shows a typical simplescalar pipelined processor

structure. The detailed connections are avoided for simplicity. The
pipeline is divided into 4 stages. In this processor, the register file is
residing outside the pipeline. In this implementation, the decoder is
distributed over the complete pipeline. For each datapath block, the
local decoder issues a major steering signal. Corresponding to the
ADL elements discussed in the previous section, the activation and

write_op1

m ul_steerm ove_reg_steer

FE DC EX W B

Register File

Pipeline

read
read

M em oryFile

func_2

Decoder

m ove_reg

m ul write_reg

o
p
e
ra
n
d
1

o
p
e
ra
n
d
1

Top-level Design

func_3

Decoder

func_1

Decoder

Pipeline Controller

func_fetch

Figure 4. Pipelined Processor with Distributed Decoding

the instruction coding jointly contributes to this decoder formation.
Clearly, ADL-based RTL synthesis allows an easy access to high-
level structural information in order to identify the steering signals
from a complex logic structure. For detailed understanding of RTL
processor synthesis from ADLs, please refer to [13] and/or [12].

Note that, it is possible to derive and use these steering signals
for other pipeline organizations, too. For a pipeline with centralized
decoder, the steering signals need to be propagated to the relevant
datapath. This concept of using steering signals for pipelined dat-
apaths has been succesfully used for clock gating in [7]. However,
no automatic approach is available. Understandably, it is difficult to
derive these signals from complex RTL structure.

As observed in [9], the ODC-based operand isolation algorithms
become extremely complex if the complete design is considered for
ODC calculation. A much simpler and effective approach is to par-
tition the datapath with the sequential cells in the boundary and then
apply operand isolation locally. In the context of pipelined proces-
sors, this partition occurs naturally within one stage. The operand
isolation algorithms are applied within these partitions i.e. within
the scope of one LISA operation.

3.2 Behavioral Data Flow Graph
Inside a single LISA operation, the behavior section guides the

data flow. The behavior section of a LISA operation is converted into
a pure, directed acyclic Data Flow Graph (DFG). The graph vertices
of GDFG = 〈Vop, Eic〉 are the basic operators for data manipulation
e.g. additions while edges represent the flow of unchanged data in
form of interconnections of inputs and outputs.

Operators: The following list summarizes the basic classes of
operators represented by graph vertices. This special choice of ver-
tices allows us to represent the data flow information in a level be-
tween RTL and logic-level representation. In that way, our represen-
tation is close to Bergamaschi’s Behavioral Network Graph [5].

• Commutative n-ary Operator, n ≥ 2
• Noncommutative n-ary Operator, n ≥ 1
• Read Access to Registers and Memories
• Write Access to Registers and Memories
• Read and Write Access to Array of Variable
• Multiplexer

Interconnections: Interconnections represent the data flow on
symbol-level opposed to bit-level representations used in gate-level
synthesis. The information about the data type transferred is given
by an annotation to the interconnection. Bit range subscriptions are
included into the interconnection information, too.

The creation of the DFG from the plain C-code of a LISA op-
eration’s behavior section is shown in figure 5. As depicted there,



ew_R

0

����������	
�� �	���������������

OPERATION ld {
BEHAVIOR {

int a = 5;
if (res_b == 1) {
R[0] = a;

} else {
R[0] = res_c;

}
}}

addr_R data_R

ld_steer

res_b res_c

OPERATION decode {
ACTIVATION {ld}

}

1 0

5

Figure 5. Example of Data Flow Graph Creation

the DFG is constructed after performing basic compiler-like opti-
mizations. In this case, the constant value of local variable a is
propagated. For the read access to non-array registers e.g. res c,
we need not pass any address value. For the write access to a one-
dimensional resource R, the write enable and the address value is set
in the scope of the same vertex. The value for write enable is set to
ld steer, which indicates that this operation is to be executed or not.

4. Automatic Operand Isolation
In this section, different operand isolation techniques are ex-

plained. The isolation constraints used during automatic operand
isolation are mentioned. Finally, the algorithms for instantiating
operand isolations are outlined and the overall flow is presented.

