
A Systematic IP and Bus Subsystem Modeling for Platform-Based System Design

Junhyung Um, Woo-Cheol Kwon, Sungpack Hong, Young-Taek Kim, Kyu-Myung Choi,
Jeong-Taek Kong, Soo-Kwan Eo, and Taewhan Kim*

CAE Center, SoC R&D, System LSI Division, Samsung Electronics, Korea
*Seoul National University, Seoul, Korea

Abstract
The topic on platform-based system modeling has

received a great deal of attention today. One of the
important tasks that significantly affect the effectiveness
and efficiency of the system modeling is the modeling of
IP components and communication between IPs. To be
effective, it is generally accepted that the system modeling
should be performed in two steps; In the first step, a fast
but some inaccurate system modeling is considered to
facilitate the simultaneous development of software and
hardware. The second step then refines the models of the
software and hardware blocks (i.e., IPs) to increase the
simulation accuracy for the system performance analysis.
Here, one critical factor required for a successful system
modeling is a systematic modeling of the IP blocks and
bus subsystem connecting the IPs. In this respect, this
work addresses the problem of systematic modeling of the
IPs and bus subsystem in different levels of refinements.
In the experiments, we found that by applying our
proposed IP and bus modeling methods to the MPEG-4
application, we are able to achieve 4x performance
improvement and at the same time, reduce the software
development time by 35%, compared to that by
conventional modeling methods.

1. Introduction

Reducing the time-to-market in the presence of
exponentially increasing design complexity has become a
critical consideration in SoC (system-on-chip) design.
However, this problem presently has not been solved by
traditional (e.g., ASIC) design methodologies because
they are basically based on low level design abstraction,
which is appropriate for simple designs. New research
activities around this issue have introduced the concepts
of design reuse and platform-based design methodology
[1-3]. Virtual platform [4, 5] (or highly abstracted system
model) based design methodology, which captures the
concept of the platform-based design approach, has
recently been gaining interest and recognition. The system
modeling for large scale designs is (ideally) performed in
two steps; In the first step, a fast, but sacrificing
simulation accuracy, system modeling is performed to

allow a concurrent development of software and hardware.
The second step then refines the models of the software
and hardware blocks obtained in the first step to increase
the simulation accuracy for the system performance
analysis. Here, one critical factor required for a successful
system modeling is a systematic modeling of the IP blocks
and bus subsystem since the different levels of abstraction
require a different contents of IP blocks and bus
subsystems. Consequently, a systematic modeling of the
IP blocks and bus subsystem connecting the IPs is very
important to reduce the design time as well as to increase
the system performance.

There are many works related to virtual platform design
methodology. For performance analysis and architecture
exploration, the work in [9-12] presented the design
approaches to find an optimal communication architecture
focusing on the IP modeling method in the transaction-
level and an exploration strategy of various
communication architecture; The work in [16, 19-21]
suggested several methods to adapt transaction-level
modeling for architecture exploration with high simulation
speed. Furthermore, several works extended the scope of
the virtual platform to the embedded SW design in
conjunction with hardware design. The work in [13]
proposed a HW/SW co-verification method based on the
integration of a C/C++ simulator and FPGA simulator,
and the work in [14] proposed a parameterizable HW/SW
platform that can be customized for the rapid prototyping
of code compression. However, the previous works have
not address the issue of systematic IP component and bus
subsystem modeling, which is an essential part to be
solved, especially for modeling and validating large scale
SoC applications.

We developed a virtual platform to support our
proposed various levels of modeling of IPs and bus
subsystem. As will be discussed in the case study, we
applied our modeling methods to a complex mobile
application that includes CPU, DSP, and more than 60
masters and slaves connected through a multi-layer bus
system, showing that the simulation speed is more than
one thousand times faster than that of using conventional
RTL design with over 90% timing accuracy compared to
the FPGA board.

