Task-Accurate Performance Modeling in SystemC for Real-Time
Multi-Processor Architectures

M. Streubiihr, J. Falk, Ch. Haubelt, J. Teich
University of Erlangen-Nuremberg, Germany

Abstract

We propose a novel framework, called Virtual Process-
ing Components (VPC), that permits the modeling and sim-
ulation of multiple processors running arbitrary scheduling
strategies in SystemC. The granularity is given by task ac-
curacy that guarantees a small simulation overhead.

1. Introduction

Performance modeling for real-time multi-processor ar-
chitectures is a challenging task when designing hard-
ware/software systems. As SystemC! [1] is well suited for
designing such systems, it is desirable to also use SystemC'’s
simulation capabilities for performance evaluation.

A simulation approach that permits the ability to sim-
ulate a set of processors running an operating system in
parallel to hardware modules is described in [2]. A set of
software tasks is assigned to each processor and the end of
each atomic operation is augmented by an await function
call allowing for preemption. This results in a substantial
modification of the source code. The approach described
in [3] proposes a so-called Virtual Processing Unit (VPU)
running several tasks using a priority-based scheduler. Soft-
ware processes are modeled as timed Communication Ex-
tended Finite State Machines (t{CEFSM). The main limita-
tion lies in the modeling of time where each transition of a
tCEFSM requires the same number of processor cycles.

In this paper, we propose a novel framework, called Vir-
tual Processing Components (VPC), that supports the same
abstraction level as in [3] while providing efficient mecha-
nisms as presented in [2] at higher levels. The VPC frame-
work permits the simulation of a functional SystemC model
mapped onto multiple processors running arbitrary schedul-
ing strategies with a reasonable simulation overhead.

2. Virtual Processing Components

The Virtual Processing Components (VPC) framework
permits the task-accurate performance simulation of appli-

!'SystemC is a trademark of the Open SystemC Initiative.

3-9810801-0-6/DATE06 © 2006 EDAA

R. Dorsch, Th. Schlipf
IBM Deutschland Entwicklung GmbH

Functional : Architecture Mapping
Model i
! hedul
| Task |<-‘->| Component|<—> Scheduler Scheduler
! Proxy
1
SystemC : SystemC / XML

Figure 1. Interaction between a task and VPC.

cations mapped onto a real-time multi-processor architec-
ture in SystemC. Given a SystemC functional model, we
can derive the underlying directed task graph g = (V,E)
where vertices v € V represent tasks and edges e € E model
the communication channels. In the following, it is assumed
that a task v corresponds to a module in the SystemC design.

The key idea of the VPC framework is the modeling
of shared hardware resources like processors, busses, and
memories as Virtual Processing Components. Each Vir-
tual Processing Component is configured with a certain
scheduling strategy. The allocation of hardware resources to
form the multi-processor architecture is defined by an XML
configuration file. This configuration file also determines
the scheduling strategies associated with the allocated re-
sources as well as the binding of tasks to the resources. New
scheduling strategies can be easily integrated in the VPC
framework, by implementing the Scheduler interface.

For each SystemC functional model to be simulated us-
ing the VPC framework, the following steps are mandatory:
(i) The source code of the SystemC functional model must
be extended by compute function calls in order to couple
the application with the architecture. (ii) The VPC library
has to be linked to the functional model. (iii) The architec-
ture mapping must be specified in an XML configuration
file. (iv) The user has to provide stimuli for simulation is-
sues. By varying the architecture mapping parameters, the
designer is able to evaluate different designs. Note that a
modification in the architecture mapping does not require a
recompilation of the SystemC model.

Figure 1 shows the interaction of a task and a Compo-
nent. The task calls the compute function which issues a
schedule request to the SchedulerProxy. Finally, the Sched-
ulerProxy requests the selected Scheduler for a schedule de-



I Architecture Mapping
\

Functional Model

MFETCH MSTORE

MemBus: Component SP: SchedulerProxy

|
T T I T
| compute ‘ |

| i
I (MSTORE) . ready :
| = . - - -~ - -~— = .-
| oy | __assign ||
: compute i : . i
(MFETCH) ‘
=1 B--------
3 |
!
return ‘ ..
< oo 5
| )
! 1
| t “M. block |
‘ <“: =
SystemC ‘ SystemC / XML

Figure 2. Preemption mechanism for two
tasks competing for the same resource.

cision which is returned to the Component.