4.1 Operand Isolation Techniques
In figure 6, there is one major steering input (indicative of the

complete datapath block execution) and one minor steering input
(in steer local), which is used within the context of this datapath
block. Both the steering inputs are directly available as primary in-
puts. The steering inputs are fed into combinational logic (shown
as cloud) to prepare the multiplexer controlling signals sel 1 and the
enable signal for a target register.

m ux

sel_1

+
in_2

sel_1

m ux

0

in_3

in_1

m ux

enable

Register

clock

in_steer

in_steer_local

m ux
0

sel_2

Figure 6. Datapath without Operand Isolation

Coarse-grained Operand Isolation: To perform coarse-grained
operand isolation, we rely completely on the major steering signal
for the datapath block. A coarse-grained isolation over the complete
datapath block can be done as shown in figure 7. Obviously, block-
ing the primary inputs leading to a simple logic gate will not be ben-
eficial. Therefore, one needs to identify the operators and bit-widths
within the scope of a datapath partition, for which the isolation is to
be done. In order to allow this selective isolation, several high-level
constraints can be introduced, which are discussed afterwards.

m ux

sel_1

+

sel_1

m ux

0

in_3

m ux

enable

Register

clock

in_steer

in_steer_local

isolation logic

isolating signal

in_1

in_2

m ux
0

sel_2

Figure 7. Datapath with Coarse-grained Operand Isolation

ODC-based Operand Isolation: For ODC-based operand iso-
lation, the Observability Don’t Cares of the primary outputs need to
be considered. In this case, there is only one primary output (input
of register). Traversing back from the enable signal of the primary
output allows to create an isolating signal for the input operands of
given logic blocks (as shown in figure 8). The isolating signals for
all the input operands are derived to be the same. In this case, for the
adder inputs, the isolating signal is obtained by performing logical
and operation between sel 1 and enable.

m ux

sel_1

+

sel_1

m ux

0

in_3

m ux

enable

Register

clock

in_steer

in_steer_local

in_1

in_2 m ux

0

sel_2

Figure 8. Datapath with ODC-based Operand Isolation

Fine-grained Operand Isolation: For this technique, the ODC-
based isolation procedure is extended by considering the bit-
masking at the input operands of the isolation candidates. As can
be observed in figure 9, one input operand for the adder is held con-
stant by a controlling signal (sel 1) also used in a later multiplexer.
Therefore, it is sufficient to use enable as isolating signal. However,
the same is not true for the input operand in 2 where sel 2 is the con-
trolling signal. In this case, the area overhead will increase if sel 2 is
included in the isolating signal circuit. Hence, fine-grained operand
isolation is useful only in the cases where the input operand is held
constant under a condition, already included in the ODC condition.

m ux

sel_1

+sel_2

sel_1

m ux

0

in_3

m ux

enable

Register

clock

in_steer

in_steer_local

in_1
in_2 m ux

0

Figure 9. Datapath with Fine-grained Operand Isolation

4.2 Isolation Constraints

In some automated operand isolation approaches, a detailed
power model has been considered for inserting operand isolation
among isolation candidates [9]. The approach presented in this
paper is integrated in a high-level synthesis framework, where the
proper estimation of performance itself is a huge research area. We
adopted an alternative approach by allowing several high-level con-
straints before inserting operand isolation. These constraints, unlike
the model-based approach, grant more user interaction and there-
fore stronger control over the trade-offs. A brief summary of the
constraints is mentioned here.

Isolation Prevention: A complete data flow block can be spared
from operand isolation by inserting pragma in the ADL description.
This is useful for dataflow blocks with high execution frequency.

Operator Selection: Selected operators can be pointed for
operand isolation candidacy. For example, one can select only
adders and multipliers to be isolated.

Bit-width Selection: A minimum bit-width (of operator) can be
specified for being selected as an isolation candidate.



4.3 Algorithms for Automatic Operand Isolation
Here, the ADL-based coarse-grained and ODC-based operand

isolation algorithms are outlined. Subsequently, the computation
complexity for the algorithms are shown.

