
Energy Reduction by Workload Adaptation in a Multi-Process Environment ∗

Changjiu Xian
Department of Computer Science

Purdue University
West Lafayette, IN 47907

cjx@cs.purdue.edu

Yung-Hsiang Lu
School of Electrical and Computer Engineering,

Purdue University
West Lafayette, IN 47907

yunglu@purdue.edu

Abstract
Reducing energy consumption is an important issue in

modern computers. Dynamic power management (DPM)
has been extensively studied in recent years. One approach
for DPM is to adjust workloads, such as clustering or elim-
inating requests, as a way to trade-off energy consumption
and quality of services. Previous studies focus on single pro-
cesses. However, when multiple concurrently running pro-
cesses are considered, workload adjustment must be deter-
mined based on the interleaving of the processes’ requests.
When multiple processes share the same hardware compo-
nent, adjusting one process may not save energy. This paper
presents an approach to assign energy responsibility to in-
dividual processes based on how they affect power manage-
ment. The assignment is used to estimate potential energy
reduction by adjusting the processes. We use the estimation
to guide runtime adaptation of workload behavior. Experi-
ments demonstrate that our approach can save more energy
and improve energy efficiency.

1. Introduction
Energy reduction is an important design issue in com-

puter systems (special issue in IEEE Computer Decem-
ber 2003). Many techniques [1] have been proposed in the
last several years. Among these techniques, dynamic power
management (DPM) has been widely studied. DPM saves
energy by shutting down hardware components when they
are idle. Since shutting down and waking up a component
consume energy, only long idle periods can justify such
overhead and obtain energy savings. Many studies focus
on improving the power manager so that it can predict fu-
ture idleness accurately. While improving the power man-
ager can effectively reduce the energy during long idle pe-

∗ This work is supported in part by National Science Foundation Career
CNS-0347466 and Purdue Research Foundation. Any opinions, find-
ings, and conclusions or recommendations are those of the authors and
do not necessarily reflect the views of the sponsors.

ot

t ’

time

(b)
power

(c)

time

t ’’power

t

time

(a)
power

Figure 1. DPM and workload adjustment: (a)
shutdown with a timeout, (b) clustering re-
quests, and (c) removing requests.

riods, a workload without long idle periods provides no op-
portunity for the power manager to save energy. To resolve
this, some studies adjust the workload to create long idle pe-
riods. These studies can be classified into two major cate-
gories: (a) clustering (also called “rescheduling”) programs’
requests [2, 7, 9, 10] and (b) removing requests [5, 6, 11].
These workload techniques often need to trade off perfor-
mance and quality of service or use extra resources such
as memory buffers. Since unused memory banks can be
put into a low-power state [4], using memory for buffer-
ing trades off such opportunities. Thus, the workload tech-
niques should only be applied when substantial energy can
be saved.

A fundamental question has not been fully addressed:
how much energy can possibly be saved by adjusting the
workload? We use Figure 1 to illustrate the concept. In the
figure, each black bar indicates a request (e.g., a network
packet to send or a disk read command). Each gray rectan-
gle means the component (e.g. a network card or a disk) is
idle but ready to serve requests. The component consumes
energy during idleness. The component can be shut down
and consumes no energy. Figure 1(a) shows the original re-
quests and a power manager that shuts down the component
after being idle for to. In Figure 1(b), the requests are clus-
tered so the component can remain shut down (also called
“sleeping”) longer (t′ > t) and save more energy. In Fig-

3-9810801-0-6/DATE06 © 2006 EDAA

r1 r1r1 r1

time

(b)
power time

r2 r1r1 r2 r1 r2r1 (a)
power

Figure 2. (a) The original requests. (b) Only
process 2’s requests are removed.

ure 1(c), two requests are removed and the component can
sleep even longer (t′′ > t′).

