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Abstract

Performance achievements on programmable architec-
tures due to process technology are reaching their limits,
since designs are becoming wire- and power-limited rather
than device limited. Likewise, traditional exploitation of in-
struction level parallelism saturates as the conventional ap-
proach for designing wider issue machines leads to very ex-
pensive interconnections, big instruction memory footprint
and high register file pressure. New architectural concepts
targeted to the application domain of media processing are
needed in order to push current state-of-the-art limitations.
To this end, we regard media applications as a collection
of tasks which consume and produce chunks of data. The
exploitation of task level parallelism as well as more tradi-
tional forms of parallelism is a key issue for achieving the
required amount of MOPS/Watt and MOPS/mm2 for media
applications. Tasks comprise data transfers and number
crunching algorithm kernels, which are very computing-
intensive yet highly predictable. Moreover, most of the data
manipulated by a task is of a local nature. Granularity and
characteristics of these tasks will lead us in this paper to
draw conclusions about memory hierarchy, task scheduling
strategies and efficient low-overhead programmable archi-
tectures for highly predictable kernel computations.

1. Introduction

Advancements in VLSI technology together with mas-
sive exploitation of parallelism at its different levels: in-
struction, data, pipelining and task level, have enabled pro-
grammable architectures to deliver the required processing
power at reasonable levels of power consumption for the
implementation of media processing, a field which has been
traditionally dominated by more ASIC-like designs. The ir-
ruption of programmable architectures to a domain domi-
nated by hardwired solutions has created a variety of new

business opportunities. The pillars of these new opportu-
nities reside on the advantages of programmability, which
broadly speaking can be summarized as: Non-permanent
customization and application development after fabrica-
tion, economies of scale (amortizing large, fixed design
costs) and time to market (evolving requirements and stan-
dards).

Yet media applications remain an application domain
that challenges a software based implementation from
the power consumption and processing power perspective.
Let us for instance consider the implementation of video
codecs. It is reported that the new compression stan-
dard H.264 outperforms the achievable compression factor
of the MPEG-2 standard by a factor of two at the same
level of quality [6]. This improvement on the compres-
sion factor is achieved at expenses of the standard com-
plexity. H.264 uses quite sophisticated compression tools
like intra prediction, quartel-pel tree-structured motion es-
timation/compensation, and adaptive deblocking filtering.
These new compression tools accounts for an increment
from two to three times for the decoder and from four
to five times for the encoder complexity with respect to
MPEG-2 [7]. Benchmarking a C model of a H.264 base-
line decoder shows that a Pentium processor running at a
clock frequency of 2.5 Ghz. is required for real-time de-
coding of a typical D1, 25 fps, 4:2:0, 10 Mbits compressed
video stream. In applications where power consumption is
an issue the increment on processing power via the mere
increment of the processor clock frequency is not an ac-
ceptable approach. This example stresses out the neces-
sity for domain-specific programmable architectural con-
cepts that massively exploit parallelism and enable scaling
of the available processing power via number of gates rather
than clock frequency.

For the past two decades processors have doubled
in performance every 18 to 24 months without substan-
tial changes of the underlying instruction set architecture
(ISA) [5]. The driving forces for this amazing growth have
been the improvements on process technology and instruc-
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tion level parallelism (ILP). However, performance achieve-
ments due to progress on process technology are reaching
their limits, since chip wiring is the main limiting factor
in deep-submicrometer CMOS technology. Traditional ex-
ploitation of ILP has also reached a limiting factor. Con-
ventional methods for designing wider issue machines leads
to very expensive interconnections, big instruction memory
footprint and high register file pressure. It is clear that for
programmable architectures to deliver the required amount
of MOPS/Watt and MOPS/mm2 new architectural concepts
that take into account the characteristics of the application
domain have to be developed for overcoming current state-
of-the-art limitations.

Taking as a starting point the task oriented nature of me-
dia applications, we explore in this paper different concepts
and design principles that enable programmable architec-
tures to cope with the required complexity at reasonable lev-
els of power consumption. The remainder of this paper is
as follows. In section 2 we explain the concept of task and
the advantages of expressing media applications in terms
of a task oriented computational model. In section 3 we
present a programmable architectural concept that matches
the characteristics of the task computational model of sec-
tion 2. The advantage of considering media applications
from the task perspective is that this enables an strict sep-
aration of data transfers from kernel computations. In sec-
tion 4 we present a DSP concept based on an architectural
template, which matches the high-predictable, high-data lo-
cality nature of number crunching kernel computations. Fi-
nally, in section 5 we present our conclusions.

