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Abstract 
The topic on platform-based system modeling has 

received a great deal of attention today.  One of the 
important tasks that significantly affect the effectiveness 
and efficiency of the system modeling is the modeling of 
IP components and communication between IPs. To be 
effective, it is generally accepted that the system modeling 
should be performed in two steps; In the first step, a fast 
but some inaccurate system modeling is considered to 
facilitate the simultaneous development of software and 
hardware. The second step then refines the models of the 
software and hardware blocks (i.e., IPs) to increase the 
simulation accuracy for the system performance analysis. 
Here, one critical factor required for a successful system 
modeling is a systematic modeling of the IP blocks and 
bus subsystem connecting the IPs. In this respect, this 
work addresses the problem of systematic modeling of the 
IPs and bus subsystem in different levels of refinements. 
In the experiments, we found that by applying our 
proposed IP and bus modeling methods to the MPEG-4 
application, we are able to achieve 4x performance 
improvement and at the same time, reduce the software 
development time by 35%, compared to that by 
conventional modeling methods. 
 
1. Introduction 
 

Reducing the time-to-market in the presence of 
exponentially increasing design complexity has become a 
critical consideration in SoC (system-on-chip) design. 
However, this problem presently has not been solved by 
traditional (e.g., ASIC) design methodologies because 
they are basically based on low level design abstraction, 
which is appropriate for simple designs. New research 
activities around this issue have introduced the concepts 
of design reuse and platform-based design methodology 
[1-3]. Virtual platform [4, 5] (or highly abstracted system 
model) based design methodology, which captures the 
concept of the platform-based design approach, has 
recently been gaining interest and recognition. The system 
modeling for large scale designs is (ideally) performed in 
two steps; In the first step, a fast, but sacrificing 
simulation accuracy, system modeling is performed to 

allow a concurrent development of software and hardware. 
The second step then refines the models of the software 
and hardware blocks obtained in the first step to increase 
the simulation accuracy for the system performance 
analysis. Here, one critical factor required for a successful 
system modeling is a systematic modeling of the IP blocks 
and bus subsystem since the different levels of abstraction 
require a different contents of IP blocks and bus 
subsystems. Consequently, a systematic modeling of the 
IP blocks and bus subsystem connecting the IPs is very 
important to reduce the design time as well as to increase 
the system performance.  

There are many works related to virtual platform design 
methodology. For performance analysis and architecture 
exploration, the work in [9-12] presented the  design 
approaches to find an optimal communication architecture 
focusing on the IP modeling method in the transaction-
level and an exploration strategy of various 
communication architecture; The work in [16, 19-21] 
suggested several methods to adapt transaction-level 
modeling for architecture exploration with high simulation 
speed. Furthermore, several works extended the scope of 
the virtual platform to the embedded SW design in 
conjunction with hardware design. The work in [13] 
proposed a HW/SW co-verification method based on the 
integration of a C/C++ simulator and FPGA simulator, 
and the work in [14] proposed a parameterizable HW/SW 
platform that can be customized for the rapid prototyping 
of code compression. However, the previous works have 
not address the issue of systematic IP component and bus 
subsystem modeling, which is an essential part to be 
solved, especially for modeling and validating large scale 
SoC applications. 

We developed a virtual platform to support our 
proposed various levels of modeling of IPs and bus 
subsystem. As will be discussed in the case study, we 
applied our modeling methods to a complex mobile 
application that includes CPU, DSP, and more than 60 
masters and slaves connected through a multi-layer bus 
system, showing that the simulation speed is more than 
one thousand times faster than that of using conventional 
RTL design with over 90% timing accuracy compared to 
the FPGA board. 
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Our virtual platform-based design, called ViP, is a 

design approach that emphasizes the systematic IP reuse 
for developing complex products based upon platforms 
and compatible hardware and software. The main features 
of our virtual platform are the followings: 

 
(1) ViP is modeled at the transaction-level (TL) [6-8] 
(these   models are developed using SystemC or C++) and, 
thus, offers a very high simulation speed with reasonable 
cycle accuracy. 
(2) Architecture exploration and software development 
can happen early in the design process. 
(3) Software designers can prepare fully-optimized and 
error-minimized software before the development of RTL 
code.  
 