Figure 2 extends the concept to two concurrent pro-
cesses, P1 and P2. In this figure, r1 and r2 represent the
requests from P1 and P2, respectively. If all requests from
P2 are removed, as shown in Figure 2(b), the idle periods
are still short because of P1’s requests. This example sug-
gests that the energy reduction by modifying one process is
affected by other processes.

This paper focuses on answering the following two ques-
tions: (a) If the requests from a single process are modified
by either clustering or removing, how much energy can be
saved? (b) When a new process executes or an existing pro-
cess terminates, how should the other processes respond to
obtain more energy savings and better energy efficiency?
The efficiency is defined as the ratio of the amount of work
to the energy consumption. We assign energy responsibility
to individual processes and use the assignments to estimate
the potential energy reduction by adjusting each process.
The estimation of energy reduction is crucial to run-time
adaptation because sufficient energy must be saved to jus-
tify the degraded performance. We implement our method
in Linux and demonstrate substantial improvements in en-
ergy savings and efficiency by providing the estimation to
application programs.

2. Related Work
Some studies have considered adjusting workloads for

power management. Lu et al. [7] order and cluster the tasks
for multiple devices to create long idle periods for power
management. Weissel et al. [10] propose to assign time-
outs to file operations so they can be clustered within the
time constraints. Rong et al. [9] divide power management
into system and component levels and propose clustering re-
quests by modeling them as stochastic processes. Cai et al.
[2] use buffers to cluster accesses to a device. Flinn et al. [5]
reduce the quality of service such as the frame size and res-
olution of video when battery energy is scarce. Zeng et al.
[11] assign an energy budget to processes and a process is
not allowed to run when its budget is consumed. In a multi-
process environment, the energy savings from adjusting one
process can be affected by other processes. Our study pro-
vides guidence to the adjustment by estimating the potential
energy savings when other concurrently running processes
are considered.

We estimate the potential energy savings due to work-
load adjustment based on the processes’ energy responsi-
bilities. PowerScope [6] uses a multimeter to measure the
whole computer’s power consumption and correlates the
measurements to software programs by sampling the pro-
gram counter. Their study provides information about pro-
cedural level energy consumption. Chang et al. [3] conduct
a similar measurement with a special hardware called En-
ergy Counter, which reports when a predefined amount of
energy is consumed. ECOSystem [11] models the energy
consumption of different components individually and as-
signs energy to the processes by monitoring their usage of
individual components. Their study controls processes’ en-
ergy consumption using operating system (OS) resource al-
location. Neugebauer et al. [8] perform similar energy as-
signment in a system called Nemesis OS providing QoS
guarantees. None of these studies examine the relationship
between processes’ energy responsibilities and the poten-
tial energy savings from adjusting the processes. Moreover,
they do not examine how energy sharing in a multi-process
environment influences the effectiveness of workload ad-
justment. Hence, these studies are insufficient for estimat-
ing the energy savings of workload adaptation in a multi-
process environment.

3. Estimating Energy Savings
This section analyzes how energy is consumed in a

multi-process environment and estimates the energy sav-
ing opportunities from adjusting the workload. We divide
energy responsibility between the power manager and the
user processes so the processes’ energy assignments are in-
dependent of specific power management policies. We also
divide energy responsibility among the processes based on
how they affect the effectiveness of dynamic power man-
agement. The assignments are then used to estimate poten-
tial energy savings from changing workload. For simplic-
ity, we first assume three power states: busy (serving re-
quests from processes), sleeping (requests have to wait for
the component to wake up), and idle (not serving requests
but ready to serve without delay). We extend our method to
multiple sleeping states in Section 3.3.