2. Media Applications: A Task Oriented Per-
spective

Control flow and tasks are fundamental elements of ev-
ery media application. Upon this perspective a media appli-
cation can be regarded as a state machine where the control
flow determines which tasks are to be executed according
to either the input data stream or to data generated by pre-
vious tasks. Thus, a task consumes and produce chunks
of data whereas control flow defines the tasks to be exe-
cuted. A task comprises data transfers and computational
kernels. Moreover, each task has its own local and indepen-
dent memory space which is used to store temporary values
and values involved in data transfers. In this context data
transfers implies a memory hierarchy, which is intended to
read and write the chunks of data that are necessary for the
execution of a task. Moreover, read and write data transfers
take place between the independent local memory of each
task and an external memory space to the task. In a general
case, transfer of data can be applied to data arrays of an ar-
bitrary dimension and with an arbitrary access scheme. It
is important to point out that even though our approach has

if(x==0 & y==1)
ta_begin();
ta_g2dfetch(stmp,x,4,y,9,width);
ta_launch(QB01);
ta_g2dput(dest,4,4,width);
ta_end();

Figure 1. Example code showing control
code, data transfers and the definition of a
task called QB01

some commonalities with previous works as the ones pre-
sented in [4],[9] it has an essential difference, namely our
starting point is not a data flow graph.

The description of media applications in terms of tasks
has a lot of advantages. On the one hand, it makes com-
pulsory the differentiation within the application between
control flow, data transfers and kernel executions. As we
will discuss later in this paper this differentiation is of
paramount importance for an efficient implementation of
media applications into programmable architectures, since
each of these parts: control flow, data transfers and kernel
executions, have their own characteristics that determine the
efficient underlying hardware architecture to be used.

On the other hand, a task oriented description of a me-
dia application exposes concurrency at the task level and
data locality. The level of concurrency at the task level is
limited by the data dependencies between tasks defined by
the control flow. The description of media applications by
means of tasks makes compulsory to differentiate between
data which is produced and consumed within a task from
data that is transferred from the external memory into the
memory space of each task.

2.1. Task Oriented Execution Environment

In order to allow for programming an executable ver-
sion of a media application expressed in terms of tasks, we
have developed a C++ framework. The purpose of this C++
framework is not only to enable the implementation of an
executable version of the media application, but it is also in-
tended to be used at later stages of the design flow in order
to automatically generate code for the multicore platform
introduced in section 3.

An example of the coding style for programming with
this C++ framework is shown in figure 1. In this example
we can observe the three main ingredients of an application,
namely control flow, data transfers and kernel computation.
In the example we consider the definition of a task for com-
puting a quartel-pel motion compensation taken from the
implementation of a H.264 decoder. The C++ framework

2



ta_fork()

Task A

Task B

Task C

ta_collapse()

while (condition)

Task D

Figure 2. Example of the use of the Fork and
Collapse Directives for Exposing Task Level
Parallelism

offers many directives, which allows for writing and reading
an arbitrary number of parameters to and from the task. In
the example, the launched task is called QB01 and it reads a
4x9 block of data. This block of data is read from the main
memory at the position determined by the pointerstmp .
The task actuates upon this block of pixels and produces
via interpolation a 4x4 block of data. The code that im-
plements the functionality of this task is implemented else-
where and it is not shown in this example. After the task is
launched the resulting block of data is written back to the
main memory location defined by the pointerdest . More
complex accesses schemes can be implemented on the data
transfers. For example, in order to exploit data level paral-
lelism within a task it is very useful for many applications
to read and write a block of data with a stride or transposed
access scheme.

