
Power Analysis of Mobile 3D Graphics

Bren Mochocki
Dept of CSE, University of Notre Dame

Notre Dame, IN
bmochock@cse.nd.edu

Kanishka Lahiri
NEC Laboratories America

Princeton, NJ
klahiri@nec-labs.com

Srihari Cadambi
NEC Laboratories America

Princeton, NJ
cadambi@nec-labs.com

Abstract— The world of 3D graphics, until recently restricted
to high-end workstations and game consoles, is rapidly expanding
into the domain of mobile platforms such as cellular phones
and PDAs. Even as the mobile chip market is poised to exceed
production of 500 million chips per year, incorporation of 3D
graphics in handhelds poses several serious challenges to the
hardware designer. Compared with other platforms, graphics
on handhelds have to contend with limited energy supplies and
lower computing horsepower. Nevertheless, images must still be
rendered at high quality since handheld screens are typically
held closer to the observer’s eye, making imperfections and
approximations very noticeable.

In this paper, we provide an in-depth quantitative analysis of
the power consumption of mobile 3D graphics pipelines. We ana-
lyze the effects of various 3D graphics factors such as resolution,
frame rate, level of detail, lighting and texture maps on power
consumption. We demonstrate that significant imbalance exists
across the workloads of different graphics pipeline stages. In
addition, we illustrate how this imbalance may vary dynamically,
depending on the characteristics of the graphics application.
Based on this observation, we identify and compare the benefits
of candidate Dynamic Voltage and Frequency Scaling (DVFS)
schemes for mobile 3D graphics pipelines. In our experiments
we observe that DVFS for mobile 3D graphics reduces energy
by as much as 50%.

I. INTRODUCTION

Traditionally, 3D graphics applications have been developed
for either desktop computers or dedicated gaming consoles.
However, with the increasing popularity and capabilities of
mobile computing devices such as PDAs and cellular phones,
many 3D graphics applications such as gaming, GPS-backed
maps and animated chats emerge as possible applications for
current and future mobile platforms. Since the mobile market
far exceeds the PC market, a very large volume opportunity
exists for 3D graphics. The mobile gaming industry already
reports revenue in excess of $2.6 billion worldwide, and is
expected to exceed $11 billion by the year 2010 [1]. In [2], the
author predicts that all but the least expensive cellular phones
will feature 3D processing capabilities by 2006, creating a
sales opportunity of over 500 million chips per year.

Similar to the evolution of console gaming, players of
mobile games will expect high-quality 3D experience. Yet,
several major differences between mobile graphics processors
and traditional gaming consoles make this a challenge. First,
handheld devices have slower processors that are less capa-
ble of handling large compute-intensive workloads. Second,
handheld batteries have limited lifetimes, necessitating low-
power schemes for compute-intensive applications such as
3D graphics. Finally, although handheld screens typically
have lower resolutions than desktops or laptops (leading to
lower energy consumption), each pixel must still be rendered
accurately since the screen is held close to the observer’s eye;

1E+01

1E+02

1E+03

1E+04

2002 2003 2004 2005 2006 2007 2008 2009

YEAR

M
ill

w
at

t-
h

o
u

rs

Energy Required
Battery Capacity

Fig. 1. Disparity between mobile 3D graphics energy and battery capacity.

making imperfections and approximations easily noticeable.
For example, effects such as anti-aliasing and imperfect shad-
ing can result in jagged edges and reduced image quality.

In this paper, we present a quantitative study of the differ-
ent factors that influence energy consumption of a handheld
device while running a 3D graphics application. From our our
analysis, we observe that a significant opportunity exists for
dynamic voltage and frequency scaling (DVFS) in mobile 3D
graphics processing. We then experimentally investigate the
applicability of different DVFS schemes for energy-efficient
3D graphics processing in handheld devices.