3.1. Energy Responsibility and Sharing
To determine the opportunity of energy reduction from

improving the power manager or adjusting processes, we
assign the energy consumption that can be reduced by im-
proving the shutdown accuracy to the power manager and
assign the other energy to the user processes. The energy
assigned to a process can be reduced by adjusting the pro-
cess. For example, if the component serves only a single re-
quest as shown in Figure 3 (a), the necessary energy con-
sumption includes the wakeup energy (ew), service energy
(ea), and the shutdown energy (ed). Any additional energy

> t be
time

power

(b)

< t be
time

power
(c)

time

power
(a)

wakeup shutdown

Figure 3. Energy responsibility of a process.

tdtatw

tw,2td,1

tw,2
td,1

e0 time

power

r1 r2
(c)

r2

ta,1 td,1tw,1

tw,2

power

time

time

power

r2r1

(a)

(b)

time

power

r1
(d)

Figure 4. Two requests r1 and r2 from two pro-
cesses. (a) Sharing periods. (b) No sharing
between r1 and r2. (c) r1 and r2 share the en-
ergy eo. (d) r2 shares ew with r1’s ea and ew.

can be reduced by performing wakeup and shutdown imme-
diately before and after the service. The energy ew +ea+ed

is responsible by the process because it can be reduced only
by removing the request. When multiple requests access
a component, we can calculate the necessary energy con-
sumption based on the component’s break-even time. The
break-even time (tbe) is the minimum duration of an idle pe-
riod during which the energy saved in the sleeping state can
compensate the state-change energy (ed+ew) [1]. If the idle
period is longer than tbe as shown in Figure 3 (b), the pro-
cesses are responsible for only ed + ew in the idle period.
If the idle period is shorter than tbe as shown in Figure 3
(c), the energy in the idle period cannot be reduced by shut-
down and such idle energy is assigned to the processes.

We next divide the responsibility among processes to es-
timate the opportunity for energy reduction from adjusting
each process. Suppose the two requests in Figure 3 (b) and
(c) are from two different processes. In Figure 3 (b), each
process is responsible for ew +ea +ed of its request. In Fig-
ure 3 (c), the energy consumption of the two requests are
not separated by shutdown because the idle period is less
than tbe. The processes share energy in this case. To calcu-
late sharing for determining energy responsibility, we first

extend the concept from Figure 3 (a). The process is re-
sponsible for energy ew before a request and ed after the re-
quest. The energy corresponds to time tw and td as shown in
Figure 4 (a); they are called backward sharing period and
forward sharing period, respectively. Their values are de-
fined as

∫ tw

0
ρ(t)dt = ew and

∫ td

0
ρ(t)dt = ed, here ρ(t)

is the power at time t. The value of tw is calculated back-
ward from the service, i.e., at the moment of the service,
t = 0. In the case of Figure 4 (a), tw and td are just the
component’s wakeup delay (τw) and shutdown delay (τd),
respectively. In the case of 4 (c), ρ(t) = pl (here pl is the
idle power) for calculating td,1 for r1 and tw,2 for r2, so
td,1 = ed/pl and tw,2 = ew/pl.

Two processes do not share energy if their tw and td do
not overlap, as shown in Figure 4 (b). When the idleness
between the two requests becomes shorter as shown in Fig-
ure 4 (c), td,1 and tw,2 may overlap and the two processes
share energy. The energy during the period td,1 is ed,1 and
the energy during the period tw,2 is ew,2. The energy con-
sumption in the overlapped period is eo. If r1 is removed
and no longer responsible for any energy, eo cannot be re-
duced by any power manager because r2 needs energy ew,2

to wake up the component and ew,2 includes eo. Similarly,
removing r2 cannot reduce eo because r1 needs energy ed,1

to shut down the component. To reduce the shared energy
eo, both requests have to be removed. Therefore, both pro-
cesses are responsible for the overlapped energy eo. As the
idle period becomes even shorter, tw,2 can overlap with ta,1

and even tw,1, as shown in Figure 4 (d). The rationale of en-
ergy sharing is the same — the energy in the overlapped pe-
riod can be reduced only by removing both processes. We
can extend this approach to three or more processes by cal-
culating their sharing periods. If their periods overlap, all
processes associated with the overlapping equally share the
energy during the overlapped interval.