3-9810801-0-6/DATE06 © 2006 EDAA

Our virtual platform-based design, called ViP, is a

design approach that emphasizes the systematic IP reuse
for developing complex products based upon platforms
and compatible hardware and software. The main features
of our virtual platform are the followings:

(1) ViP is modeled at the transaction-level (TL) [6-8]
(these models are developed using SystemC or C++) and,
thus, offers a very high simulation speed with reasonable
cycle accuracy.
(2) Architecture exploration and software development
can happen early in the design process.
(3) Software designers can prepare fully-optimized and
error-minimized software before the development of RTL
code.

2. IP Modeling and Verification

Code reusability: We separate the functional and
communication parts of each IP model to achieve
systematic code reusability, as shown in Fig. 1. The main
functional behavior is described in the core block while
communication is totally delegated to a dedicated routine
called “the communication handler,” which is prepared for
various communication schemes with a unified
programming interface. Therefore, all the IPs use the
unified bus interface scheme, and this enables an easy
adaptation to possible changes in the environment, which
include a system bus or even a whole new simulation
environment.

��������
�	
� ��������

��
����

�	����
���

��������
��
����

�	����
���

��������
��
����

�	����
���

�	������	�����
��������	����������

��	
�������

��������	����
�	����

������� ������� �������	

 ������

!���
�	��

��������	����
�	
�

Fig. 1: IP modeling for reusability and productivity

Classification of transaction-level IP models: In our
modeling procedure, IPs are developed according to the
target of the whole ViP. If the goal of the project is fully
satisfied by a function-accurate ViP, we use function-
accurate IPs for that system. On the other hand, if the
target requires cycle accuracy, we make all the IPs that
will be integrated to the system as cycle accurate models.
To support these IP modeling in the degree selection and
development planning of the IP creation procedure, here
we categorize IP models, as shown in Table 1, listing the
features and the typical application areas for each TL
model types.

SW development

TL2

TL1

TL0

Top down
Design

Parametric function delay (input-to-output delay).
Strict communication protocol delay.

Parameterized
transaction

model

Architecture
Analysis

Internal structures are modeled strictly.
Aiming for cycle and pin accuracy.

Cycle accurate
model

Functional description wrapped into a model.
Delays for function and even communication are
neglected. Fast to simulate, easy to deploy.

Functional
Model

Application AreaFeaturesDescription

Table 1 Level of IP modeling

TL0 model aims for high simulation speed and early

availability for SW development. In order to meet these
criteria, we modeled IPs as function-accurate models and
also zero-delay transactions for all communications. TL1
model has parameterized functional cycle delays suitable
for top-down design flow. Changing delay parameters
under architecture exploration gives more chances for
retailing performance budget in the early design stage.
Note that cycle delays for communication are strictly kept
in this level. TL2 model reflects the structural details of
the target IP, especially for bottom-up design/verification
flow. Keeping micro-architectural information enables the
establishment of full cycle-accuracy and even pin-
accuracy. Even though this may cause a simulation
performance degradation, since the bottleneck of the total
simulation speed is usually the slowest model, some key
components, such as memory controller and H.264 in
performance analysis should be modeled as TL2.

I/O interface block modeling: Our modeling strategy to
enhance simulation speed is to perform detailed modeling
for analysis of the crucial parts only. Since the internal
structure of the I/O interface blocks usually has little
effect on the analysis result, we model I/O IPs as DMAs,
which perform the same in/out activities with related HW
IPs. In view of the whole system, since IP models created
by our method produce the same results, our modeling
strategy is sufficient for system analysis. However, if we
want to optimize or obtain quantitative analysis results of
the I/O IPs themselves, we should create a model on a
more detailed level. Furthermore, we integrate the
resources of the host PC directly in our ViP environment
to provide more possible usages. For example, the image
data stored in the LCD module of ViP can be displayed on
the monitor of host PC, and moreover, we can connect
UART of the ViP to the UART of the host PC so that the
various legacy software using UART can still be applied
without any modification. The IP model itself should be
verified against specifications or the existing HW IP. We
define a three-step IP verification flow as follows.