The C++ framework also offers directives for exposing
parallelism at the task level. This is illustrated in figure 2.
In this figure we observe a flow diagram which main part
illustrates the body of a while loop. Within the body loop
we can find some control flow that determines the tasks to
be executed in each loop iteration. Let us assume that in
each iteration the data transfers required by the tasks to be
executed do not present direct data dependencies. Taking
as an example video decoding, we can imagine that in each
loop iteration a new macroblock of data pixels is processed
by the tasks as they are defined by the control flow. The
ta_fork() directive allows for defining tasks which can
be executed in parallel. Let us also assume that the task
D of figure 2 consumes data which was previously gener-
ated within the loop body. In order to define this situation
we can use the directiveta_collapse() . This direc-
tive means that previous tasks have to be completed in or-
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Figure 3. Block Diagram of the multicore plat-
form

der to launch the new one. There are many types of fork
and collapse directives. In order to be able to express the
parallelism at different levels of granularity we are working
with a hierarchical fork and collapse concept. In the next
section we present a programmable multicore platform that
matches this simple computational model.

3. A Programmable Multicore Platform for
Media Applications

In order to map media applications described with the
simple task-oriented programming model we introduced
above, we propose a programmable multicore platform
as the one illustrated in figure 3. We envision the pro-
grammable platform having at lest two levels (for most ap-
plications three levels) of memory hierarchy. The external
memory enables mass storage and it offers a rather low
communication bandwidth. Local memory offers a very
high communication bandwidth and it is used for comput-
ing local data produced and consumed within a task. An ad-
ditional memory with a medium bandwidth can be devised
for storing data that is consumed by many tasks. In order
to cope with the control intensive nature of media appli-
cations we aim at implementing an out of order execution
scheme of the differen tasks. To this end, we are execut-
ing the control code in a RISC-like micro-controller. This
RISC-like processor also fills execution queues consisting
of tasks. In turn, this execution queues are used by an out of
order execution unit that schedules data transfers and kernel
computations. In this context tasks can be regarded as an in-
struction stream of a higher granularity, which is processed
by the scheduler in order to fire data transfers and kernel
computations. In order to facilitate the scheduling the in-
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formation regarding the execution time of kernel computa-
tions as well as data transfers have to be known in advance.
We are also using a global clock reference for the whole
multicore platform so that scheduling can be done using
this common time basis. In our concept, data transfers are
carried out by a dedicated DMA channel. Thus execution
queues contain data transfers and computational kernels,
which are scheduled according to a simpleFirst Come First
Servedapproach. Computational Kernels are executed in
programmable accelerators based on our novel microarchi-
tectural template for DSPs called STA (Synchronous Trans-
fer Architecture), which are specially designed to exploit
data, instruction level parallelism and the predictable nature
of number crunching algorithms. This concept is explained
in section 4 in more detail. Note that in our concept every
DSP core is able to execute any tasks so that the scheduler
can choose any core for executing kernels computation ac-
cording to DSP load. The scheduling unit of the platform
annotates into the batch control units a time stamp when
data transfers for the DMA unit and kernel computations
for DSP units are to be executed.

It is important to point out that it is not our ambition to
create a new parallel computation model for media applica-
tions as in [9]. These works aim at a programming model
that is general enough for allowing code synthesis to a vari-
ety of parallel architectures. In our approach, we start from
the architectural concept presented in this section in mind
and then we developed a simple computational model that
matches this platform.

The concept of out of order execution is a well estab-
lished technique within the processor architecture commu-
nity. We are applying the same ideas. However, it is our
intention to apply these ideas at the task level rather than
at the instruction level. It is our conviction that exploit-
ing dynamic scheduling at higher levels of granularity is a
more powerful approach. Above all if we consider that due
to the predictable nature of computational kernels, these do
not take advantage of dynamic scheduling. Computational
kernels call for a static compilation technique for exploit-
ing instruction, data and pipeline parallelism. Since this
can ba calculated by a compiler in compilation time, we are
able to build low overhead DSP cores with a lot of ALUs
for computation and very low control overhead. This leads
to efficient low-power low-overhead high-performance pro-
grammable architectures for kernel computation as it is ex-
plained in the next section.

4. Efficient Low-Overhead Programmable Ar-
chitectures

Signal processing applications are characterized by num-
ber crunching algorithm kernels at which an application
conventionally spends most of its time. Although these ker-

nels are computing intensive, they are highly predictable,
and often they do not take advantage of sophisticated fea-
tures like branch prediction or dynamic scheduling mecha-
nisms. Such kernels are amenable to static scheduling and
software pipelining by means of compiler backend tech-
niques, thus shifting the complexity from the hardware to
the compiler. A key issue in DSP design for the coming
years will be the application of more sophisticated compiler
approaches in order to minimize the hardware overhead of
the architecture. The underlying objective is to utilize the
available die size for efficiently placing very fast data paths.