2. IP Modeling and Verification 
 
Code reusability:  We separate the functional and 
communication parts of each IP model to achieve 
systematic code reusability, as shown in Fig. 1. The main 
functional behavior is described in the core block while 
communication is totally delegated to a dedicated routine 
called “the communication handler,” which is prepared for 
various communication schemes with a unified 
programming interface. Therefore, all the IPs use the 
unified bus interface scheme, and this enables an easy 
adaptation to possible changes in the environment, which 
include a system bus or even a whole new simulation 
environment. 
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Fig. 1: IP modeling for reusability and productivity 

 
Classification of transaction-level IP models:  In our 
modeling procedure, IPs are developed according to the 
target of the whole ViP. If the goal of the project is fully 
satisfied by a function-accurate ViP, we use function-
accurate IPs for that system. On the other hand, if the 
target requires cycle accuracy, we make all the IPs that 
will be integrated to the system as cycle accurate models. 
To support these IP modeling in the degree selection and 
development planning of the IP creation procedure, here 
we categorize IP models, as shown in Table 1, listing the 
features and the typical application areas for each TL 
model types.  

 

SW development

TL2

TL1

TL0

Top down
Design

Parametric function delay (input-to-output delay).
Strict communication protocol delay.

Parameterized 
transaction 

model

Architecture 
Analysis

Internal structures are modeled strictly.
Aiming for cycle and pin accuracy.

Cycle accurate 
model

Functional description wrapped into a model. 
Delays for function and even communication are 
neglected. Fast to simulate, easy to deploy.

Functional 
Model

Application AreaFeaturesDescription

Table 1 Level of IP modeling 
 
TL0 model aims for high simulation speed and early 

availability for SW development.  In order to meet these 
criteria, we modeled IPs as function-accurate models and 
also zero-delay transactions for all communications. TL1 
model has parameterized functional cycle delays suitable 
for top-down design flow. Changing delay parameters 
under architecture exploration gives more chances for 
retailing performance budget in the early design stage. 
Note that cycle delays for communication are strictly kept 
in this level. TL2 model reflects the structural details of 
the target IP, especially for bottom-up design/verification 
flow. Keeping micro-architectural information enables the 
establishment of full cycle-accuracy and even pin-
accuracy. Even though this may cause a simulation 
performance degradation, since the bottleneck of the total 
simulation speed is usually the slowest model, some key 
components, such as memory controller and H.264 in 
performance analysis should be modeled as TL2. 

 
I/O interface block modeling: Our modeling strategy to 
enhance simulation speed is to perform detailed modeling 
for analysis of the crucial parts only. Since the internal 
structure of the I/O interface blocks usually has little 
effect on the analysis result, we model I/O IPs as DMAs, 
which perform the same in/out activities with related HW 
IPs. In view of the whole system, since IP models created 
by our method produce the same results, our modeling 
strategy is sufficient for system analysis. However, if we 
want to optimize or obtain quantitative analysis results of 
the I/O IPs themselves, we should create a model on a 
more detailed level. Furthermore, we integrate the 
resources of the host PC directly in our ViP environment 
to provide more possible usages. For example, the image 
data stored in the LCD module of ViP can be displayed on 
the monitor of host PC, and moreover, we can connect 
UART of the ViP to the UART of the host PC so that the 
various legacy software using UART can still be applied 
without any modification. The IP model itself should be 
verified against specifications or the existing HW IP. We 
define a three-step IP verification flow as follows. 
 
(i) Unit testing: In this step, functional verification is 
sufficient for the TL0 models, while timing verification is 
also required for the TL1 and TL2 models. It is relatively 
easy to write test input vectors for transaction level 
models, but when the RTL test benches already exist, 



instead of rewriting them in TL, a co-simulation based 
approach is preferable [18]. This requires a transaction-to-
pin conversion routine for a communication handler.  
 
