
Virtual Prototyping of Embedded Platforms for Wireless and

Multimedia

Tim Kogel

CoWare, Inc.

Tim.Kogel@CoWare.com

Matthew Braun

Motorola, Inc.

mbraun@urbana.css.mot.com

Abstract

Most of the challenges related to the development of
multi-processor platforms for complex wireless and mul-
timedia applications fall into the Electronic System Level
(ESL) domain. That is to say, design tasks like embedded
SW development, architecture definition, or system ver-
ification have to be addressed before the silicon or even
the RTL implementation becomes available. We believe
that one of the major obstacles preventing the urgently
required adoption and proliferation of an ESL based de-
sign approach is the nonexistence of an efficient and intu-
itive methodology for modeling complex platforms. This
extended abstract gives a rough overview of a modeling
methodology we have developed on the basis of SystemC
based Transaction Level Modeling (TLM) in order to
remedy this lack of modeling competence.

1. Introduction

It is generally agreed that SystemC is the language
of choice for system level modeling and that TLM
nicely abstracts from the implementation details of the
communication in complex SoC platforms [1]. However
these basic ingredients are by no means sufficient to ad-
dress today’s (and not to mention tomorrow’s) design
challenges.

We will first elaborate on the different ESL design
tasks to derive a set of corresponding TLM use-cases.
These use-cases impose several general requirements
on a modeling methodology, like e.g. modeling effi-
ciency, flexibility, and high simulation speed. It turns
out that the reusability of platform specific TLM mod-
els for multiple design tasks represents the most im-
portant requirement, simply to justify the modeling ef-
fort. Hence after a brief introduction and methodol-
ogy outline we will present and discuss a general pat-
tern for the creation of TLM models, which can be de-
ployed to solve different ESL design tasks. Not surpris-

ingly the reusability of the platform models is founded
on the orthogonalization of concerns [2]. As the major
contribution of our approach we have turned this gen-
eral principle into a practical recipe for the creation of
SystemC based TLM models. The basic idea is to de-
fine a set of modeling objects which act as a generic
layer between the user-defined behavior and the proto-
col specific bus interface.

This modeling methodology is currently deployed in
several real-life design projects. We will present the
results from a project in the wireless communication
domain, where a complete multi-processor platform is
modeled using the outlined approach. The final virtual
prototype is used by several design groups and for dif-
ferent purposes like embedded Software development,
or performance analysis.

2. Methodology Overview

So far four major use cases for Transaction-Level
Modeling (TLM) have been identified. Each of these
TLM views effectively supports one particular Elec-
tronic System Level (ESL) design task:

• The Functional View (FV) supports the creation
of an executable specification of the application.

• The Architects View (AV) [3] supports the explo-
ration of architectural alternatives to specify the
platform architecture.

• The Programmers View (PV) [4, 5] supports the
development and verification of embedded soft-
ware.

• The Verification View (VV) [6] supports the joint
verification of the hardware and software imple-
mentation in the system context.

2.1. TLM based ESL design flow

When designing an SoC the selection of a design flow
is dependent on the design tasks that will be needed.

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



An example design flow is depicted in figure 1. In this
flow functional models are created for the different al-
gorithms that will be used in the design. These func-
tional models are used by architects to define the right
HW/SW partitioning and to explore the system archi-
tecture. The result is a high-level, functionally correct
model that can serve as a executable specification for
the design. From this model a SW development model
can be extracted. The goal here is to remove any de-
tail that is not important for the embedded SW de-
signer, this in order to achieve acceptable simulation
speeds to allow for SW development and debugging.
The same executable specification can be refined to a
more accurate model that is used by verification engi-
neers.

Figure 1. TLM based ESL design flow

The goals of our modeling methodology are high
simulation speed, modeling efficiency, and reusability
for the different ESL design tasks. Given that the dif-
ferent tasks have different accuracy requirements, the
modeling style needs to support multiple levels of ac-
curacy.

As shown in figure 2, the key idea to enable reusabil-
ity for multiple abstraction levels is a mutual separa-
tion of communication, behavior, and timing. In other
words, we decompose any model of a platform periph-
eral into several orthogonal aspects.This separation can
be supported using the concept of a Bus Library, which
contains the bus model and a set bus transactors.

The peripheral initiator and target models are specific
for a particular platform and therefore have to be cre-
ated by the user. These models can be reused for different
bus models by separating the user-defined behavior from
the protocol specific interface of the respective bus model.
This separation happens in two layers: The Storage and
Synchronization Layer exhibits a generic TLM inter-
face on the behavior and the communication side. The
bus transactor layer converts the generic communica-
tion interface into the bus-specific TLM interface.