Another paramount characteristic of kernel computa-
tions is the data locality these algorithms exhibit. Corpo-
raal [3] concluded after analyzing the benchmark Stanford
that 40 % of read accesses to values are performed in the
same cycle as these values are defined. Furthermore, he
points out that 45% of all defined values are dead after being
used at lifetime zero. These observations make clear that
there is potential for a considerable reduction of the register
file traffic by means of bypassing values directly between
functional units. A fundamental conclusion is that high
performance DSP architectures have to exhibit producer-
consumer locality that can be exploited to reduce data trans-
fer traffic. Moreover, it is very well understood in the pro-
cessor design community that it is data transfers and not
performing arithmetic which governs power consumption.
Thus, a key question for DSP designers is how to create an
architecture that exposes and exploits data locality, thereby
avoiding power dissipation that would otherwise solely re-
sult from moving operands.

One of the driving forces for the increase of processor
performance has been ILP. However, the way how ILP has
been conventionally implemented is becoming very expen-
sive and does not scale for high concurrency machines. Effi-
cient exploitation of ILP requires large fully interconnected
register files. Moreover, in order to overcome data hazards,
bypass networks have been added to these architectures,
which together with hardware support enable the utilization
of data forwarding techniques. All these trends in proces-
sor architecture have led to a situation where the amount of
available concurrency is limited by the associated hardware
cost. From this discussion it seems quite clear that in order
to push ILP to even higher levels of concurrency a new ar-
chitectural concept needs to be envisioned, which scales in
a better way with the degree of ILP.

Single instruction multiple data (SIMD) vector signal
processors offer the potential to increase the data transfer
rates between memory and computational resources, since
data vectors residing on memory are accessed and pro-
cessed in a parallel fashion. This enables the achievement
of speed-up gains in the implementation of DSP algorithms
into these processor architectures. While SIMD has its ori-
gins in supercomputers, the advancements of VLSI tech-

4



Functional Unit

MUX

Output Ports

Input Ports

Signals from
Output Ports

O
pc

od
e

In
pu

t 1

Control Signals

Input Selection

…
..

In
pu

t n
Im

m
ed

ia
te

S
T

A
 In

st
ru

ct
io

n 
S

eg
m

en
t

Figure 4. STA Architectural Template

nology have enabled SIMD to make its way to the world of
embedded real-time signal processing. This renewed atten-
tion on SIMD processors has been driven by the demand for
low-power and applications with ever increasing algorithm
complexity, where a programmable device is favored over a
fixed wired solution. Vector processing has been proven to
be beneficial for media applications like video, image and
audio processing, where algorithms are applied to chunks
of data like subblocks, macroblocks, slices, and frames. Fi-
nally, it is worth pointing out that SIMD vector processing
is consistent with the paradigm of low overhead architec-
tures: a chip can be filled with arithmetical units and the
overhead cost remains constant and is amortized over the
different parallel units.

4.1 Putting it all Together

Our DSP architecture is based on basic modules of the
form shown in figure 4. Such a basic module has an arbi-
trary number of input and output ports. In our concept, the
output of each module is a register. Input and output ports
can deal with a certain data type, e.g. boolean, 16-bit inte-
ger, 32-bit floating point, vectors of 16-bit integer, vectors
of 32-bit floating point, etc. Basic modules implement some
functionality and a DSP core is build up from a set of such
basic modules. Ports of the same data type are connected
with each other through a bypass network formed by multi-
plexers. This is sketched in figure 5. Both the functionality
of basic modules and the multiplexers are explicitly con-
trolled by processor instructions. At each cycle the instruc-
tion configures the bypass network and the functionality of
the basic modules.