(ii) Verification of IPs integrated with a basic subsystem: 
The subsystem consists of a CPU, a basic bus system, 
including functional memory and a bus, and an interrupt 
controller. We mainly focus on the verification of the 
interrupt controlling scheme, SFR behavior, and DMA 
operations between the IP and memory. We create simple 
software to run on the CPU and check the above behavior 
using the software. 
 
(iii) Full ViP verification: All developed IPs are 
integrated and verified together. This step will be 
described in section 5 
 
3. Bus Subsystem Modeling 
 

There are several works related to bus subsystem 
modeling. The work in [16, 17] intensively addressed   the 
general modeling  issues related to the communication 
architecture in the transaction-level. In [15], AHB and 
APB bus of AMBA2.0 were modeled as TLM using 
SystemC2.0 language. They described how to raise the 
abstraction-level to achieve higher simulation speed. In 
[16], a new abstraction level called Cycle Count Accurate 
at Transaction Boundaries (CCATB) was introduced. 
CCATB is placed in between the transaction level and bus 
cycle accurate level to trade off simulation speed and 
cycle accuracy. The authors modeled AMBA AHB and 
AXI at CCATB and a showed simulation speed 
improvement over the pin-accurate SystemC model, called 
AHB CLI, by 1.5 times. However, they did not mention 
the cycle accuracy, which can be sacrificed by hiding 
some details in higher abstraction-levels, so it was not 
possible to understand the trade-off between simulation 
speed and cycle accuracy. 
 

Re-definition of Protocol
in Transaction-level
Matching Protocols
between TL and RTL

Behavior Description at 
Transaction Port

Function Description in  
Bus Internals / 

Memory Controller
Design of Multi-layer 

Components

Insertion 
of 

Profiling 
Features

Assertion 
of

Warning / 
Error 

Conditions

Optional Stage 
when 
translation

Platform Integration

 Fig. 2: Flow of bus architecture design 
 

 
Our virtual platform is required to have a high (more 

than 90%) cycle accuracy for the entire system with high 

speed, which means that bus cycle accuracy should be 
exactly the same as the specification or legacy RTL bus 
system. Having these necessities in mind, to increase the 
simulation speed, we invent a method of systematic multi-
step transaction modeling. Fig.2 shows our transaction-
level modeling procedure. To model bus architecture at 
the transaction-level, the AHB protocol needs to be 
redefined as a transaction-level protocol. Bus protocol in a 
design specification is usually described at the signal level, 
so it is necessary to map signal-level protocol into TL-
level protocol, which is performed by transaction level 
ports (typically, transaction level ports are implemented as 
variables or functions). Table 2 is a mapping table of 
AHB. The first and third columns list the signals of AHB, 
and the second and fourth columns represent the 
corresponding variable or function of each transaction-
level port. 

 

ctrl[ACC] [3:1]

ctrl[ACC] [0]

read(addr, … , …) / 
write(addr, … , …)

return value of 
checkForGrant()

requestAccess()

global

global

AHB Transaction

HBURST[3:0]

HLOCK

HADDR[31:0]

HGRANT

HBURSREQ

HRESET

HCLK

AHB RTL

ctrl[ACC] [9:6]HPROT[3:0]

ctrl[ACC] [5:4]HTRANS[1:0]

ctrl[ACC] [12:10]HSIZE[2:0]

read() or write() call respectivelyHWRITE

return value of read() or write()HREADY

read(…, *data, …)HRDATA[31:0]

write(…, *data, …)HWDATA[31:0]

AHB TransactionAHB RTL

       Table 2 Signal to transaction-level port mapping for AHB 
 

The next step is to model the behavior of each 
transaction-level port. Based on the definitions in Table 2, 
the behavior of each transaction-level port was modeled 
according to each burstX transaction scheme. Fig. 3 
illustrates single transaction in AHB protocol. The 
procedure of sending “HBUSREQ” (bus request signal) 
and receiving “HGRANT” (bus grant signal) which is 
performed by RTL master can be represented as the 
following. TL-master check bus grant by 
“checkforgrant()” function call and if the master cannot 
access bus grant, it sends bus request by  “requestAcess” 
function call. Moreover, the procedure of sending an 
address, checking hready, and data read can be executed 
by  “read(addr, *data, *ctrl)” function call. In this 
procedure, the TL-model checks hready by the return 
value of  “read()“ function.  