3.2. Potential Energy Savings
Shared energy can be reduced only by adjusting all the

sharing processes. Consequently, the potential energy sav-
ings from removing only one process’ requests are Er =
ep −eh, here ep is the process’ responsible energy and eh is
the portion of the process’ responsible energy shared with
other processes. Clustering a process’ requests all together
is equivalent to two steps — removing all the process’ re-
quests first and then add the cluster back. The cluster con-
sumes energy ew +

∑
ea + ed, here

∑
ea is the sum of

the service energy (ea) of all the clustered requests. Hence,
the potential energy savings from clustering a process’ re-
quests are Ec = Er − (ew +

∑
ea + ed). The energy as-

signed to the power manager is the potential savings to im-
prove the shutdown accuracy. As a supplement to these po-
tential energy savings, we also calculate the current energy
savings Es, namely, the energy savings that has been ob-

s2
s1

power

r1 r2 time

Figure 5. The power consumption of a com-
ponent with two sleeping states.

tained. This is equal to the difference between the energy
consumption without shutdown and the actual energy con-
sumption. For example, for the idle period between the two
requests in Figure 3 (b), the consumption without shutdown
is pl × tl (here pl is the idle power and tl is the length of the
idle period) and the actual consumption is ed +ew. The cur-
rent energy savings are Es = pl × tl − (ed + ew).

3.3. Multiple Sleeping States
As processes are only responsible for necessary (or min-

imal) energy consumption during idle periods, we extend
the calculation of necessary consumption to components
with multiple sleeping states. Let s1, s2, ..., sn be n sleep-
ing states ordered by decreasing power consumption and in-
creasing state-change delay (τd + τw) and energy (ed +ew).
Each sleeping state has a corresponding break-even time
from the idle state. When the idle period is longer than sev-
eral break-even times, we need to determine which sleep-
ing state to choose for minimum energy consumption. This
state is not necessarily the lower-power sleeping state. Fig-
ure 5 is used to illustrate this concept. State s2 consumes
less power but has larger wakeup and shutdown energy
than s1. We can calculate the minimum length of an idle
period when entering s2 saves more energy. Let t be the
length of an idle period; es1

and es2
are the state-change

energy, ts1
and ts2

are state-change delay, and ps1
and ps2

are the power. Using the two states achieves the same en-
ergy savings if es1

+ ps1
(t − ts1

) = es2
+ ps2

(t − ts2
), or

t =
es2

−es1
+ps1

ts1
−ps2

ts2

ps1
−ps2

. This is the minimum duration
of an idle period to use s2. Notice that this is different from
s2’s break-even time because tbe is defined between a sleep-
ing state and the idle state, not between two sleeping states.
To calculate the sharing periods tw and td for each request,
we use ew and ed of the deepest sleeping state. This is be-
cause if there is only a single request, the component should
be kept in the deepest sleeping state before and after serv-
ing the request in order to consume the minimum energy.

3.4. Runtime Adaptation
Previous sections show that, after assigning each pro-

cess its energy responsibility, we can estimate the poten-
tial energy savings from adjusting the workload. In this sec-
tion, we show that the estimation can be peformed at run-
time such that processes can perform runtime adaptation
to save energy, improve energy efficiency, or both. Specif-
ically, we periodically calculate and assign energy respon-

p1 :

p1 :

p1 :

p2 :

t2t1 t3

interval:

Action:

time

clustering

adaptive
clustering

always

clustering
no

buffer

E
E

:
:

L
S
L S S

S S
SS
LL S

− CC − D −

c

s

estimation

bufferpower:

power:

Figure 6. Comparison of clustering schemes
when two processes (P1 and P2) run-
ning concurrently using the same hard-
ware component. Ec: potential energy sav-
ing by clustering. Es: current energy sav-
ing. L/S: large/small value. C/D: allocat-
ing/deallocating the buffer for clustering.

sibility to each process and inform the process of the po-
tential energy savings Ec or Er as defined in Section 3.2.
We assume that the Ec and Er calculated from the previous
period can be used to estimate the following period. Pro-
cesses can combine the estimation and their specific con-
straints (e.g., performance requirement) to determine when
to perform clustering or removing.

