
Heterogeneous Behavioral Hierarchy for System Level
Designs

Hiren D. Patel
Virginia Polytechnic and State

University

hiren@vt.edu

Sandeep K. Shukla
Virginia Polytechnic and State

University

shukla@vt.edu

Reinaldo A. Bergamaschi
IBM Research T.J. Watson

berga@us.ibm.com

ABSTRACT
Enhancing productivity for designing complex embedded systems
requires system level design methodology and language support
for capturing complex design in high level models. For an effec-
tive methodology, efficiency of simulation and a sound refinement
based implementation path are also necessary. Although some of
the recent system level design languages for system level abstrac-
tions, several essential ingredients are missing from these. We
consider (i) explicit support for multiple models of computation
(MoCs) or heterogeneity; (ii) the ability to build complex behav-
iors by hierarchically composing simpler behaviors; and (iii) hi-
erarchical composition of behaviors that belong to distinct models
of computation, as essential for successful SLDLs. These render
an SLDL with modeling fidelity that exploits both heterogeneity
and hierarchy and allows for simpler modeling and efficient sim-
ulation. One important requirement for such an SLDL should be
that the simulation semantics be also compositional, and hence no
flattening of hierarchically composed behaviors be needed for sim-
ulation. In this paper we show how we designed SystemC exten-
sions to provide facilities for heterogeneous behavioral hierarchy,
compositional simulation semantics, and implemented a simulation
kernel which we show experimentally as up to 50% more efficient
than standard SystemC simulation.

1. INTRODUCTION
Various system level design languages (SLDLs) have been pro-

posed for the specification and modeling of complex and heteroge-
neous hardware and software systems. SLDLs such as SpecC [14],
SystemVerilog [15] and SystemC [9] provide system-level abstrac-
tions for hardware modeling, and to a lesser extent for software
modeling. Environments like Ptolemy II [13] and Metropolis [5]
address either control-oriented embedded software design and/or
platform-based system design. These SLDLs have limitations, which
restrict their widespread use in industry for modeling heteroge-
neous hardware and software systems. These limitations need to
be addressed for making them successful in the embedded system
design community. On top of these limitations, there are certain
industrial trends that gate their success path. SystemC in our view
has been gaining traction in the industry, and rendering SystemC
with capabilities necessary for a successful SLDL is essential for
this trend to continue. However, SystemC was originally devel-
oped based on discrete-event (DE) simulation semantics (similar to
VHDL and Verilog). Although other MoC semantics can be mim-
icked by DE, it complicates the modeling of fully heterogeneous
systems (with different models of computation). Also, this imposes
a significant overhead in code size and simulation speed, if such de-
signs are modeled using the current SystemC implementation. As

a result, adding the features we deem as necessary, and elaborate
further in the paper, becomes challenging without adding simula-
tion semantics distinct from the DE semantics, on top of adding
abstraction mechanisms.

From our experience with various SLDLs, we have identified
three important characteristics for system level modeling. These
are: (i) support for multiple models of computation (MoCs) or
heterogeneity in the same language; (ii) ability to build complex
behaviors by hierarchically composing simpler behaviors, coupled
with the ability to distinguish between structural and behavioral hi-
erarchy; and, (iii) the ability to compose behaviors hierarchically
that belong to distinct models of computation to exploit both het-
erogeneity and hierarchy.

This third feature allows for simpler modeling and efficient sim-
ulation of complex system level models. In fact, a lot of embed-
ded system models today are heterogeneous and best built com-
positionally from smaller components whose behaviors are gov-
erned by distinct MoCs, and larger models are built via hierarchi-
cal composition. Furthermore, the simulation semantics for such
SLDLs should be also compositional so that flattening of hierarchi-
cally composed behaviors is not needed for simulation. This paper
presents methods and implementation of the above characteristics
as extensions to the SystemC kernel, to allow it to natively model
heterogeneous behavioral hierarchy and at the same time achieve
simulation speeds up to 50% faster than standard SystemC sim-
ulation of the same design. This work significantly extends our
previous work on heterogeneous simulation kernel extensions for
SystemC.