(i) Unit testing: In this step, functional verification is
sufficient for the TL0 models, while timing verification is
also required for the TL1 and TL2 models. It is relatively
easy to write test input vectors for transaction level
models, but when the RTL test benches already exist,

instead of rewriting them in TL, a co-simulation based
approach is preferable [18]. This requires a transaction-to-
pin conversion routine for a communication handler.

(ii) Verification of IPs integrated with a basic subsystem:
The subsystem consists of a CPU, a basic bus system,
including functional memory and a bus, and an interrupt
controller. We mainly focus on the verification of the
interrupt controlling scheme, SFR behavior, and DMA
operations between the IP and memory. We create simple
software to run on the CPU and check the above behavior
using the software.

(iii) Full ViP verification: All developed IPs are
integrated and verified together. This step will be
described in section 5

3. Bus Subsystem Modeling

There are several works related to bus subsystem
modeling. The work in [16, 17] intensively addressed the
general modeling issues related to the communication
architecture in the transaction-level. In [15], AHB and
APB bus of AMBA2.0 were modeled as TLM using
SystemC2.0 language. They described how to raise the
abstraction-level to achieve higher simulation speed. In
[16], a new abstraction level called Cycle Count Accurate
at Transaction Boundaries (CCATB) was introduced.
CCATB is placed in between the transaction level and bus
cycle accurate level to trade off simulation speed and
cycle accuracy. The authors modeled AMBA AHB and
AXI at CCATB and a showed simulation speed
improvement over the pin-accurate SystemC model, called
AHB CLI, by 1.5 times. However, they did not mention
the cycle accuracy, which can be sacrificed by hiding
some details in higher abstraction-levels, so it was not
possible to understand the trade-off between simulation
speed and cycle accuracy.

Re-definition of Protocol
in Transaction-level
Matching Protocols
between TL and RTL

Behavior Description at
Transaction Port

Function Description in
Bus Internals /

Memory Controller
Design of Multi-layer

Components

Insertion
of

Profiling
Features

Assertion
of

Warning /
Error

Conditions

Optional Stage
when
translation

Platform Integration

 Fig. 2: Flow of bus architecture design

Our virtual platform is required to have a high (more

than 90%) cycle accuracy for the entire system with high

speed, which means that bus cycle accuracy should be
exactly the same as the specification or legacy RTL bus
system. Having these necessities in mind, to increase the
simulation speed, we invent a method of systematic multi-
step transaction modeling. Fig.2 shows our transaction-
level modeling procedure. To model bus architecture at
the transaction-level, the AHB protocol needs to be
redefined as a transaction-level protocol. Bus protocol in a
design specification is usually described at the signal level,
so it is necessary to map signal-level protocol into TL-
level protocol, which is performed by transaction level
ports (typically, transaction level ports are implemented as
variables or functions). Table 2 is a mapping table of
AHB. The first and third columns list the signals of AHB,
and the second and fourth columns represent the
corresponding variable or function of each transaction-
level port.

ctrl[ACC] [3:1]

ctrl[ACC] [0]

read(addr, … , …) /
write(addr, … , …)

return value of
checkForGrant()

requestAccess()

global

global

AHB Transaction

HBURST[3:0]

HLOCK

HADDR[31:0]

HGRANT

HBURSREQ

HRESET

HCLK

AHB RTL

ctrl[ACC] [9:6]HPROT[3:0]

ctrl[ACC] [5:4]HTRANS[1:0]

ctrl[ACC] [12:10]HSIZE[2:0]

read() or write() call respectivelyHWRITE

return value of read() or write()HREADY

read(…, *data, …)HRDATA[31:0]

write(…, *data, …)HWDATA[31:0]