01 // In a pipeline stage, DPj denotes a datapath block
02 // DPj is completely represented by a dataflow graph
03 // nodek denotes a vertex of the dataflow graph
04 // pik denotes a primary input corresponding to nodek

05
06 InstantiateCoarseGrainedOperandIsolation(DPj ) {
07 // each datapath block can be stopped from isolation by a pragma
08 if (DPj is covered by pragma) return;
09 for each nodek ε DPj {
10 if (nodek satisfies isolation constraints) {
11 S(pik) = set of primary inputs(nodek)
12 for each pikm ε S(pik) {
13 if (pikm is not already isolated) {
14 isolatingsignal = steering signal(DPj )
15 insert isolation logic(pikm , isolatingsignal)
16 }}}}}

The coarse-grained operand isolation algorithm during ADL-
driven high level synthesis is outlined in the above pseudo-code. For
each datapath block, the nodes which satisfy given isolation con-
straints are treated. For every such node, primary inputs are tracked
back and the isolation logic is coupled with the primary inputs. The
isolating signal is given by the major steering signal of the datapath
block, which is directly available via high-level structural informa-
tion. The runtime complexity of the above algorithm is determined
by the loop over primary inputs (line 12). For a dataflow graph with
n nodes, the worst case complexity is O(n2).

The following pseudo-code contains the essence of the ODC-
based operand isolation algorithm. The ODC is propagated from
the datapath block’s primary outputs to the isolation candidate’s in-
put operands. The isolating signal is derived from the ODC itself.
The runtime complexity of the above algorithm is determined by
the computation of the ODC for each input operand of the isolation
node. ODC propagation per node is done in linear complexity. Con-
sidering the number of input operands per operator to be p, the worst
case complexity is O(p · n2).

01 // In a pipeline stage, DPj denotes a datapath block
02 // DPj is completely represented by a dataflow graph
03 // nodek denotes a vertex of the dataflow graph
04 // pok denotes a primary output corresponding to nodek

05
06 InstantiateFineGrainedOperandIsolation(DPj ) {
07 // each datapath block can be stopped from isolation by a pragma
08 if (DPj is covered by pragma) return;
09 for each nodek ε DPj {
10 if (nodek satisfies isolation constraints) {
11 S(pok) = set of primary outputs(nodek)
12 // calculating Observability Don’t Care
13 ODCout = Propagate ODC(S(pok), nodek)
14 S(ik) = set of input operands(nodek)
15 for each ikm ε S(ik) {
16 isolatingsignal = ODCout

17 insert isolation logic(ikm , isolatingsignal)
18 }}}}

4.4 Overall Flow
The overall flow of the automatic ADL-based operand isolation

is shown in the figure 10. A global analysis of a processor’s ADL
description is done at first. The datapath blocks of the ADL in each

pipeline stage is then converted to corresponding DFG representa-
tion. By using the architectural information and the isolation con-
straints, a designer-selected algorithm is employed to instantiate the
operand isolation. The DFG-representation is then mapped to reg-
ister transfer level HDL description via HDL backend. It must be
noted that to map the overall processor structure and the control path
to HDL, various other steps are involved, which are not shown in
this flow. The isolation constraints and the automatic operand isola-
tion algorithms are integrated into a more elaborate framework for
ADL-drived RTL synthesis.

ADL Description

Global Structural 
Analysis

DFG creation
��������	�
������	 �����

Isolation 
Constraints

HDL Backend

HDL Description

Autom atic Operand Isolation

Fine-grained
Isolation

RTL Synthesis

Coarse-grained ODC-based

Figure 10. ADL-based Operand Isolation Flow
The selection of the isolation algorithm plays an important role

to minimize the power. Currently, the isolation algorithm can be se-
lected for the overall architecture, whereas it may be more beneficial
to have a different isolation algorithms for different datapath blocks.
This extension will be targeted and studied in our future work. An-
other important issue is the derivation of the isolation constraints. In
particular, to derive the execution frequencies of datapath blocks, the
designer has to run simulations. With the framework of ADL, fast
cycle-accurate instruction-set simulation [3] can be performed. The
instruction-set simulator is automatically generated from the ADL
description.

5. Case Study
The power optimizations discussed in this paper are tested with

two different ASIPs. The ICORE [15] architecture is dedicated for
Terrestrial Digital Video Broadcast (DVB-T) decoding. It is based
on a pipelined Harvard architecture implementing a set of general
purpose arithmetic instructions as well as specialized trigonomet-
ric operations. We took two applications performing trigonometric
calculations namely, cordic01 and cordic02 running on this architec-
ture. The second architecture is an ASIP dedicated for Fast Fourier
Transformation (FFT) algorithms. A 32-point FFT application is
used as the test application. Both the ICORE and the FFT archi-
tecture have been developed using LISA. A brief summary of the
architectures is shown in table 1.