The capability for heterogeneity in any SLDL allows decompo-
sition of designs based on their inherent behaviors of the compo-
nents, which we term behavioral decomposition. This allows the
design to be realized as communicating sub-components which are
expressed and governed by particular MoCs. Behavioral hierar-
chy [12] is the second extension of SystemC that we have created.
We term behavioral hierarchy as the ability to build a design by
composing smaller behaviors hierarchically. Large system mod-
els comprising of small behavioral sub-components may consist of
smaller components embedded within the sub-components. Our
extensions to SystemC support behavioral hierarchy encouraging
designers to seamlessly compose behaviors hierarchically without
having to worry about the semantics that define the composition.
This is because we define compositional execution semantics for
hierarchical compositions [12] which is implemented in the ex-
tended SystemC kernel. Finally, we define heterogeneous behav-
ioral hierarchy as the ability to hierarchically compose smaller be-
haviors belonging to distinct MoCs. With heterogeneous behav-
ioral hierarchy, a designer can build system level models with hard-
ware/software components, where an SoC may be modeled with a

3-9810801-0-6/DATE06 © 2006 EDAA

FACo Ci

y x

z

FACo Ci

y x

z

FACo Ci

y x

z

FACo Ci

y x

z

0

X3 X2 X1 X0Y3 Y2 Y1 Y0

Z3 Z2 Z1 Z0

(a) Structural Hierarchy

Co Ci

y x

z

Co Ci

y x

z

Co Ci

y x

z

Co Ci

y x

z

0

Z3 Z2 Z1 Z0

X3 X2 X1 X0Y3 Y2 Y1 Y0

SDF
DEDEDEDE

(b) Heterogeneous Behavioral Hierarchy

A
1

B

C
D

E

F

2

2

1

2

2

3

1

1

3

1

1

1
1

23

(c) SDF Example (d) FSM Example

Figure 1: Examples of SDF, FSM, structural and heterogeneous behavioral hierarchy

hierarchical controller using the hierarchical finite state machine
(FSM) MoC, a digital signal processing (DSP) algorithm with the
synchronous data flow (SDF) MoC, a computationally intense com-
ponent within the DSP core following the continuous time (CT)
MoC and so on.

Further elaborating, structural hierarchy is an encapsulation tech-
nique used during modeling, where sub-components are embedded
within other components and communicate through their ports. For
example, a four-bit adder may consist of four one-bit adders (mod-
eled as a sub-component) where at first, a one-bit adder is modeled
at the RTL abstraction level, after which four instances of one-bit
adders are connected with extra glue logic to represent a four-bit
adder as shown in Figure 1(a). This is an example of structural
hierarchy where the modeling becomes manageable. On the other
hand, behavioral hierarchy is the ability to analyze a design by de-
composing it into small behaviors and then composing these be-
haviors hierarchically to complete the design. The behaviors in our
approach are realized by specific MoCs. In Figure 1(b), we show
the same adder design in behavioral form. Since this is too simple
an example, it turns out that the structural and behavioral decom-
position are isomorphic, but that may not always be the case. In
the behavioral representation, a four-bit adder could be modeled as
an SDF with four components, and each component expresses the
equation representation of one-bit adder behavior, which may be
simulated using discrete event (DE) semantics.

Current SystemC allows for structural hierarchy, but lacks sup-
port for behavioral hierarchy. It provides structural hierarchy through
C++ composition technique, where an SC MODULE contains other
SC MODULE instances and this embedding can go to any depth.
However, the behaviors encapsulated inside these embedded mod-
ules could be SC THREAD or SC METHOD which are simulated
only using a DE semantics. Moreover, during simulation, all these
structurally embedded processes are treated at the same level thereby
flattening any implied behavioral hierarchy. This loses out on the
extra information provided by the hierarchy and the corresponding
abstraction. This means that with respect to simulation, structural
hierarchy provides no benefit, but for modeling purposes it provides
a good abstraction mechanism. Behavioral hierarchy, as we see it,
provides both benefits during modeling and simulation. Behavioral
decomposition of the design provides encapsulation and abstrac-
tions during modeling, whereas for simulation, the proposed sim-

ulation kernel extensions only simulate one level of hierarchy at
any time. Thus preserving the state space abstraction along with
the hierarchy. For example, if an FSM has an embedded FSM sub-
system within one of its state, then a separate instance of the FSM
simulation kernel will execute the sub-system. We contend that
behavioral hierarchy is a key in not only increasing the modeling
fidelity [11], but also aiding in simulation efficiency. Also note that
our behavioral hierarchy is independent of structural hierarchy, and
in our design, at the different levels of hierarchy, distinct MoCs
may govern the behaviors.