AHB TransactionAHB RTL

 Table 2 Signal to transaction-level port mapping for AHB

The next step is to model the behavior of each
transaction-level port. Based on the definitions in Table 2,
the behavior of each transaction-level port was modeled
according to each burstX transaction scheme. Fig. 3
illustrates single transaction in AHB protocol. The
procedure of sending “HBUSREQ” (bus request signal)
and receiving “HGRANT” (bus grant signal) which is
performed by RTL master can be represented as the
following. TL-master check bus grant by
“checkforgrant()” function call and if the master cannot
access bus grant, it sends bus request by “requestAcess”
function call. Moreover, the procedure of sending an
address, checking hready, and data read can be executed
by “read(addr, *data, *ctrl)” function call. In this
procedure, the TL-model checks hready by the return
value of “read()“ function.

After designing the behavior of transaction-level ports,
internal functions of the arbiter were implemented. The
internal function of AHB bus delivers the request from the
master ports after performing arbitration at every clock
cycle. Our AHB protocol supports a fixed priority and
round-robin arbitration algorithm, and we can select one
of them by the SFR setting.

Our modeling strategy to increase simulation speed is to
perform detailed modeling for analysis crucial parts only.
As for the memory subsystem, memory is modeled as a

zero-delay functional model, but we model the memory
controller to reflect accurate latency at the bus boundary.
That is, we categorized the pattern of the access and burst
type and gave a wait cycle so that the data movements
between the bus and the memory controller could satisfy
the cycle accuracy. This is valid if the usage of memory
subsystem is limited to give an accurate bus access pattern
to the whole system. On the other hand, if the main target
of the analysis is memory structure itself, memory also
should be modeled in a more detailed way.

In a complex system, for the bus system efficiency, we
use multi-layer structure to distribute bus traffic and
minimize the bus access wait of each master. In addition,
to enhance the performance of memory access, we connect
number of buses to the memory using a bus matrix and set
the memory map to support concurrent memory bank
accesses. We also modeled these features and integrated
them into our bus subsystem.

RT
Level

Transaction
Level

��� ����� � 	
 ��
 ����

�������������

�����������

���������

����������

���������

��� ����� � 	
 ��
 ����
!�" � !�# $% � �&� ���
 ' (�)��*)��*)��*)��
� �
 +�� �,	
 ��
 +	 %�-)�� ������. ��� /&01/�01/&0
� � 2�+ ��	
 � ! ! ��	 	�' (3�

� � ����' ����� (% ��4&� �
 �' ������ (��5*��56��5
� �����' ����
 ��(% ��4�� �
 ��' ���
 �(��5*��5

� �
 +�� �,	
 �
 +	 %�- � ����� % ��4�� �
 � 4����
 ' �� 4&���
 ' ����� (74&���
 ' ���
 �(

8�������� �����9�����:�����;�������=< ����� �>< �������

��5

��5

address phase data phase

Fig. 3: Single transaction

4. Case Study: MPEG-4 Codec

We tested our proposed system modeling and
verification methodology to a contemporary mobile
design to illustrate how our methodology with a
systematic IP and bus subsystem modeling influences the
real world SoC design process. The effectiveness of the
proposed modeling and verification methods is assessed
by checking the capability of the performance analysis and
SW development for multi-core designs.

Capability of performance analysis: We analyzed the
performance of MPEG-4 codec using a cycle accurate ViP.
Performance was measured in terms of clock speed. Our
main considerations are: (1) comparing previously
developed MPEG-4 HW IPs with our enhanced ones; (2)
locating parts of software to improvement through
systematic quantitative analysis; (3) optimizing the
performance of software.

To compare the previous and current MPEG-4 HW IPs,
a general MPEG-4 video reference SW, 11 I frames, and 6
P frames with Akiyo video sequences were used. Fig. 4
shows the flow diagram of the MPEG-4 video encoder.
FIMV1.0/FIMV2.0 indicates the previous/current MPEG-4
hardware IPs. We created virtual platforms for both cases.