To understand the need for power-efficient 3D graphics,
consider Figure 1, which illustrates an increasing disparity
between the energy requirements of 3D graphics processing on
handhelds, and energy available from state-of-the-art batteries.
It is estimated that battery capacities (assuming the weight of
the battery is constant) will increase at rates of 5 to 10% per
year [3]. Concurrently, however, screen resolution and frame
rates will also increase. Current resolutions for handhelds are
176 x 144 (QCIF), 320 x 280 (QVGA), 320 x 320 (Palm
Treo [4]) and 480 x 320 (Sony Clie [5]). [6] reports that a 4-
inch LCD screen with a resolution of 800x600 pixels (SVGA)
is being developed and is expected to be available in the
next few years. Based on this, it is reasonable to expect that
SVGA screens will be prevalent in handhelds by the end of
the decade. For Figure 1, we assumed (i) screen resolutions
increase uniformly from QCIF in 2002 to SVGA in 2009,
(ii) average frame rates increase from 10 frames per second
(fps) in 2002 to 20 fps in 2009 and (iii) voltage and clock
frequencies vary as speculated by the ITRS [7]. It is clear that
improvements in battery technology alone cannot be expected
to satisfy the energy requirements of 3D graphics processing
in future handheld devices.

Due to the above trends, the area of low-power mobile 3D
graphics processing has recently started to receive interest.
Application-level techniques for improving energy efficiency
of graphics processing while trading off the quality of the

3-9810801-0-6/DATE06 © 2006 EDAA

PE0 PE1 PE3

Communication architecture

Local
Mem

Local
Mem

Local
Mem

DMA Frame
buffer

PE0 PE1 PE3

Communication architecture

Local
Mem

Local
Mem

Local
Mem

DMA Frame
buffer Display

Geometry Triangle
Setup

RenderingRaw
triangles

Transformed
triangles

Sets of
Pixels

Pixel
Colors

Simit-ARM

Cross Compiler
ARM—g++

Trace-based
3D Pipeline

Simulator (Java)

Triangle,
Instruction, &
Trigger traces

Voltage & Freq.
Scaling Policy

3D application
(Open GL/ES 1.0)

Vincent
OpenGL/ES library
Instrumented with
pipeline stage triggers

Processor
Energy Model

3D pipeline
Performance/power

(a) (b) (c)

Fig. 2. Framework for analyzing the 3D graphics pipeline: (a) pipeline stages and mapping to an example system architecture; (b) methodology for
performance/power analysis; (c) screenshot of front-end of trace-based simulator.

rendered frames include novel texturing and Level-of-Detail
(LoD) management strategies [8], [9]. A related area is the
prediction and analysis of 3D workload requirements [10],
[11]. However, most work in this area is targeted towards
high-end gaming platforms such as PCs and gaming consoles.
On the hardware side, several low-power graphics processors
(GPUs) have started to appear featuring conventional power
management schemes. The GPU described in [12] uses clock
gating to deactivate unused components, and optionally can
activate a “step mode”, which prevents multiple stages of the
graphics pipeline from executing at the same time. A GPU
that utilizes Dynamic Frequency Scaling (DFS) is presented
in [13], which includes three performance states, but does not
consider voltage scaling. Recently, performance and power
modeling techniques for GPUs have been proposed [14].
Similar to [14], the analysis framework we use for our work
is also based on trace-driven simulation. More widespread
availability of such modeling and analysis frameworks will
spur further research on power-efficient graphics processing.

Numerous techniques for Dynamic Voltage and Frequency
Scaling (DVFS) have been proposed over the last decade [15],
leading to commercial products today that feature DVFS,
including processors for mobile handsets [16]. It is known that
general-purpose DVFS policies (such as those based on uti-
lization measurements) often do not perform well for specific
applications [17], resulting in more specialized techniques that
are tailored to important application domains [18], [19]. No
prior work that we are aware of has investigated the application
of DVFS for power-efficient 3D graphics processing.

The rest of this paper is organized as follows. In Section II,
we briefly review 3D graphics pipelines. In Section III, we
describe the methodology we used to analyze the performance
and energy consumption of the 3D graphics pipeline, along
with motivational studies. In Section IV, we present detail ex-
perimental studies that analyze the effects of different factors
on pipeline energy consumption. Based on these observations,
in Section V, we identify and compare candidate DVFS
schemes for 3D pipelines, and conclude in Section VI.