In particular, in this paper we present our multi-MoC hierarchi-
cal SystemC extensions for the FSM and SDF MoCs, which are in-
teroperable with the SystemC discrete event (DE) simulation kernel
to support heterogeneous behavioral hierarchy. We demonstrate the
modeling paradigm with a polygon in-fill processor (PIP) example.
This nontrivial example shows that behavioral decomposition is a
good means of dissecting complex designs into small behaviors and
then composing the overall model hierarchically. However, due to
page number restrictions, we do not provide an ease-of-modeling
comparison for the PIP between the model constructed using our
extensions versus SystemC. We simply state that the decomposed
behaviors are naturally mapped onto the extensions and also that
simulation efficiency is achieved. Hence, aside from the advan-
tages of system level abstraction and well defined simulation se-
mantics, we also demonstrate advantages in simulation efficiency.
We report significant simulation improvement over an analogous
implementation of the PIP in standard SystemC.

1.1 Main contributions
The main contributions of this paper are: (1) rendering current

industry standard SystemC with the ability of heterogeneous be-
havioral hierarchy, (2) providing compositional simulation seman-
tics for heterogeneous behavioral hierarchy so as to preserve the hi-
erarchy during simulation of complex system models without flat-
tening the hierarchy, (3) demonstrating on an interesting example
of a graphics in-fill processor how to model with the extended Sys-
temC, and do simulation with our implementation of the simulation
kernel extension, and (4) showing the benefit of heterogeneous be-
havioral hierarchy in terms of simulation efficiency. In particular
we show up to 50% simulation efficiency enhancement with our
first-cut implementation of the new simulation kernel.

1.2 Organization
The remainder of the paper begins discussing some related work

followed by the necessary background in Sections 2 and 3 respec-
tively. We continue with our introduction of heterogeneous behav-
ioral hierarchy by describing the SDF extension added to the FSM
extension for SystemC. Section 5 discusses a comprehensive exam-
ple of an in-fill processor and Section 6 presents simulation results
compared to the reference implementation of SystemC. We finally
conclude in Section 7.

2. RELATED WORK
There are several projects that employ the idea of MoCs as un-

derlying mechanisms for describing behaviors. Examples of such
design frameworks and languages are Ptolemy II [13], Metropo-
lis [5], YAPI [4] and SystemC-H [11]. Ptolemy II is one of the first
promoters of heterogeneous and hierarchical embedded system de-
signs. Even though Ptolemy II is the only design environment that
supports heterogeneous behavioral hierarchy, it has its own limi-
tations. Firstly, Ptolemy II is geared towards the embedded soft-
ware and software synthesis community and not targeted towards
hardware and SoC designers. Therefore, certain useful semantics
that may be considered essential for hardware modeling may not
be easily expressible in Ptolemy II [12]. From one of the discus-
sions with the Ptolemy developers, we understand that the Starchart
semantics do not allow a run-to-complete such that the particular
FSM refinement continues execution until it reaches its final state
before returning control to its master model. A designer must in-
corporate a concurrency mechanism to allow for this in Ptolemy
II. We see this as an important characteristic useful in treating the
refinement as an abstraction of functionality, which requires direc-
tor extensions in Ptolemy II. Secondly, hardware designers often
need a single SLDL or framework to refine their models from a
high-level description to generally an RTL abstraction. This would
not be possible in a framework such as Ptolemy II. Lastly, there is
a large IP base built using C/C++ that is easier to integrate with
an SLDL built using C/C++ opposed to Ptolemy II. Metropolis
is another project that allows platform based designs that follow
particular MoCs. However, heterogeneous behavioral hierarchy is
not possible in Metropolis because in their heterogeneous compo-
nents require a communication media between the two to transfer
tokens causing them to be at the same level of hierarchy. YAPI is
a C++ run-time library specific for signal processing applications,
thus already limiting its heterogeneity. SystemC-H supports het-
erogeneity but it lacks behavioral hierarchy, not allowing designers
to hierarchically compose designs with varying MoCs.