We use two techniques as examples of run-time adap-
tation: (a) Allocating a chunk of memory buffer to clus-
ter a process’ requests to a component. For example, ad-
ditional memory is allocated for an audio/video streaming
program to prefetch more frames from the server and the
network card is used to fetch frames only when the buffered
frames have been consumed. (b) Removing a process’ re-
quests by removing or suspending the process. For exam-
ple, when battery energy is scarce, the user may be willing
to terminate or suspend a low-priority program as a trade-
off for energy savings.

Figure 6 illustrates clustering guided by our estimation
of potential energy savings. Processes P1 and P2 generate
requests for the same hardware component (e.g., a network
card). During t1 and t3, only P1 is running. During t2, P2 is
running concurrently with P1. We assume P2 does not allow
clustering due to real-time constraints, such as a telephony
program transmitting real-time voice data. When only P1 is
running, clustering P1’s requests can create long idle peri-
ods. When P2 is also running, clustering P1 cannot create
long idle periods because P2’s requests are scattered.

The first two rows in Figure 6 show that no clustering
technique is used. This case consumes no extra buffer power
but misses the opportunity to save energy in t1 and t3 by

clustering P1’s requests. The third and fourth rows clus-
ter P1’s requests using buffer throughout the whole dura-
tion. Even though energy is saved for the component dur-
ing t1 and t3, it does not save energy during t2 while addi-
tional energy is consumed for the buffer memory. Alterna-
tively, P1 can perform adaptive clustering with the informa-
tion of the potential energy savings (Ec) and the current en-
ergy savings (Es), as calculated in Section 3.2. The value
of Ec suggests whether it is beneficial to further cluster the
requests but does not indicate whether the current running
clustering saves energy. In contrast, Es tells how much en-
ergy savings we have obtained but does not suggests the po-
tential of further clustering. Consequently, if Ec is large, P1

should cluster no matter whatever Es is. If buffer has been
allocated and both Ec and Es are small, P1 should stop clus-
tering and release the buffer. This is because the small Ec

suggests no potential for allocating more buffer for further
clustering and the small Es suggests that the current clus-
tering is not beneficial. After the buffer is released, the un-
used memory banks can enter low-power state.

At the beginning of t1, the potential savings are large
(shown as “L”) and the current savings are small (shown
as “S”) as shown in the figure. Specifically, the “large” or
“small” are determined by comparing with the per-period
energy consumption of the buffer memory allocated for
clustering. As a result, P1 clusters the requests. After clus-
tering, the potential savings become small and the current
savings become large. When P2 starts running at the begin-
ning of t2, both Ec and Es are small. This indicates that
clustering is no longer beneficial so P1 stops clustering and
releases the buffer. When P2 terminates at the end of t2, the
potential savings become large again and P1 should clus-
ter requests during t3.

The method of using the estimation to guide runtime
workload reduction is similar. Suppose a user would sus-
pend a user process only if the suspension saves substan-
tial energy (e.g., > 10%). We can perform runtime adap-
tation using the estimation Er and the current energy sav-
ing Es. When Er is large, we suspend the process to save
energy. If the process is being suspended and Es is small,
the process is resumed to perform more service. Compared
to simply terminating the process, this approach can save
about the same amount of energy and perform more ser-
vice. Hence, the energy efficiency is improved.