II. 3D GRAPHICS PIPELINE

In typical graphics processors all surfaces are fundamentally
represented with triangular patches [20]. During rendering,

each triangle is drawn in a series of three basic steps, which
can be implemented as three stages in a pipeline architecture
(Figure 2(a)).

1) The geometry stage applies geometric transforms to each
triangle, and computes its perspective projection onto the
screen. It also culls triangles that will not be seen and
computes shading information for each vertex.

2) The triangle setup stage determines which pixels lie
within the projection of each triangle. Along each tri-
angle edge, it uses interpolation and lookup to obtain
shading, texture and z-values for each pixel.

3) The rendering stage computes the actual color for each
pixel, and also performs hidden-surface elimination and
the final interpolation of shading and texture values.

Several factors affect the perceived quality of 3D graphics.
Key quality factors discussed in this paper include:

• Resolution – either the total number of pixels on the
screen, or the number of pixels per inch of screen. Note
that handheld devices are typically held close to the eye,
and consequently demand a higher number of pixels per
inch than desktop monitors.

• Frame rate – the rate with which the scene is redrawn.
To create an illusion of smooth motion, this should be
at least 10 to 12 frames per second. Below this rate,
motion appears jerky, and games feel unresponsive. It is
important to note however, that the frame rate can vary
considerably during the course of an animation without
spoiling the illusion of motion.

• Level of detail – the sampling used to represent curved
shapes with triangular patches. This determines how
smooth the shapes’ silhouettes appear, and if the indi-
vidual triangles are visible on the surface due to shading.

• Lighting model – the type of lighting applied to the
scene. Possible lighting models include spot lighting
(illumination only in specified areas of the scene), point
lighting (illumination from nearby light sources) and
parallel lighting (illumination from distant light sources).

• Texture model – how textures, usually in the form of 2D
images, are applied to surfaces. There are several different
methods of applying textures to surfaces, with different
tradeoffs between computation and visual quality.

III. EVALUATION FRAMEWORK

Motivated by the emergence of commercial multi-core ap-
plication processors in the mobile handset domain [21], we
consider a system architecture consisting of three embedded
processors, each of which executes a specific stage of the 3D
graphics pipeline (Figure 2(a)). The different pipeline stages
communicate with each other through shared buffers mapped
to local memories. DMA engines transfer data between stages.

The methodology we used for analyzing the 3D graphics
pipeline is illustrated in Figure 2(b). We adapted a software
library [22] that implements OpenGL/ES [23], a standard
interface for developing 3D graphics applications on resource-
constrained systems. OpenGL/ES is a variant of the popular
OpenGL standard (aimed at high-performance devices). The
applications we used consisted of ones obtained from [24]
as well as custom benchmarks. We selected benchmarks that
clearly exhibited specific 3D effects (e.g., types of lighting) as
opposed to complex animation sequences, in order to isolate
and better understand the impact of individual factors. The
library was modified to generate a trace of triggers indicating
start and completion points of each pipeline stage for each
triangle being processed. The applications and the modified
library were cross-compiled and linked to the target architec-
ture [25]. To drive the subsequent analysis, traces of executed
instructions, triggers, and triangles were collected using fast,
cycle-accurate, instruction-level simulation [26]. The resulting
traces were provided to a trace-based analysis tool that was
developed to analyze performance and energy consumption of
the different pipeline stages under a given system architecture.
The simulator uses an instruction-level energy model that was
developed using measurement of actual current drawn by a
commercial processor [27]. The processor can be operated at
11 different voltage and frequency levels, with an associated
overhead of 150µs each time the operating point is changed.
Different voltage/frequency scaling policies and their impact
on the 3D pipeline are easily evaluated using this framework.
Note that, in our work, we use performance and energy models
developed for a general-purpose embedded processor (ARM).
However, the framework is flexible, and could be enhanced
to incorporate models developed for custom GPUs as well 1.
JFreechart [28] is used to graphically display the analysis
results (Figure 2(c)).