Before implementing our hierarchical FSM (HFSM) extension
in [12], we studied several semantics for the FSM MoC. Of those,
one of the most well known contributions to concurrent hierar-
chical FSMs is Harel’s Statecharts semantics [6]. Statecharts has
the notion of OR and AND semantics. The OR states refer to
states that have a hierarchically embedded FSM within themselves,
which represent one of its hierarchically embedded states. The
AND states are states that contain multiple hierarchical embedded
FSMs within a state that execute orthogonally. There are numer-
ous variants of the Statecharts semantics due to the lack of strict
execution definition during Harel’s initial presentation, thus further
coupling various concurrency models with Statecharts such as co-
design FSMs. The execution definition describes the manner in
which the transitions are enabled and the states are traversed, along
with firing of the hierarchical states. For this reason, the Ptolemy
II group emphasizes on separating the concurrency MoCs from the
actual FSM semantics by proposing the Starchart (*chart) seman-

tics [1]. Their main contribution regarding HFSMs is in providing
an execution definition for hierarchical FSMs void of any concur-
rency models. The semantic separation between *chart execution
semantics from any other concurrency model motivates us to base
our FSM MoC extension for SystemC using the *chart semantics.
However, there are some fundamental qualities of Harel’s State-
chart such as AND concurrency that we incorporate in our real-
ization of the FSM extension, thus extending the *chart seman-
tics [12].

3. BACKGROUND

Models of Computation. An MoC describes the manner in
which computation and communication occur in that particular MoC
and when interacting with different MoCs [8, 11]. Examples of
MoCs are DE, CT, SDF and FSM.

Synchronous Data Flow MoC. The synchronous data flow
(SDF) MoC is a subset of the data flow paradigm which dictates
that a program may be divided into data path arcs and computation
blocks. The program is then represented as a directed graph con-
necting the computation blocks with the data path arcs. The SDF
MoC further restricts the data flow MoC by constraining the execu-
tion of the computation blocks only when there are sufficient data
samples on the incoming data path arcs. This requires definition
of production and consumption rates for the computation blocks
on each respective data path. Thus, once a computation block has
sufficient samples on its incoming data path (specified by the con-
sumption rate for each arc), then it is fired and a specified number
(production rate for each arc) of samples are expunged on the data
path arcs. Figure 1(c) shows an abstract example of an SDF graph
with the numbers on the head of the arcs as the production rates
and the numbers at the tail as the consumption rates. An attrac-
tive quality of the SDF MoC is that an executable schedule can be
computed during initialization [7, 11].

Finite State Machine MoC. Finite state machines (FSM) are
usually depicted as directed graphs, where the vertices represent
the states and the edges represent the transitions. Every transition
is defined as a guard-action pair. The action is only fired once the
guard evaluates to true. Once the transition is enabled the state of
the FSM moves to the destination state of the enabled transition.
Figure 1(d) shows an example of a television button control FSM.

4. SIMULATION SEMANTICS FOR HETERO-
GENEOUS BEHAVIORAL HIERARCHY

Introducing multi-MoC support for hierarchy is a more difficult
problem than simply hierarchical FSMs. Heterogeneous behavioral
hierarchy requires an understanding of the semantics across the
different MoCs. In addition, the implementation must also have
an elegant solution for adding multi-MoC support for hierarchy.
Our implementation follows an abstract syntax similar to Ptolemy
II’s prefire, fire, postfire. We follow a similar approach
where we define prepare, precondition, execute, post-
condition and cleanup. The prepare member function ini-
tializes state variables and the executable entity, respectively. One
iteration is defined by one invocation of precondition,
execute and postcondition, in that order. The cleanup’s
responsibility is in releasing allocated resources. The prepare
and cleanup member functions are only invoked once during
initialization and then termination of the executable entity, respec-
tively. For example, the prepare of the sdf model responsible

(a) BGL graph library (b) FSM library

(c) SDF library (d) Heterogeneous Hierarchy

Figure 2: Class diagrams

{sdf model::prepare()}
Initially: S = ∅ {List of firing order with SDF block objects}
Initially: B �= ∅ {List with SDF block objects}

for all bl ∈ B do
bl prepare(bl) {Invoke prepare on every refinement in
block}

end for
compute schedule(S) {Store computed schedule in S}
return true

{sdf model::precondition()}
return true

{sdf model::execute()}
Initially: S �= ∅

for all bl ∈ S do
if sdf ref(bl) then

iterate sdf ref(bl) {Invoke
iterate on every SDF refine-
ment}

end if
if fsm ref(bl) then

iterate fsm ref(bl) {Invoke
iterate on every FSM refine-
ment}

end if
execute block actions(bl);

end for
return true

{sdf model::postcondition()}
return true

{sdf model::cleanup()}
clean up()
return true

{iterate sdf ref(E)}
R = get all sdf ref(E)
for all r ∈ R do

if run to complete(r) then
one iterate(r)