Table 3 summarizes the cycle count ratio. We used the
execution cycle count of ME as a baseline. From the results,
we can see that the next derivative design greatly
outperforms the current design, and according to a
quantitative result, we decided to adopt next derivative.
The performance improvement is mainly caused from the
use of VLC and a direct data pass from DCTQ output to
VLC in Fig.5. Then, we are interested in locating some
parts of software for performance optimization. We
performed profile analysis in a deeper level, and a
summary of results is shown in Table 4. From the results,
we were able to find the software places to improve, and in
fact, we achieved 4x performance improvement.

Initialization

ME

MC DCTQ

VLC

Making Bitstream

Intra ?

Yes

No

S/W Part

H/W Part
FIMV1.0: S/W
FIMV2.0: S/W & H/W

Fimv2.0
DCTQ/VLC operate at

the same time
Fimv 1.0

DCTQ/VLC
separately operate

Fig. 4: Flow of MPEG-4 video encoder

8.98
(50.0%)

1.75
(9.7%)

1.58
(8.8%)

1
(5.6%)

4.52
(25.3%)

FIMV2.0
(Optimized)

59.5
(85.5%)

3.01
(4.3%)

1.58
(2.3%)

1
(1.5%)

4.52
(7%)

FIMV1.0
(Previous)

VLC &
Make

Bitstream
DCTQMCMEInitializationMPEG4 HW

 Table 3: The cycle count ratio of FIMV1.0/FIMV2.0

- Motion vector VLC
- Writing Bitstream (Motion vector to
VLC and DCTQ VLC to HW)

50Making Bitstream

SW Part : 86.7%, HW Part : 13.3%

Bottleneck(%)OperationFrame

Writing bitstream (DCTQ to Memory)18Making Bitstream

- Parameter Initialization
- Non-necessary parameter
assignment
- Non-necessary memory allocation

25.2Initialization

5.6
8.8
9.7

ME
MC
DCTQ/VLC

SW Part : 75.2%, HW Part : 24.8%

P
frame

13.3DCTQ/VLC

- Parameter Initialization
- Non-necessary parameter
assignment
- Non-necessary memory allocation

68.7Initialization

I
frame

 Table 4: Profile analysis – FIMV2.0 I/P Frame

SW development in multi-core design: We developed
an audio software using virtual platform and shortened the
software development time by 35%. Our target audio
software runs on a CPU and a DSP subsystems. The CPU
does most of control operations, while the DSP’s job is to
decode the audio. Short messages (commands and
replies) are sent via communication box registers, and
large data transfers are done through DMA. The most
time-consuming part in our modeling process was the

verification of the communication part between the CPU
and DSP subsystem. In the verification process, first we
tested CPU subsystem, which consists of the CPU core,
dummy memory, and the basic bus subsystem; that is, we
only integrated a minimal set of audio-related IPs. Using
simple software ran on the CPU, we checked the interrupt
scheme and basic data movement through DMA. Then, to
test the DSP subsystem alone, we used a self-checking
program to verify the interface between peripherals. These
tests gave us a clear indication of the functionality of the
peripherals. The self-checking tests were “standalone.”
These are DSP programs that do not require external
stimuli. After testing two subsystems separately, we
checked the interface between two subsystems using
simple Inter-Processor Communication (IPC) software.
The problematic parts were message handling IPs.
Actually, we spend most of the time verifying these parts.
As for the final functionality test, we ran public-domain
audio decoding software to check the entire functionality.
We could not hear the audio sound directly because
simulation speed was too slow for real time audio
processing. Instead, we saved decoded PCM audio data to
a file and converted it to a wave file using an audio
converter. Finally, to develop a cycle accurate model, we
refined the model, and Table 5 shows a cycle count
comparison between the functional and cycle accurate
models. The comparison indicates that the functional
model significantly reduces the simulation time.