Imbalance in the Graphics Pipeline

We used the above framework to compare the workload
across the pipeline stages for three different benchmarks:
TexCube, which features the rotation of a textured cube on
one of its diagonals, RoomRev, which depicts a revolving room
containing curved geometric objects, and MovSphere, which
displays a lit sphere moving toward the camera with increasing
LoD. Figure 3 reports the results of these studies, for animation
sequences aimed at a screen resolution of 176x220. From the
figure we observe that the workload in each benchmark varies
significantly across stages. In the case of the TexCube [24]
benchmark, rendering consumes 11x more cycles than geom-
etry and setup combined. However, the results also show that

1Our experimental results in absolute terms, are specific to ARM. However,
we believe that the observed trends and conclusions drawn from them are
sufficiently general, and are applicable to pipelines consisting of custom
processing elements as well.

contrary to expectation, rendering is not always the bottleneck.
For the RoomRev [24] benchmark, geometry has the maximum
workload, exceeding rendering by 5X, while in the MovSphere
benchmark, setup dominates rendering by 9X. Clearly, large,
application-dependent imbalances may exist between different
pipeline stages. In general, we observe that the imbalance
may shift dynamically, depending on the animation sequence,
leading to variable “hot spots”. In the next section, we study
the factors on which such imbalance depends in more detail.

0

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

RoomRev TexCube MovSphere
Benchmarks

E
xe

cu
ti

o
n

C
yc

le
s

(A
R

M
)

Geometry Setup Render

Fig. 3. Analysis of the workload of different stages of the 3D graphics
pipeline for different applications.

IV. PERFORMANCE AND ENERGY ANALYSIS

Resolution, level of detail (LoD), lighting, texture maps and
frame rate are factors that play a vital role in determining the
quality of 3D graphics. We analyze in detail how these factors
affect energy in handhelds, and how the graphics hardware de-
veloper can make design choices to lower energy consumption
but maintain the quality of the 3D images. Significantly, the
inherent pipeline imbalance exposed by our analysis translates
to an opportunity for the hardware designer to employ dynamic
voltage and frequency scaling. Our analysis also provides
information for the application developer to write energy-
efficient mobile 3D graphics applications.

A. Effect on Performance

We start by analyzing how the above factors affect handheld
graphics processing requirements, and use this information
to devise energy-saving strategies. Our measurements are
represented by execution cycles obtained from the framework
described in Section III.

Resolution: Figure 4 shows the performance with increasing
resolution for the MovSphere benchmark with a LoD of 3. In
our setup, an LoD of 3 means that 256 (43+1) triangles are
used to represent the surface of the sphere. The resolutions
chosen are currently used in handhelds and gaming consoles
(the latter will likely be used in future handhelds). The three
different curves show the number of execution cycles for each
pipeline stage. The execution time for rendering increases lin-
early with the number of pixels. Thus, at high resolutions, the
predominant performance bottleneck and power consumption
unit is the rendering engine.

Level of Detail (LoD): Figure 5 shows the performance with
increasing LoD for the MovSphere benchmark. A LoD of d
implies that 4d+1 triangles are used to represent the sphere.
We note that the geometry and triangle setup execution times
increase exponentially with LoD (i.e., linearly with the number

0.00E+00

4.00E+07

8.00E+07

1.20E+08

0.E+00 2.E+05 4.E+05 6.E+05 8.E+05 1.E+06 1.E+06 1.E+06

Pixel Count

E
xe

cu
ti

o
n

 C
yc

le
s

(A
R

M
)

GEOMETRY

SETUP

RENDER

1280x1024 (SXGA)

1024x768 (XGA)
800x600 (SVGA)

640x480 (VGA)
480x320 (Clie)

320x320 (Treo)

320x240 (QVGA)176x144 (QCIF)

Fig. 4. Mobile 3D graphics performance with increasing resolutions.

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07

4 16 64 256 1024

Level Of Detail (# triangles per object)

E
xe

cu
ti

o
n

 C
yc

le
s

(A
R

M
) GEOMETRY

SETUP

RENDER

LOD 0
LOD 1

LOD 2
LOD 3

LOD 4

Fig. 5. Mobile 3D graphics performance with increasing Level of Detail.

of triangles). This is because the number of vertices on which
the geometry stage operates is linearly proportional to the
number of triangles. On the other hand, the rendering stage
execution time increases more slowly. Thus, the overwhelm-
ing effect on performance with increasing LoD is from the
geometry and triangle setup stage. In other words, if the LoD
can be reduced without affecting picture quality, performance
can be significantly enhanced.