end if
end for

Figure 3: Simulation algorithm: Starting from a Heterogeneous Hierarchical SDF model

for computing the schedule in Figure 3 only executes once, after
which iterations of the entity are performed. Every executable en-
tity in our implementation follows this approach. This approach
allows us to implement heterogeneous hierarchy elegantly. For the
SDF and FSM model entities, we show the algorithm employed in
enabling heterogeneous hierarchy in Figure 3 and Figure 4. Partic-
ularly note the underlined operations because these are responsible
for giving control to a refinement’s respective simulation kernel.
For example, in Figure 3 the call to iterate fsm ref() per-
forms one iteration of every refinement and its refinements for that
one SDF block by giving control to the respective simulation con-
trol, executing one iteration and then returning control back to bl.

This approach used in these algorithms is similar to Ptolemy II’s
in the manner in which control is transferred from one simulation
kernel to another (referred to as directors in Ptolemy II). The one
distinguishing factor is the addition of orthogonal FSMs and the
run-to-complete FSMs.

Integrating extensions with SystemC. Our implementation
of the extensions do not incur any changes to SystemC’s reference
implementation and we employ the same mechanism for integrat-
ing it with the DE scheduler as proposed in [10]. The intuition is
to treat SystemC’s scheduler as the master kernel that executes the
respective extended kernels. The basic idea is to wrap a model con-
structed using the extensions in any SystemC-based process and in-

voking the trigger() of that MoC’s model. We understand that
there are several limitations when integrating using this approach.
The foremost limitation is that if a refinement using the extension
MoC contains DE component in it, then there is an overlap of the
hierarchy in that the DE components will be visible to the master
scheduler due to the flattening of the hierarchy. Another difficulty
is that SystemC follows a singleton design pattern making it impos-
sible without alterations to preserve behavioral hierarchy for simu-
lation. However, we reserve these detailed analysis for our future
work and present our extensions as libraries. The FSM and SDF ex-
tensions are linked into one library such that additional extensions
can also be easily integrated into the hierarchy enabled extensions.
The only dependency our library has is that of the Boost Graph
Library available for free at [3]. Once BGL is installed, the exten-
sion’s source can be compiled with any C++ compiler and linked
to existing SystemC code by simply linking with the libsch.a
library.

4.1 Implementing Heterogeneous Behavioral
Hierarchy

Graph Representation. The first task in implementing any of
these MoCs is their internal representation, which we represent us-
ing directed graphs. We implement our graph library using the
Boost Graph Library (BGL) [3] and reuse this graph library for

{fsm model::prepare()}
Initially: ST �= ∅ {List of state objects}
Initially: TR �= ∅ {List of transition objects}
Initially: initST �= ∅ {Initial state}
Initially: finalST {Final state}
Initially: currST = initST {Current state}

if initST = finalST then
return

end if
for all st ∈ ST, tr ∈ TR do

st prepare(st)
tr prepare(tr)

end for
return true

{fsm model::precondition()}
return true

{fsm model::execute()}
Initially: TR �= ∅ {List of transition objects}
Initially: currST �= ∅ {Current state}

tr = get enabled tr(TR)
if type(tr) = preemptive then

iterate ref(tr)
return true

end if
if fsm ref(currST) then

iterate fsm ref(currST)
end if
if sdf ref(currST) then

iterate sdf ref(currST)
end if
if type(tr) = nonpreemptive then

iterate ref(tr)
end if
return true

{fsm model::postcondition()}
Initially: tr {Enabled transition}
Initially: currST {Current state}

execute commit actions(tr)
currST = next state(tr)
if reset(tr) then

st reset(curST)
end if
return true

{fsm model::cleanup()}
clean up()
return true

{fsm model::iterate ref(R)}
if fsm ref(R) then

iterate fsm ref(R)
end if
if sdf ref(R) then

iterate sdf ref(R)
end if
execute choice actions(R)

Figure 4: Simulation algorithm: Starting from a Heterogeneous Hierarchical FSM model

Figure 5: Behavioral decomposition of in-fill processor

the FSM and SDF MoCs. For enabling hierarchy, it is crucial that
the graph infrastructure supports hierarchical graphs. Figure 2(a)
shows the class diagram for the generic graph library.