4. Experiments
4.1. Experimental Setup

Our prototype uses Integrated Development Platform
(IDP) by Accelent Systems running Linux 2.4.18. The IDP
uses Intel PXA250 as the processor and provides prob-
ing points to measure the power consumption of different
hardware components. We install an Orinoco wireless net-
work card and an IBM Microdrive. Table 1 shows the mea-

meaning microdrive wireless
pa (W) active power 0.60 1.3tx,0.8rx
pl (W) idle power 0.59 0.75
ps (W) sleeping power 0.24/0.066 0.08
τd (s) wakeup delay 0.159/0.160 0.03
τw (s) shutdown delay 0.273/0.716 0.06
ew (J) wakeup energy 0.207/0.475 0.079
ed (J) shutdown energy 0.124/0.135 0.038
tbe (s) break-even time 0.65/1.05 0.15

Table 1. Power parameters. The microdrive
has two sleeping states, shown as “s1/s2”.

sured parameters of the components used in our experi-
ments. We implemented a Linux kernel module to estimate
energy savings. The timing information (e.g., the starting
times and the ending times) of the processes’ accesses to
the devices are collected by modifying the device drivers.
The workload consists of six programs: madplay: an audio
player, xmms: an audio streaming program, mpegplayer:
an MPEG video player, gzip: a compression tool, scp: a
secure file transferring utility, httperf: a program retriev-
ing web pages. These programs have different workload on
different components. In our experiments, scp is always
running as the background process to upload data files from
the Microdrive to a remote server through the wireless net-
work card. We choose scp because it has no stringent tim-
ing constraints (like an audio player). The other programs
are occasionally selected to execute concurrently with scp.
We use the degree of concurrency to indicate how many
concurrent user processes are running. When the degree of
concurrency is one, only scp is running. When the degree
of concurrency is higher, the other six programs are ran-
domly selected to execute. For example, when the degree
of concurrency is three, two other programs execute con-
currently with scp. We divide the whole duration of an
experment into 300-second intervals and randomly deter-
mine a degree of concurrency for each interval. For both
clustering and removal, we conduct five experiments with
increasing average and maximum degree of concurrency.
We perform removal or suspension for scp on the wireless
card and clustering for scp on the Microdrive. For cluster-
ing, we allocate a memory buffer of 10MB to prefetch data
from the Microdrive. The memory consumes 5 × 10−5 W
for every page of 4KB. The power is calculated using the
SDRAM datasheet from the Micron website. This is based
on the assumption that unused memory can be turned off to
save power [4]. A 0.65s timeout is used to shutdown Micro-
drive and a 0.15s timeout for the wirelsess card.

4.2. Energy Savings and Efficiency
Figure 7 shows our experimental results. Figures 7 (a)

and (c) show the energy savings of using clustering and re-
moval for different degrees of concurrency. Figures 7 (b)

1(1) 2(1.5) 3(2) 4(2.5) 5(3)
0

10

20

30

40

50

60

degree of concurrency
(a)

En
er

gy
 S

av
in

g
(%

)

original
clustering
adaptation

1(1) 2(1.5) 3(2) 4(2.5) 5(3)

50

100

150

200

250

300

degree of concurrency
(b)

En
er

gy
 E

ffi
cie

nc
y

(%
)

original
clustering
adaptation

1(1) 2(1.5) 3(2) 4(2.5) 5(3)
0

20

40

60

80

100

degree of concurrency
(c)

En
er

gy
 S

av
in

g
(%

)

original
removal
adaptation

1(1) 2(1.5) 3(2) 4(2.5) 5(3)
0

20

40

60

80

100

120

140

160

degree of concurrency
(d)

En
er

gy
 E

ffi
cie

nc
y

(%
)

original
removal
adaptation

Figure 7. Energy savings and efficiency of clustering and removal for different degrees of concur-
rency. Degree x(y) means the maximum(average) degree of concurrency. Higher bars are better.