Lighting: Figure 6 shows the performance for three different
lighting schemes, namely, spotlight, parallel light and point
light, all with an LoD of 3. The execution times for the dif-
ferent lighting schemes are roughly equivalent, but activating
any of the lighting schemes comes with a large cost to the
geometry stage, since lighting is done on a per-vertex basis.
We also observed that a spotlight requires a larger LoD to
produce better picture quality; this is because a spotlight has
a distinct boundary, which when depicted with few triangles
shows up in a “jagged” manner resulting in poor image quality.
Therefore, spotlights necessitate the use of a larger LoD, while
point and parallel lights do not. Since increasing the LoD
results in an exponential increase in execution time, it is clear
that graphics application programmers should minimize the
use of spotlights to enhance handheld graphics performance.

Texture Maps: Figure 7 shows the performance for different
texturing schemes. The first set of 4 points use a single texture
map, while the second set of 4 points use 2 texture maps.
We evaluate the following four texturing schemes, popularly

1.00E+05

1.00E+06

1.00E+07

1.00E+08

E
xe

cu
ti

o
n

 C
yc

le
s

(A
R

M
)

Geometry Setup Rendering

1 2 3 4

1 2 3 4

1 2 3 4

1: No Light
2: Spot Light
3: Parallel Light
4: Point Light

Fig. 6. Mobile 3D graphics performance for different lighting schemes.

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

1.6E+07

1.8E+07

No Tex

1 Tex Nearest

1 Mipmap Nearest

1 Tex Linear

1 Mipmap Linear

2 Tex Nearest

2 Mipmap Nearest

2 Tex Linear

2 Mipmap Linear

E
xe

cu
ti

o
n

 C
yc

le
s

(A
R

M
) GEOMETRY

SETUP

RENDER

Fig. 7. Mobile 3D graphics performance for different texturing schemes.

used in OpenGL/ES. Textures are represented by texture maps,
consisting of texels (pixels in the texture map).

• Nearest: In this scheme, the renderer picks a single
representative texel for each pixel that has to be rendered.

• MipMap Nearest: Mipmapping involves making mul-
tiple copies of the original texture map, with each copy
having half the resolution of the previous one. Depending
on the distance of the object from the observer, a suitable
texture map is selected. For example, if the object is
far away, a low-resolution texture map is chosen. A
representative texel from the chosen texture map is picked
(as in the “Nearest” scheme).

• Linear: Here a weighted average of four texels closest to
the pixel is chosen for texturing. The weights are based
on the Manhattan distance between the texel and pixel.

• MipMap Linear: This is a combination of the mipmap
and linear schemes.

From the figures, we note that while mipmapping improves
image quality, it has little effect on execution time. However,
bilinear texturing schemes increase execution time signifi-
cantly. Hence, we believe it is better for handhelds to employ
mipmapping texturing schemes.

B. Influence on Energy

We now discuss how the above analysis can help design
more energy-efficient mobile graphics processors. In partic-
ular, we find that a direct result of tuning the resolution,
lighting, level of detail and texturing is a change in the balance
between the three main stages of the graphics pipeline. In other

0

0.2

0.4

0.6

0.8

1

1.2

1.4

DFS OU ON UW1 UW5 NW1 NW5
Power Management Schemes

E
n

er
g

y
(J

)

Geometry Render Setup

42%

19%

(a)

0

5

10

15

20

25

30

DFS OU ON UW1 UW5 NW1 NW5

Power Management Schemes

F
ra

m
e

R
at

e

AVG MIN

(b)

0

5

10

15

20

25

30

35

DFS OU ON UW1 UW5 NW1 NW5

Power Management Schemes

F
ra

m
e

R
at

e

AVG MIN

(c)

Fig. 8. Comparing energy savings and frame rates for the different power management schemes

words, the performance bottleneck shifts from one stage to the
other depending on the factors being changed. We observe the
following from our analysis:

• Resolution: The execution time of the rendering stage
increases the fastest with resolution, making it the per-
formance bottleneck at high resolutions. This creates an
imbalance between the rendering stage and other stages.