Enabling SystemC with Hierarchical FSMs. Figure 2(b)
shows our representation of states and transitions in the fsm state
and fsm transition classes, each inheriting from the bgl ver-
tex and bgl edge classes, respectively. Likewise, the fsm gr-
aph class inherits from the moc graph class and the relationship
between fsm state and fsm transition is of multiple con-
tainment. The fsm model class inherits the fsm graph class
signifying that one instance of the fsm model models one FSM.
This is conveniently designed to allow FSM hierarchy within ei-
ther states or transitions, noticeable by the relationship between the
fsm state and fsm transition classes and the fsm model
class. The multiple containment relationship shows that there can
be more than one instance of fsm model embedded within either
a state or transition. The role of the fsm director is to imple-
ment the execution definitions for that particular MoC. In essence,
it is the simulation kernel responsible for simulating that particular
FSM.

Enabling SystemC with Hierarchical SDFs & FSMs.
The implementation of the SDF MoC once again takes advantage
of the graph library and follows a similar approach as shown for hi-
erarchical FSMs. Figure 2(c) shows the class diagram for the SDF
library. The sdf block class represents the computation block,
which is connected by sdf edges. The sdf graph class real-
izes the graph structure for the SDF, but in order to allow for hierar-
chy, we derive the sdf model class. This sdf model class has
a multiple containment relationship with the sdf block class to
show that hierarchical SDF models can be embedded within SDF

blocks. However, this is not the case with sdf edges because in
SDF they represent FIFOs and all computation is modeled in the
SDF blocks.

Enabling heterogeneous hierarchy between SDF and FSM mod-
els is shown using snippets of the class diagram in Figure 2(d).
The important relationships to notice are again of multiple contain-
ment between the fsm state and fsm transition, and that
of sdf model, as well as the relationship between sdf block
and fsm model. This relationship suggests that an FSM state or
transition can contain SDF models within itself. Likewise, an SDF
block can have hierarchical FSMs embedded within itself. The cor-
responding execution definitions and semantics are added in the
MoC’s respective directors.

5. EXAMPLE OF POLYGON IN-FILL PRO-
CESSOR

This example shown in Figure 5 implements a variation of the
polygon in-fill processor (PIP) from [2], which is commonly used
for drawing polygons on the screen in a raster-based display sys-
tem. The PIP is a good example of a heterogeneous design due to
the various control machine and dataflow components it contains
within itself. An example output of the in-fill processor plotted
using Matlab is shown in Figure 6(a).

The PIP is a heterogeneous system composed of five behavioral
components. Three of the components follow the FSM MoC and
the other two adhere to the SDF MoC. The master.FSM is the
master controller which constitutes of the init, inpt and hrtr
states. The transitions between these states are guard/action pairs,
which we annotate by a letter from the alphabet such as a, b,
c, d, States inpt and hrtr are both refined with SDF
sub-systems.. Transition d has an FSM refinement embedded as a
run-to-complete. Similarly, d.FSM has three states includ-

−2 0 2 4 6 8 10 12
0

2

4

6

8

10

12

x pixel ordinate

y
pi

xe
l o

rd
in

at
e

(a) In-fill processor output

Pixels SC(s) SCH(s) %Imp.
102 0.01 0.01 0
502 0.03 0.03 11
1002 0.08 0.07 16
1502 0.20 0.12 40
2002 0.37 0.19 49
2562 0.58 0.3 48

(b) Table showing simulation times
1 2 3 4 5 6

x 10
4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Pixel count

T
im

e
in

 s
ec

on
ds

SystemC

Hierarchy extension

40

49

48

(c) Simulation results for in-fill
processor

Figure 6: Polygon In-fill processor results

ing the finl state, to indicate that one iteration of the FSM is
complete. State comp is refined with a run-to-complete FSM
that computes Bresenham’s line algorithm. Note that Figure 5 de-
scribes our implementation at a higher level of abstraction with-
out specifics on the transition guards, production and consumption
rates, or the behavior interfaces and behavior tunn-
els used to transport data within and across the components.

The user input is modeled in the inpt state as an SDF refine-
ment input.SDF. The line computation for the four vertices oc-
curs in transition d with d.FSM responsible for computing lines
for each pair of coordinates and compute.FSM computing Bre-
senham’s line. The hrtr state performs the horizontal trace using
an SDF refinement hrtr.SDF.