Table 1. Summary of the Benchmark Architectures
ICORE FFT

Basis Architecture 32-bit RISC 24-bit RISC
Pipeline Stages 4 6
Lines of LISA Code 2200 1500
Lines of Verilog Code 25200 16600

The LISA models were synthesized to obtain the RTL with and
without various low power optimizations. The automatically gener-
ated RTL description was verified through RTL and gate-level sim-
ulation using Synopsys VCS and then synthesized with Synopsys



Design Compiler, using a 0.13µm technology library. Finally, Syn-
opsys power measurement flow [14] was employed to measure the
power on gate-level. During the case study, the isolation constraints
have been used to guide the power optimization of the entire pro-
cessor. The datapath blocks, which are executed with a high fre-
quency, have not been considered for isolation. The operators with
low bitwidth and less complexity, have been ommitted, too.

Operand isolation, by its nature, affects the datapath partitions
strongly. However, in both the architectures, the RegisterFile ac-
counts for a high percentage of the power (65% for FFT and 37% for
ICORE). To determine the clear effect of the operand isolation algo-
rithms, the power improvements for the pipelined datapath is stud-
ied. The best power results obtained for both architectures are pre-
sented in table 2. The corresponding changes in area are given, too.
Interestingly, the best power improvements for ICORE are avail-
able with ODC-based and fine-grained operand isolation, whereas
for FFT processor it is the coarse-grained operand isolation. The
reason behind this is the fine-grained operand isolation for the FFT
introduced area overhead and thereof power increment, which off-
sets the gain. Moreover, for FFT, there are some datapath partitions,
which got isolated but are active almost entirely during the appli-
cation. Those partitions are identified manually and removed by
inserting pragmas in the ADL description.

Table 2. Effect of Operand Isolation over Pipeline

Benchmark
No Operand Isolation With Operand Isolation
Area

[Gates]
Power
[mW]

Area
[Gates]

Power [mW]

cordic01
29145

9.32 34599(+18.71%) 5.41(-41.95%)
cordic02 8.35 34671(+18.96%) 5.79(-30.67%)
fft32 12026 2.66 13198(+9.75%) 2.39(-10.07%)

In the following, a study of the effects of operand isolation in the
overall architecture for ICORE is presented. Table 3 summarizes the
power values obtained by applying different isolation algorithms for
ICORE. The relative improvement of power with respect to the case
of no operand isolation is shown in percentage. As expected, the
coarse-grained isolation algorithm produces least benefit whereas,
in general, the fine-grained operand isolation improves power most.
It must be noted here, that these values reflect the overall architecture
measurement and the power improvement is significantly higher for
individual datapath partitions.

Table 3. Overall Power (mW) results for ICORE
cordic01 cordic02

AND-based OR-based AND-based OR-based

Original 14.74 13.24
Coarse-grained 11.21(-23.95%) 12.62(-14.38%) 10.80(-18.43%) 12.53(-5.36%)
ODC-based 11.14(-24.42%) 12.16(-17.50%) 10.37(-21.68%) 12.41(-8.31%)
Fine-grained 10.97(-25.58%) 12.08(-18.05%) 10.73(-18.96%) 12.04(-9.06%)

Table 4 summarizes the results of area and delay obtained un-
der different isolation algorithms. The delay due to isolation logic
insertion is never significant. The main underlying reason for this
is the datapath blocks in case of ICORE do not have complicated
conditional chains. However, the isolation logic increased the area
significantly for all isolation algorithms. Interestingly, the coarse-
grained isolation algorithm resulted in bigger area than fine-grained
or ODC-based isolation algorithm. Note that, for coarse-grained
operand isolation, the isolation logic appears at the primary inputs.
For ODC-based or fine-grained operand isolation, the isolation logic
and isolating signal are generated inside the datapath block, thereby
giving some scope of logic optimization. A closer look revealed that
for coarse-grained isolation, such optimizations did not occur. As a
result, the area increase is less compared to coarse-grained operand
isolation.

These results shows that depending on the architecture, the flexi-
bility to shift between different operand isolation techniques plays a
major role to reap the optimum benefit. Using the high-level archi-

Table 4. Overall Area-Delay results for ICORE
Area (Gates) Delay (ns)

AND-based OR-based AND-based OR-based

Original 60441 3.90
Coarse-grained 66994 (+10.84%) 66751(+10.44%) 3.96(+1.54%) 3.88(-0.51%)
ODC-based 66260 (+9.63%) 64981 (+7.51%) 3.90 (0.00%) 3.89 (-0.26%)
Fine-grained 66147 (+9.44%) 64762 (+7.15%) 3.80 (-2.56%) 3.94 (+1.03%)

tectural information, it is possible to achieve a strong reduction in
power and to shift between the coarse-grained power optimization
method (as found in system-level designs) or a fine-grained power
optimization method (as done in RTL abstraction).