• LoD: Since a larger LoD implies more triangles per
object, we see that with increasing LoD, the geometry
stages becomes the performance bottleneck. However, it
must be noted that in most applications, as resolution
increases, so does the LoD. This means that the geometry
and rendering bottlenecks (caused by increasing LoD
and increasing resolutions respectively) might offset each
other during the course of the application. Thus, the im-
balance could be “dynamic” and application-dependent.

• Lighting: The cost for activating lighting is very large in
the geometry stage but has little impact on other stages.
However, the change in workload across the different
lighting schemes is minimal. Since most applications use
lighting to emphasize 3D features of objects in the scene,
it is usually difficult to avoid this cost. However, it may be
possible in some cases to replace the lighting calculation
with ”pre-lit” texture maps, thus shifting the workload for
some objects from the geometry to the render stage.

• Texture Maps: The commonly used linear and mipmap-
ping texturing schemes make the rendering stage the
bottleneck, with the linear scheme proving to be more
computationally expensive.

These variable performance bottlenecks provide an opportu-
nity for power reduction via dynamic voltage and frequency
scaling (DVFS), whose application we consider next.

V. POWER SAVING TECHNIQUES

To effectively exploit the imbalance between different stages
of the graphics pipeline via DVFS, accurate prediction of
future pipeline workload is necessary. In this section, we
compare a few different workload predictors and the savings
they achieve in terms of pipeline energy consumption.
A. Workload Prediction Schemes

In the presence of imbalance, a basic technique that can be
used to reduce energy is dynamic frequency scaling (DFS),
which is used in [13], where the frequencies of all stages are
reduced as much as possible so that the target frame rate is
met. In our work, we use dynamic voltage and frequency scal-
ing for mobile 3D graphics, with two further innovations. First,

we use non-uniform DVFS where each stage in the graphics
pipeline uses a different voltage and frequency. Second, we
use history-based workload predictors for 3D graphics to set
voltage and frequency. In all the schemes we consider, the
voltage and frequency can be changed at most once per frame.

1) Oracle Uniform (OU): “Oracle” implies a perfect work-
load predictor. OU refers to a DVFS technique where
voltage and frequency of the geometry, setup and ren-
dering stages are all set to the same value, based on
perfect knowledge of future workloads. The voltage and
frequency is set to the maximum of the three stages.

2) Oracle Non-uniform (ON): In this technique, the voltage
and frequency of the each pipeline stage is set inde-
pendently, again based on perfect knowledge of future
workloads. Thus, the geometry, setup and rendering
engines could have different frequencies and voltages.

3) Uniform Window-based Predictor 1 (UW1): The oracle
schemes can tell us how well voltage scaling works and
how useful non-uniform voltage scaling is. However,
history-based prediction schemes are more practical than
the oracle schemes. In the UW1 scheme, the workload
of each pipeline stage in the current frame is predicted
to be the same as the corresponding workloads in the
previous frame. Using this prediction, the voltage and
frequency of the each stage are set to the same value.

4) Uniform Window-based Predictor 5 (UW5): This is the
same as the UW1 scheme, except the workload of the
current frame is determined using the average of the
workloads of 5 previous frames.

5) Non-uniform Window-based Predictor 1 (NW1): In this
scheme, the workloads for the geometry, setup and
rendering stages are predicted to be the same as the cor-
responding workloads in the previous frame. Then, the
frequency and voltage of each stage is set independently.

6) Non-uniform Window-based Predictor 5 (NW5): This is
the same as NW1 except the workload prediction is
based on the average of the previous 5 frames.

B. Results for DVFS-based Energy Reduction Schemes

Figure 8(a) shows energy estimates for the above DVFS
schemes for the multicube example with a target frame rate of
25 fps. The multicube example is an extension of the texcube
example consisting of 3 cubes revolving around a central
frustum; the cubes have different texture maps and lighting to
resemble real applications. Workloads predictions are made in
terms of ARM execution cycles. Comparing “Oracle Uniform”

against baseline DFS shows that voltage scaling alone reduces
energy by 41%. Our technique of non-uniform voltage scaling
(“Oracle Non-uniform”) further reduces energy by 19%. The
history-based predictors perform almost as well as the oracle
predictors, with the non-uniform predictor (NW5) achieving
a 19% energy reduction over the uniform predictor (UW5).
Overall, with non-uniform voltage scaling with history-based
workload prediction, we see an energy reduction of 54%
compared to DFS (used in [13]).