As a result, the whole system forms a synchronous net-
work, which at each clock cycle consumes and produces
some data. The produced data will in turn be consumed by
other basic modules in the next cycles. This synchronous
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Figure 5. STA Bypass Network

transfer of data has given the architecture its name: syn-
chronous architecture (STA). Basic modules can be data
paths or memory blocks. Memory blocks can be either reg-
ister files or memories. There is a register file for each data
type available in the processor. However, the register files
have only a limited number of input and output ports. The
STA architecture offers a high degree of data locality: Data
that is produced in the current cycle can be directly routed to
other processing units in the following cycles without going
through the register file or memory. This not only speeds
up computations, but also lowers power consumption and
register file pressure. The STA architecture also supports
data and instruction level parallelism. In fact, SIMD vector
data parallelism is implemented by letting input ports, out-
put ports and data paths deal with vector data types. At the
same time, instruction level parallelism is supported since
at each cycle a wide instruction controls each basic module
as well as the multiplexing network. Two important issues
regarding the architecture have to be taken into account. On
the one hand, for large STA systems the bypass network be-
comes a critical part of the design. On the other hand, a
wide instruction memory is needed. The complexity of the
bypass network is alleviated by reducing the number of con-
nections between ports. An obvious strategy for this is to
determine those connections which allow for reusing values
that present a high data locality. This is a viable approach,
since applications are known at design time of the proces-
sor and thus, a customization of the bypass network can be
carried out in order to meet die size and power consump-
tion requirements. For those connections which are not fre-
quently reused, a connection via the register file suffices. To
control instruction memory footprint we are applying code
compression techniques.

4.2 Automatic Integrated Design Flow

The simplicity and modularity of the STA concept en-
ables the automatic generation of RTL and simulation mod-
els of processor cores from a machine description. Proces-
sor cores with different characteristics, e.g. size of regis-
ter file, memory capacity, bypass network, functional units,
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Figure 6. Automated Design Flow for DSP
Cores

data types and degree of SIMD-vector parallelism are auto-
matically generated from a machine description file. This
is illustrated in figure 6. In this figure we can observe that
this design flow enables a design space exploration, where
most of the design tasks are completely automated. We are
also working on a retargetable compiler backend in order to
allow for automatic code generation for these DSP cores.

4.3 Samira: a First Silicon Prototype

In order to proof our DSP architectural concept we have
taped out a generic DSP core with the following character-
istics: 17 single-precision floating point units, 8x SIMD,
480k NAND gates, 2.4mm2 logic area on UMC 0.13µm,
2.9 Mbit on-chip SRAM and clock frequency 212 MHz.

The die photo of the DSP core is presented in fig-
ure 7. The prototype DSP outperforms well-known com-
petitors. A 256-point complex FFT consumes 1889 cycles,
which corresponds to an execution time of 9.45µs when
clocked at 200 MHz. This nicely compares to Analog De-
vices’ ADSP-21161N (26µs at 100 MHz), Texas Instru-
ments’ TMS320C6713 (16µs at 225 MHz), and Renesas’
SH7750R (24µs at 200 MHz). The true potential, however,
stems from the processor’s power efficiency. SAMIRA con-
sumes 4.0 Watt-µs per 256-point complex FFT. By con-
trast, the ADSP-21161N consumes some 23 Watt-µs, and
the TMS320C6713 calls for 12 Watt-µs. SAMIRA’s closest
rival among these processors is Renesas’ SH7750R, which
requires twice the energy per FFT (8 Watt-µs) as compared
to SAMIRA. In fact, SAMIRA reaches the power efficiency
of fixed point DSPs. For example, it outperforms Texas In-
struments’ TMS320VC5510, which exhibits a significantly
higher execution time per FFT as well as a higher energy
consumption per FFT than SAMIRA (4.3 vs. 4.0 Watt-µs)1.
It is worth noting that SAMIRA reaches this performance
without featuring any support for FFT specific instructions,

1Based on figures reported in [2][1][8]. Execution times and energy
consumption for the ADSP-21161N, the TMS320C6713 and the Renesas
SH7750R from [2]. Data for the TS203S compiled from clock cycles re-
ported for FFTs in [1]. Data for TMS320VC5510 from [8].

Figure 7. Die Photo of the SAMIRA DSP

since it was devised as a general purpose STA processor.

5. Conclusions

Starting from a task oriented prospective of media ap-
plications we have presented in this paper a multicore
DSP platform based on a simple task-based computational
model. The most important characteristic of this computa-
tional model is the strict separation of control code, data
transfers and kernel computations. Control code is exe-
cuted in a microcontroller, data transfers are executed using
DMA channels and kernel computations are implemented
in low-overhead high-performance DSP cores. This led to
the idea of an architectural template that exploits the charac-
teristics of these kernel computations. We have shown that
low power and low gate count can be achieved by means of
this methodology.
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