and (d) show the energy efficiency measured as the num-
ber of bytes processed by all programs for every Joule of
energy. Figures 7 (b) and (d) are normalized to the origi-
nal workload as 100%. Figure 7 (a) shows that clustering
can save more energy (47%) than the original no cluster-
ing case when only scp is running and the degree of con-
currency is one. As the degree increases, less energy can be
saved by clustering because the concurrent processes cre-
ate scattered requests. If scp continues clustering, little en-
ergy can be saved by the Microdrive and the network card.
Meanwhile, energy is consumed by the buffer memory. In
contrast, our adaptive method informs scp to stop clus-
tering and release the buffer memory. Thus, our approach
can save more energy and improve energy efficiency. Fig-
ures 7 (c) and (d) consider request removal. When the de-
gree of concurrency is one and the requests are removed,
over 92% energy can be saved as shown in Figure 7 (c).
However, the efficiency is zero as shown in Figure 7 (d) be-
cause no data are copied by scp. As the degree of concur-
rency increases, scp can adaptively execute when the mi-
crodrive and the network card are in the active state after
serving the other programs. Even though the amount of en-
ergy saved by adaptation is less than removing scp by up to
5% as shown in Figure 7 (c), the energy efficiency are sig-
nificantly higher shown in Figure 7 (d). This is because we
resume scp when the requests from other process are scat-
tered on the network card so the energy during the scat-
tered idleness is utilized to serve scp’s requests. The orig-
inal method (no-removing) has high efficiency but it saves
much less energy. The experimental results show the impor-
tance of considering concurrent processes to achieve better
energy savings and efficiency.

5. Conclusion
This paper presents a method to save energy in an envi-

ronment of multiple processes. We estimate how much en-
ergy can be saved when a process clusters or removes re-
quests. By considering the energy sharing among multiple
processes, a process can save more energy when it is respon-
sible for most of the energy consumption. If a process is re-
sponsible for only a small portion of the energy, the process

can stop clustering or removal to improve the energy ef-
ficiency. Experimental results indicate that energy savings
and efficiency can be significantly affected by the presence
of other concurrent processes.
References
[1] L. Benini and G. D. Micheli. System-Level Power Optimiza-

tion: Techniques and Tools. ACM TODAES, April 2000.
[2] L. Cai and Y.-H. Lu. Dynamic Power Management Using

Data Buffers. In DATE, pages 526–531, 2004.
[3] F. Chang, K. Farkas, and P. Ranganathan. Energy-Driven

Statistical Profiling Detecting Software Hotspots. In Work-
shop on Power-Aware Computer Systems, 2002.

[4] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubra-
maniam, and M. J. Irwin. Hardware and Software Tech-
niques for Controlling DRAM Power Modes. IEEE Trans-
actions on Computers, 50(11):1154–1173, November 2001.

[5] J. Flinn and M. Satyanarayanan. Energy-Aware Adaptation
for Mobile Applications. In ACM SOSP, 1999.

[6] J. Flinn and M. Satyanarayanan. PowerScope: A Tool for
Profiling the Energy Usage of Mobile Applications. In IEEE
Workshop on Mobile Computing Systems and Applications,
pages 2–10, 1999.

[7] Y.-H. Lu, L. Benini, and G. D. Micheli. Low-Power Task
Scheduling for Multiple Devices. In International Workshop
on Hardware/Software Codesign, pages 39–43, 2000.

[8] R. Neugebauer and D. McAuley. Energy is Just Another Re-
source: Energy Accounting and Energy Pricing in the Neme-
sis OS. In Workshop on HotOS, pages 59–64, 2001.

[9] P. Rong and M. Pedram. Hierarchical Power Management
with Application to Scheduling. In ISPLED, pages 269–274,
2005.

[10] A. Weissel, B. Beutel, and F. Bellosa. Cooperative IO- A
Novel IO Semantics for Energy-Aware Applications. In
OSDI, pages 117–129, 2002.

[11] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. ECOSys-
tem: Managing Energy As A First Class Operating System
Resource. In ASPLOS, pages 123–132, 2002.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