After designing the behavior of transaction-level ports, 
internal functions of the arbiter were implemented. The 
internal function of AHB bus delivers the request from the 
master ports after performing arbitration at every clock 
cycle. Our AHB protocol supports a fixed priority and 
round-robin arbitration algorithm, and we can select one 
of them by the SFR setting. 

Our modeling strategy to increase simulation speed is to 
perform detailed modeling for analysis crucial parts only. 
As for the memory subsystem, memory is modeled as a 



zero-delay functional model, but we model the memory 
controller to reflect accurate latency at the bus boundary. 
That is, we categorized the pattern of the access and burst 
type and gave a wait cycle so that the data movements 
between the bus and the memory controller could satisfy 
the cycle accuracy. This is valid if the usage of memory 
subsystem is limited to give an accurate bus access pattern 
to the whole system. On the other hand, if the main target 
of the analysis is memory structure itself, memory also 
should be modeled in a more detailed way.   

In a complex system, for the bus system efficiency, we 
use multi-layer structure to distribute bus traffic and 
minimize the bus access wait of each master. In addition, 
to enhance the performance of memory access, we connect 
number of buses to the memory using a bus matrix and set 
the memory map to support concurrent memory bank 
accesses. We also modeled these features and integrated 
them into our bus subsystem. 
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4. Case Study: MPEG-4 Codec  
 

We tested our proposed system modeling and 
verification methodology to a contemporary mobile 
design to illustrate how our methodology with a 
systematic IP and bus subsystem modeling influences the 
real world SoC design process. The effectiveness of the 
proposed modeling and verification methods is assessed 
by checking the capability of the performance analysis and 
SW development for multi-core designs.  

 
Capability of performance analysis: We analyzed the 
performance of MPEG-4 codec using a cycle accurate ViP. 
Performance was measured in terms of clock speed. Our 
main considerations are: (1) comparing previously 
developed MPEG-4 HW IPs with our enhanced ones; (2) 
locating parts of  software to improvement through 
systematic quantitative analysis; (3) optimizing the 
performance of software.   

To compare the previous and current MPEG-4 HW IPs, 
a general MPEG-4 video reference SW, 11 I frames, and 6 
P frames with Akiyo video sequences were used. Fig. 4 
shows the flow diagram of the MPEG-4 video encoder. 
FIMV1.0/FIMV2.0 indicates the previous/current MPEG-4 
hardware IPs. We created virtual platforms for both cases. 

Table 3 summarizes the cycle count ratio. We used the 
execution cycle count of ME as a baseline. From the results, 
we can see that the next derivative design greatly 
outperforms the current design, and according to a 
quantitative result, we decided to adopt next derivative.  
The performance improvement is mainly caused from the 
use of VLC and a direct data pass from DCTQ output to 
VLC in Fig.5. Then, we are interested in locating some 
parts of software for performance optimization. We 
performed profile analysis in a deeper level, and a 
summary of results is shown in Table 4. From the results, 
we were able to find the software places to improve, and in 
fact, we achieved  4x performance improvement. 
 

Initialization

ME

MC DCTQ

VLC

Making Bitstream

Intra ?