6. Summary and Future Work
Growing complexity of cutting-edge embedded processors have

promoted the usage of high processor abstraction level, thus mak-
ing the use of system level tooling inevitable. At the same time,
dwindling power budgets for modern embedded processors have in-
creased the significance of power optimization techniques. Operand
Isolation, an effective power reduction technique is explored in this
work from the perspective of ADL-based processor synthesis.

In our future work, we will focus on the combination of clock
gating and operand isolation and study the power improvements
thereof. We will also extend our framework to include high-level
power models.

7. REFERENCES
[1] A. Fauth et al. Describing Instruction Set Processors Using nML. In

Proc. of the European Design and Test Conference (ED&TC), 1995.
[2] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt and A. Nicolau.

EXPRESSION: A Language for Architecture Exploration through
Compiler/Simulator Retargetability. In Proc. of the Conference on
Design, Automation & Test in Europe (DATE), Mar. 1999.

[3] A. Nohl et al. A universal technique for fast and flexible
instruction-set architecture simulation. In DAC ’02: Proceedings of
the 39th conference on Design automation, 2002.

[4] Anthony Correale, Jr. Overview of the power minimization techniques
employed in the IBM PowerPC 4xx embedded controllers. In ISLPED
’95: Proceedings of the 1995 international symposium on Low power
design, pages 75–80, New York, NY, USA, 1995. ACM Press.

[5] R. A. Bergamaschi. Behavioral Network Graph: Unifying the
Domains of High-Level and Logic Synthesis. In DAC, 1999.

[6] C. Chen and K. Küçükçakar. An Architectural Power Optimization
Case Study using High-level Synthesis. In ICCD, 1997.

[7] H. Li, S. Bhunia, Y. Chen, T.N. Vijaykumar and K. Roy.
Deterministic Clock Gating for Microprocessor Power Reduction. In
Proceedings of the Ninth International Symposium on
High-Performance Computer Architecture (HPCA).

[8] A. Hoffmann, H. Meyr, and R. Leupers. Architecture Exploration for
Embedded Processors with LISA. Kluwer Academic Publishers, 2002.

[9] M. Münch, B. Wurth, R. Mehra, J. Sproch and N. Wehn. Automating
RT-level operand isolation to minimize power consumption in
datapaths. In DATE ’00: Proceedings of the conference on Design,
automation and test in Europe, 2000.

[10] N. Banerjee, A. Raychowdhury, S. Bhunia, H. Mahmoodi and
Kaushik Roy. Novel Low-Overhead Operand Isolation Techniques for
Low-Power Datapath Synthesis . In IEEE International Conference
on Computer Design (ICCD), San Jose, California, USA, October
2005.

[11] P. Babighian, L. Benini and E. Macii. A Scalable ODC-Based
Algorithm for RTL Insertion of Gated Clocks. In Proceedings of the
conference on Design, automation and test in Europe, 2004.

[12] P. Mishra, A. Kejariwal and N. Dutt. Synthesis-driven Exploration of
Pipelined Embedded Processors. In Int. Conf. on VLSI Design, 2004.

[13] Schliebusch, O., Chattopadhyay, A., Witte, E.M., Kammler, D.,
Ascheid, G., Leupers, R. and H. Meyr. Optimization Techniques for
ADL-driven RTL Processor Synthesis. Montreal, Canada, June 2005.

[14] Synopsys. PrimePower
http://www.synopsys.com/products/power/primepower ds.pdf.

[15] T. Gloekler, S. Bitterlich and H. Meyr. ICORE: A Low-Power
Application Specific Instruction Set Processor for DVB-T Acquisition
and Tracking. In Proc. of the ASIC/SOC conference, Sep. 2000.

[16] Target Compiler Technologies. http://www.retarget.com.
[17] V. Tiwari, S. Malik and P. Ashar. Guarded Evaluation: Pushing Power

Management to Logic Synthesis/Design. In International Symposium
on Low Power Design, pages 221–226, 1995.


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