Nevertheless, like all predictors, the estimates of history-
based predictors can be inaccurate. For instance, if the actual
workload turns out to be larger than the predicted work-
load, the resultant frame rate will not meet the target since
voltage and frequency will have been reduced according to
the prediction. Figure 8(b) shows this data for the multicube
example. Two important points emerge from the figure. First,
the average frame rate for history-based predictors is close
to the target of 25 fps. Second, the minimum frame rate is
around 22 fps. Our measurements indicate that the minimum
frame rate occurs less than 9% of the time. Despite this, the
difference between 22 and 25 fps was imperceptible to the
human eye, which was verified using on-screen emulation.
Consequently, for this benchmark, the history-based scheme
does not affect animation quality.

We also note that the overall energy improvement is almost
equal to the sum of the reductions from voltage scaling and
non-uniform voltage scaling. Therefore the effect on energy
due to the missed target frame rates is negligible. In other
words, the fact that the history-based scheme occasionally
misses the frame rate due to mis-predictions does not reduce
energy consumption. Finally, it is worth noting that the voltage
transition overhead of 150µs is small enough not to affect the
frame rates, since voltage changes are applied once per frame.

Figure 8(c) shows frame rates for the MovSphere example.
As the sphere draws closer to the observer, the level of detail
(LoD) increases, resulting in increased workload. The history-
based predictors have a downward spike in the frame rate
between the frames where the LoD switch occurs. When an
LoD switch occurs, the speed needs to be increased, but the
history-based predictors do not detect that until it is too late.
Therefore, the frame rate drops significantly, in this case to
below 10 fps, which is noticeable. In this case, history-based
predictors with a window of 1 can correct themselves faster
than predictors with a window of 5. Nonetheless, such history-
based predictors are not suitable when workloads change
quickly by large amounts.

VI. CONCLUSIONS

In this paper we presented a detailed quantitative analysis of
the workload variations and imbalances of different stages of a
mobile 3D graphics pipeline, and the potential for DVFS based
power savings that exploit such variations and imbalances. Our
studies show that history-based DVFS strategies achieve suc-
cess for examples with slowly changing graphics workloads,
with savings of over 50%. Our studies also motivate more
specialized prediction techniques. We believe that this paper
will prove to be a valuable starting point for future work in
low-power mobile 3D graphics.
Acknowledgments: The authors are grateful to Matthew M.
Miller of NEC Laboratories America for useful discussions,
and to the anonymous reviewers for their feedback.

REFERENCES

[1] “Mobile Games Industry Worth US $11.2 Billion by 2010.” http:
//www.3g.co.uk/PR/May2005/1459.htm, May 2005.

[2] P. Glaskowsky, “3D Poised for Market Expansion.” http:
//www.mdronline.com/publications/mpw/issues/
mpw111.html#item1, Aug 2003.

[3] I. Buchmann, Batteries in a Portable World. Cadex Electronics, Inc.,
2001.

[4] Palm Corporation, “Treo 650 smartphone details.” http:
//www.palm.com/us/products/smartphones/treo650/
details.epl, 2004.

[5] Sony Electronics, “Peg-th55, the ultimate handheld for power users.”
http://sonyelectronics.sonystyle.com/micros/
clie/models/th55.html, 2005.

[6] The Register UK, “Fujitsu creates 800x600 pda lcd.” http:
//www.theregister.co.uk/2003/07/15/fujitsu_
creates_800x600_pda_lcd%/, 2003.

[7] “International Technology Roadmap for Semiconductors (ITRS
2004).” http://www.itrs.net/Common/2004Update/2004_
000_ORTC.pdf, 2004.