A Component is an abstraction from a hardware re-
source. Running several tasks on the same Component leads
to interwoven task activations. Such multi-tasking may lead
to additional task delays. To simulate the execution time
using a Component, the compute call must be inserted in
the source code of the task v € V right after the activation
function in front of the actual computation. As the simula-
tion of the task’s functionality is done in zero time, the user
defined execution time delay is elapsed completely during
each compute call. Thus, the granularity is task-accurate.
The following example illustrates the VPC approach:

while (true) {
int in = port_in->read();
r = Director::getInstance()
.getResource ("Actor A"); // binding
r.compute ("Actor A"); // simulate time
// functional code

// blocking read

port_out->write(result); // write

}

The task tries to read data from the input port. If the
data are available the task can be executed. Before simu-
lating the functional code, the task is bound via a Direc-
tor (getResource function call) onto a Component r and
calling compute on r. The compute method simulates
the execution time delay including any waiting and pre-
emption times by using the SystemC wait function. We
simulate preemption by interrupting SystemC wait func-
tion calls. This can be done using SystemC events. Calling
wait with atime and an event e will block until e is notified
or the time has elapsed. A preempting task has to notify this
event e. After the compute method returns, the functional
code is simulated in zero time (simulated time).

To provide different schedulers, a SchedulerProxy is
assigned to each Component. The SchedulerProxy has
its own execution context through extending sc_module

Table 1. Results for the InfiniBand HCA

| # stimuli | config. || latency | throughput | simulation time |
1 A 390ns 7.8/us 1.32s
1 B 488ns 6.2/us 1.20s
10 A || 1100ns 3.5/us 1.55s
10 B || 2000ns 2.4/us 1.57s
100 A || 2000ns 2.3/us 5.80s
100 B || 8900ns 2.0/us 5.83s

and a Scheduler object is associated with it. The Sched-
ulerProxy provides a unique scheduling interface including
addTask, removeTask, schedulingDecision. An
Scheduler implementation has to override these functions.

The communication between Component and Scheduler-
Proxy is presented by the example shown in Figure 2 for
two task MFETCH and MSTORE. This simple example al-
ready illustrates the ability to design complex preemptive
scheduling policies at a task-accurate level.

3. Results

We present results from applying our VPC framework to
a functional model of an InfiniBand Host Channel Adapter
(HCA) [4]. The model is composed of 31 tasks (SystemC
modules). The SystemC simulation model of the Infini-
Band HCA comprises of approx. 12,500 lines of code. Ta-
ble 1 presents performance results (average latency, average
throughput rate, depending on the number of stimuli, and
the simulation time (2.80 GHz, 512 MB RAM)) for two ex-
amples of multi-processor architecture mappings. The first
architecture A uses four Components whereas the second
architecture B only uses three Components. Note that it
is very simple to change the architecture mapping by just
editing the corresponding XML configuration file. In par-
ticular, it is not necessary to recompile the SystemC sim-
ulation model which is one of the key advantages of our
approach. For testing issues, both HCAs are triggered with
the same set of send and receive traces recorded from real
HCA traffic. We see that a complex system like the Infini-
Band HCA can be simulated in an amount of time which
is acceptable for many applications yet providing resource-
and contention-accurate multiprocessor modeling.

References

[1] T. Grotker, S. Liao, G. Martin, and S. Swan. System Design with
SystemC. Kluwer Academic Publishers, 2002.

[2] P.Hastrono, S. Klaus, and S. A. Huss. An Integrated SystemC Frame-
work for Real-Time Scheduling Assessments on System Level. In
Proceedings of IEEE Int. Real-Time Systems Symposium, 2004.

[3] T. Kempf, M. Dorper, R. Leupers, G. Ascheid, H. Meyr, T. Kogel,
and B. Vanthournout. A Modular Simulation Framework for Spatial
and Temporal Task Mapping onto Multi-Processor SoC Platforms. In
Proceedings of Design Automation & Test in Europe (DATE), 2005.

[4] T. Shanley. InfiniBand Network Architecture. PC System Architecture

Series. Addison-Wesley, 2003.



	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