35,748,518 cycles7,699,730 cyclesTotal Cycle Count

CPU subsystem + DSP subsystem
SW : Test Audio Software

Simulation
Environment

ViP
(for Analysis)

ViP
(for SW)

 Table 5: Results for cycle count comparison

5. Conclusions

In this paper, we proposed a systematic IP component
and bus subsystem modeling methodology for practical
platform-based system modeling to target complex and
large scale SoC designs. Our virtual platform (ViP)
integrating the various details of modeling capability of
IPs and bus subsystem makes it possible to prototype, for
example, the SW on a platform running more than 1000
times faster than RTL design and to reduce the overall
design time by starting the SW before the RTL design is
completed. It is also worthwhile to mention that our
system modeling does not aim to replace the FPGA based
verification stage, but aims to shift many issues in earlier
design stages to reduce the design iterations by lowering
the critical issues in later design stages.

Acknowledgment: This work is supported by Samsung
Electronics, and the work of T. Kim is supported by the

Ministry of Science and Technology / Korea Science and
Engineering Foundation through the Advanced
Information Technology Research Center (AITrc).

References

[1] K. Keutzer, et al., “System-level design: orthogonalization of
concerns and platform-based design”, IEEE TCAD, 2000.

[2] A. Sangiovanni-Vincentelli, et al., “Benefits and challenges for
platform-based design”, DAC, 2004.

[3] G. Smith, “Platform based design: Does it answer the entire
SoC challenge?”, DAC, 2004.

[4] S. Brini, et al., “A flexible virtual platform for computational
and communication architecture exploration of DMT VDLS
modems”, DATE, 2003.

[5] J. Notbauer, et al., "Verification and management of a
multimillion-gate embedded core design”, DATE, 1999.

[6] L. Cai and D. Gajski, “Transaction level modeling: an
overview”, CODES, 2003.

[7] I. Moussa, et al., “Exploring SW performance using SoC
transaction-level modeling”, DAC, 2003.

[8] A.K. Deb, et al., “System design for DSP applications in
transaction level modeling paradigm”, DAC, 2004.

[9] R. Jindal and K. Jain, "Verification of transaction-level
SystemC models using RTL testbenches," in Proc. of First
ACM and IEEE International Conference on Formal Methods
and Models for Co-Design, 2003.

[10] N. Calazans, et. al., "From VHDL register transfer level to
SystemC transaction level modeling: a comparative case
study," in Proc. of 16th Symposium on Integrated Circuits
and Systems Design, 2003.

[11] I. Moussa, et al., "Exploring SW performance using SoC
transaction-level modeling," DATE, 2003

[12] K. Lahiri, et al. “LOTTERYBUS: A new high-performance
communication architecture for system-on-chip designs,”
DAC, 2001

[13] Y. Nakamura, et al., “A fast hardware/software Co-
verification method for System-on-a-Chip by using a C/C++
simulator and FPGA emulator with shared register
communication”, DAC, 2004

[14] H. Lekatsas, et al., ”Coco : A hardware/software platform for
rapid prototyping of code compression technologies”, DAC,
2003

[15] M. Caldari, et. al., “Transaction-Level Models for AMBA
Bus Architecture Using SystemC 2.0”, DATE, 2003

[16] S. Pasricha, et al., "Extending the transaction level modeling
approach for fast communication architecture exploration,"
DAC, 2004.

[17] M. Bombana, F. Bruschi, “SystemC-VHDL co-simulation and
synthesis in the HW domain”, DATE, 2003

[18] A. Sayinta, et al., “A Mixed abstraction level co-simulation
case study using SystemC for System on Chip verification”,
DATE, 2003.

[19] O. Ogawa et al, “A practical approach for bus architecture
optimization at transaction-level”, DATE, 2003

[20] AHB CLI Specification www.arm.com/armtech/ahbcli
[21] Maxsim, AXYS Design Inc.,mhttp://www.axysdesign.com

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