[8] N. Tack, F. Moran, G. Lafruit, and R. Lauwereins, “3D Graphics Render-
ing Time Modeling and Control for Mobile Terminals,” in Proceedings
of Int. Conf. on 3D Web technology, pp. 109–117, 2004.

[9] T. Akenine-Moller and J. Strom, “Graphics for the Masses: A Hardware
Rasterization Architecture for Mobile Phones,” in Proceedings of ACM
SIGGRAPH, pp. 801–808, 2003.

[10] T. Mitra and T. Z. Chiueh, “Dynamic 3D Graphics Workload Charac-
terization and the Architectural Implications,” in Proc. Intl. Symp. on
Microarchitecture (MICRO-32), pp. 62–71, Nov. 1999.

[11] M. Wimmer and P. Wonka, “Rendering Time Estimation for Real-Time
Rendering,” in Eurographics Symposium on Rendering 2003, pp. 118–
128, 2003.

[12] M. Kameyama, Y. Kato, H. Fujimoto, H. Negishi, Y. Kodama, Y. Inoue,
and H. Kawai, “3D Graphics LSI Core for Mobile Phone Z3D,” in
Graphics Hardware, pp. 60–66, 2003.

[13] R. Woo, S. Choi, J.-H. Sohn, S.-J. Song, and H.-J. Yoo, “A 210-mW
Graphics LSI Implementation Full 3-D Pipeline With 264 Mtexels/s
Texturing for Mobile Multimedia Applications,” IEEE Journal of Solid-
State Circuits, vol. 39, pp. 358–367, February 2004.

[14] J. W. Sheaffer and D. P. Luebke and K. Skadron, “A flexible simulation
framework for graphics architectures,” in Proc. of the Eurographics
Conference on Graphics Hardware, pp. 85–94, Aug. 2004.

[15] T. Pering, T. Burd, and R. Brodersen, “The Simulation and Evaluation of
Dynamic Voltage Scaling Algorithms,” in Proc. Int. Symp. Low Power
Electronics & Design, pp. 76–81, Aug. 1998.

[16] “Intel Application Processors [Online].” http://developer.
intel.com/design/pca/applicationprocessors.

[17] D. Grunwald, P. Levis, K. Farkas, C. B. Morrey, and M. Neufeld,
“Policies for Dynamic Clock Scheduling,” in Proc. Symp. Operating
Systems Design and Implementation, pp. 73–86, Oct. 2000.

[18] S. Mohapatra et al, “Integrated Power Management for Video Streaming
to Mobile Handheld Devices,” in ACM Int. Conf. on Multimedia,
pp. 582–591, Nov. 2003.

[19] V. Raghunathan, C. L. Pereira, M. B. Srivastava, and R. K. Gupta,
“Energy Aware Wireless Systems with Adaptive Power-Fidelity Trade-
offs,” IEEE Trans. VLSI Systems, vol. 13, pp. 211–225, Feb. 2005.

[20] A. H. Watt, 3D Computer Graphics. Addison-Wesley, 2000.
[21] S. Torii et al, “A 600MIPS 120-mW 70-µA Leakage Triple-CPU Mobile

Application Processor Chip,” in ISSCC, pp. 136–138, 2005.
[22] Hans-Martin Will, “A 3-D Rendering Library for Mobile Devices.”

http://ogl-es.sourceforge.net/, 2004.
[23] Khronos Group, “OpenGL ES Overview.” http://www.khronos.

org/opengles, 2005.
[24] J. R. Villar, “Typhoon Labs-OpenGL ES Tutorials.” http://www.

khronos.org/devu/opengles_challenge/, 2004.
[25] B. Gatliff http://www.billgatliff.com, 2005.
[26] W. Qin, “Simit-ARM: Very fast functional and cycle-accurate simulators

for ARM.” http://http://sourceforge.net/projects/
simit-arm/, 2004.

[27] A. Sinha and A. Chandrakasan, “JouleTrack: A Web Based Tool for
Software Energy Profiling,” in Proceedings of the 38th Design Automa-
tion Conference, pp. 220–225, 2001.

[28] D. Gilbert and T. Morgner, “JFreeChart.” http://www.jfree.org/
jfreechart/, 2005.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