6. RESULTS
We conducted simulation experiments for the in-fill processor

example by implementing an optimized SystemC (SC METHOD)
based version of the in-fill processor and compared the execution
times between the two models. Figure 6(c) shows the graph com-
paring the times taken to execute the models in both SystemC and
our heterogeneous hierarchical enabled versions with varying pixel
counts (the number of pixels shaded). Figure 4 shows the tabu-
lated values shown on the graph. We see that our version out-
performs the SystemC model by approximately 50% (the numbers
present on the horizontal line between two of the data points show
the percentage improvement). However, the performance improve-
ment is not linear as can be seen by the results for the lower pixel
count. This occurs because our extension for the SDF MoC re-
quires static scheduling during initialization, which is computation-
ally intense. On the other hand, SystemC’s simulation kernel uses
dynamic scheduling through the use of events, hence, not suffering
from this static scheduling overhead. This overhead of schedul-
ing outweighs the actual computation of the components for a low
pixel count. However, when we increase the pixel count, we see
that SystemC’s execution time deteriorates whereas our extension’s
simulation time improves.

7. CONCLUSION
In this paper we demonstrate how to design and implement ex-

tensions to SystemC in order to endow it with heterogeneous be-
havioral hierarchy. We show this with the addition of the hier-
archical SDF MoC alongside the hierarchical FSM MoC. Addi-
tion of multi-MoC support for hierarchy is non-trivial and requires
defining and understanding hierarchically compositional semantics
across MoCs. We present our design and algorithms implementing
the compositional simulation semantics which would enable Sys-
temC CAD developers to implement these extensions. However,
the formalization of the semantics is a subject of another paper. We

use the PIP example to show a significant increase in simulation
performance due to the preservation of behavioral hierarchy during
simulation. Our future work entails addition of other MoC encap-
sulations in the hierarchy, as well as verification techniques that
exploit the hierarchy. We also plan to release our implementation,
as well as users guide on how to model heterogeneous systems with
behavioral hierarchy to simplify designing complex embedded sys-
tems while gaining simulation speed as well.

8. REFERENCES
[1] A. Girault and B. Lee and and E. A. Lee. Hierarchical Finite State

Machines with Multiple Concurrency Models. In IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
volume 18, pages 742–760, 1999.

[2] Reinaldo A. Bergamaschi. The Development of a High-Level
Synthesis System for Concurrent VLSI Systems. PhD thesis,
University of Southampton, 1989.

[3] Boost. Boost graph library. Website: http://www.boost.org.
[4] E. A. de Kock, G. Essink, W. J. M. Smits, P. van der Wolf, J. -Y.

Brunel, W. M. Kruijtzer, P. Lieverse and K. A. Vissers. YAPI:
Application Modeling for Signal Processing Systems. In In the
proceedings of Design Automation Conference 2000, 2000.

[5] Metropolis Group. Metropolis: Design environment for
heterogeneous systems. Website:
http://embedded.eecs.berkeley.edu/metropolis/index.html.

[6] D. Harel. Statecharts: A visual formalism for complex systems. In
Scientific Computing Program, volume 8, pages 231–274, 1987.

[7] E. A. Lee and D. G. Messerschmitt. Static Scheduling of
Synchronous Data Flow Programs for Digital Signal Processing. In
In Proceedings of IEEE Transactions on Computers, volume Vol.
C-36 of NO. 1, 1987.

[8] Edward A. Lee and Alberto L. Sangiovanni-Vincentelli. Comparing
Models of Computation. In In Proceedings of the International
Conference on Computer-Aided Design (ICCAD), pages 234–241.
IEEE Computer Society, 1996.

[9] OCI. SystemC. Website: http://www.systemc.org.
[10] H. D. Patel and S. K. Shukla. SystemC Kernel Extensions for

Heterogeneous System Modeling. Kluwer Academic Publishers,
2004.

[11] H. D. Patel and S. K. Shukla. Towards a heterogeneous simulation
kernel for system level models: A systemc kernel for synchronous
data flow models. In IEEE Transactions in Computer-Aided Design,
volume 24, August 2005.

[12] H. D. Patel and S. K. Shukla. Towards behavioral hierarchy
extensions for systemc. In Forum on Design and Specification
Languages (FDL ’05), 2005.

[13] Ptolemy Group. Ptolemy II Website.
http://ptolemy.eecs.berkeley.edu/ptolemyII/.

[14] SPECC. SpecC. Website: http://www.ics.uci.edu/specc/.
[15] SystemVerilog. System Verilog. Website:

http://www.systemverilog.org/.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