Yes

No

S/W Part

H/W Part
FIMV1.0: S/W
FIMV2.0: S/W & H/W

Fimv2.0
DCTQ/VLC operate at 

the same time
Fimv 1.0

DCTQ/VLC
separately operate

Fig. 4: Flow of MPEG-4 video encoder 
 

8.98
(50.0%)

1.75
(9.7%)

1.58
(8.8%)

1 
(5.6%)

4.52 
(25.3%)

FIMV2.0
(Optimized)

59.5
(85.5%)

3.01
(4.3%)

1.58
(2.3%)

1 
(1.5%)

4.52 
(7%)

FIMV1.0
(Previous)

VLC &
Make 

Bitstream
DCTQMCMEInitializationMPEG4 HW

 Table 3: The cycle count ratio of FIMV1.0/FIMV2.0 
 

- Motion vector VLC
- Writing Bitstream (Motion vector to 
VLC and DCTQ VLC to HW)

50Making Bitstream

SW Part : 86.7%, HW Part : 13.3%

Bottleneck(%)OperationFrame

Writing bitstream (DCTQ to Memory)18Making Bitstream

- Parameter Initialization
- Non-necessary parameter 
assignment
- Non-necessary memory allocation

25.2Initialization

5.6
8.8
9.7

ME
MC
DCTQ/VLC

SW Part : 75.2%, HW Part : 24.8%

P 
frame

13.3DCTQ/VLC

- Parameter Initialization
- Non-necessary parameter 
assignment
- Non-necessary memory allocation

68.7Initialization

I 
frame

 Table 4: Profile analysis – FIMV2.0 I/P Frame 
 

SW development in multi-core design: We developed 
an audio software using virtual platform and shortened the 
software development time by 35%. Our target audio 
software runs on a CPU and a DSP subsystems. The CPU 
does most of control operations, while the DSP’s job is to 
decode the audio.  Short messages (commands and 
replies) are sent via communication box registers, and 
large data transfers are done through DMA. The most 
time-consuming part in our modeling process was the 



verification of the communication part between the CPU 
and DSP subsystem.  In the verification process, first we 
tested CPU subsystem, which consists of the CPU core, 
dummy memory, and the basic bus subsystem; that is, we 
only integrated a minimal set of audio-related IPs. Using 
simple software ran on the CPU, we checked the interrupt 
scheme and basic data movement through DMA. Then, to 
test the DSP subsystem alone, we used a self-checking 
program to verify the interface between peripherals. These 
tests gave us a clear indication of the functionality of the 
peripherals. The self-checking tests were “standalone.” 
These are DSP programs that do not require external 
stimuli. After testing two subsystems separately, we 
checked the interface between two subsystems using 
simple Inter-Processor Communication (IPC) software. 
The problematic parts were message handling IPs. 
Actually, we spend most of the time verifying these parts. 
As for the final functionality test, we ran public-domain 
audio decoding software to check the entire functionality. 
We could not hear the audio sound directly because 
simulation speed was too slow for real time audio 
processing. Instead, we saved decoded PCM audio data to 
a file and converted it to a wave file using an audio 
converter. Finally, to develop a cycle accurate model, we 
refined the model, and Table 5 shows a cycle count 
comparison between the functional and cycle accurate 
models.  The comparison indicates that the functional 
model significantly reduces the simulation time.  

35,748,518 cycles7,699,730 cyclesTotal Cycle Count

CPU subsystem + DSP subsystem
SW : Test Audio Software

Simulation
Environment

ViP
(for Analysis)

ViP
(for SW)

 Table 5: Results for cycle count comparison 
 
5. Conclusions  
 

In this paper, we proposed a systematic IP component 
and bus subsystem modeling methodology for practical 
platform-based system modeling to target complex and 
large scale SoC designs. Our virtual platform (ViP) 
integrating the various details of modeling capability of 
IPs and bus subsystem makes it possible to prototype, for 
example, the SW on a platform running more than 1000 
times faster than RTL design and to reduce the overall 
design time by starting the SW before the RTL design is 
completed. It is also worthwhile to mention that our 
system modeling does not aim to replace the FPGA based 
verification stage, but aims to shift many issues in earlier 
design stages to reduce the design iterations by lowering 
the critical issues in later design stages. 
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