Figure 2. Orthogonalization of Concerns

The level of timing information depends on the use
case. The Programmers View requires little or no tim-
ing information, whereas an Architects View model
should be timing approximate. Therefore also the tim-
ing needs to be separated as much as possible from the
actual behavior to achieve reusability for different use
cases. In our methodology the timing can be modeled
as part of the user-defined behavior or simply anno-
tated in the bus transactor [3].

2.2. The TLM Standard

The foundation of TLM is defined by the OSCI
TLM working group as communication through func-
tion calls [7]. The goal is to abstract certain details of
the implementation and work these out at a later stage
in the design flow. TLM provides a way of minimizing
the number of events and amount of information that
have to be processed during simulation. Instead of driv-
ing the individual signals of a bus protocol, the goal is
to exchange only what is really necessary: the transac-
tion attributes and the data payload. Since TLM also
reduces the amount of detail the designer must handle,
it makes modeling easier. Common HDL languages en-
able using certain behavioral abstraction styles. While
this abstracts certain details of the computation below
the clock cycle level, it does not abstract the commu-
nication interfaces. TLM is using function calls to en-
capsulate the details of the communication interface.
This makes it easier to experiment and play with dif-
ferent communication architectures without having to
recode all the models. This leads to a much more effi-
cient coding style and faster simulation speed since un-
necessary simulation events are suppressed. Using the
SystemC interface methods mechanism, complex trans-
actions can be modeled with just a few function calls.

2.3. TLM Interconnect Models

So far the cycle accurate modeling of interconnect
models has been a major focus of TLM. Here each type
of communication architecture and bus protocol is rep-
resented as a set of function calls and events. At the
higher abstraction levels, the communication interfaces



can be unified to a single API for the Programmers
View use-case as well as a single API for the Archi-
tects View use-case. This kind of generality is not pos-
sible for the VV use case, because a cycle-accurate bus
model always exhibits a protocol-specific API.

In general we observe, that the accuracy and the
simulation speed of the bus model has a dominate im-
pact on the complete platform simulation and therefor
determines the TLM use model:

• A PV bus model used for software development
can be very abstract, but it needs to simulate very
fast. One PV bus model can represent all kinds of
buses.

• An AV bus model used for architecture exploration
needs to have some timing information to estimate
the performance of the system. A configurable AV
bus can represent a family of similar buses.

• A VV bus model used for HDL co-simulation needs
to be fully cycle accurate. Therefore a VV bus
model is specific for a particular bus architecture.

Transaction-level models interconnect mod-
els are predominantly developed by IP and ESL
tool providers, because the creation of fast and flex-
ible TLM bus models requires advanced modeling
know-how.

2.4. TLM Peripheral Models

As depicted in figure 3, we propose a generic mod-
eling pattern for TLM peripherals. According to this
pattern any TLM model should be split into three or-
thogonal parts: communication, behavior, and timing.
As outlined before, the communication part can be fur-
ther separated into a bus-specific transactor as well as
a generic register interface layer. The major motivation
to keep these parts independent is to improve flexibil-
ity and reuse.

Figure 3. Generic TLM Peripheral Pattern

The reusable register interface objects naturally rep-
resent platform storage elements like memories, regis-

ter files, and bit-fields. Common functionality like au-
tomatic address or bit decoding can be factored into
these objects to improve the modeling efficiency. Ad-
ditionally, the register objects provide synchronization
primitives to associate behavior with the storage ac-
cess. This behavior gets triggered when the storage ob-
ject is read or written. Enhanced implementations of
the register objects can also improve the analysis and
debugging support.

References

[1] T. Grötker, S. Liao, G. Martin, S. Swan. System Design

with SystemC. Kluwer Academic Publishers, 2002.

[2] K. Keutzer, S. Malik, A.R. Newton, J.M. Rabaey, A.
Sangiovanni-Vincentelli. System-level design: Orthogo-
nalization of concerns and platform-based design. IEEE

Transactions onComputer-AidedDesig of IntegratedCir-

cuits and Systems, 19(12):1523–1543, December 2000.

[3] Tim Kogel, Anssi Haverinen, James Aldis. OCP TLM for
Architectural Modeling, July 2005. OCPIP whitepaper.

[4] Adam Donlin. Transaction Level Modeling: Flows and
Use Models. In CODES+ISSS, September 2004.

[5] Frank Ghenassia. Transaction-Level Modeling with Sys-

temC: TLM Concepts and Applications for Embedded

Systems. Springer Verlag, 2005.

[6] Bart Vanthournout, Serge Goossens, Tim Kogel. Devel-
oping Transaction-level Models in SystemC, June 2005.
CoWare whitepaper.

[7] Adam Rose, Stuart Swan, John Pierce, Jean-Michel Fer-
nandez. Transaction Level Modeling in SystemC.


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



