
A SW performance estimation framework for early
System-Level-Design using fine-grained instrumentation

Torsten Kempf, Kingshuk Karuri, Stefan Wallentowitz,
Gerd Ascheid, Rainer Leupers, Heinrich Meyr

Institute for Integrated Signal Processing Systems,
RWTH Aachen University, Germany

kempf@iss.rwth-aachen.de

ABSTRACT
The increasing demands of high-performance in em-
bedded applications under shortening time-to-market has
prompted system architects in recent time to opt for Multi-
Processor Systems-on-Chip (MP-SoCs) employing several
programmable devices. The programmable cores provide a
high amount of flexibility and reusability, and can be opti-
mized to the requirements of the application to deliver high-
performance as well. Since application software forms the
basis of such designs, the need to tune the underlying SoC
architecture for extracting maximum performance from the
software code has become imperative.

In this paper, we propose a framework that enables soft-
ware development, verification and evaluation from the very
beginning of MP-SoC design cycle. Unlike traditional SoC
design flows where software design starts only after the ini-
tial SoC architecture is ready, our framework allows a co-
development of the hardware and the software components
in a tightly coupled loop where the hardware can be refined
by considering the requirements of the software in a stepwise
manner. The key element of this framework is the integra-
tion of a fine-grained software instrumentation tool into a
System-Level-Design (SLD) environment to obtain accurate
software performance and memory access statistics. The
accuracy of such statistics is comparable to that obtained
through Instruction Set Simulation (ISS), while the execu-
tion speed of the instrumented software is almost an order of
magnitude faster than ISS. Such a combined design approach
assists system architects to optimize both the hardware and
the software through fast exploration cycles, and can result in
far shorter design cycles and high productivity. We demon-
strate the generality and the efficiency of our methodology
with two case studies selected from two most prominent and
computationally intensive embedded application domains.

1. INTRODUCTION
The rapidly growing and highly competitive embedded

system market is putting extreme demands on system ar-
chitects to deliver high performance, low power solutions
within very short design and development cycles. Such con-
flicting demands of short time-to-market and high perfor-
mance can only be met by incorporating reusability, and
hence, flexibility in the overall design. Since sufficient flex-
ibility and reusability can only be provided through pro-
grammable processor cores, designers in recent times have
started employing an increasing number of Multi-Processor
System-on-Chip (MP-SoC) platforms combining several pro-
grammable devices. Therefore, the amount of software and
its impact on the overall system performance is on the rise,
and is expected to remain so for some time. The increasing
importance of software has led to a situation where software

bottlenecks must be taken into account while designing the
underlying MP-SoC communication architecture and select-
ing the programmable cores.

Traditional system design tools and methodologies are
extremely inadequate to address these challenges. These
hardware-software co-design and co-exploration with (po-
tentially) several ISS (Instruction Set Simulators) and HDL
(Hardware Description Language) model of communication
architectures are too slow to execute and too difficult to
change. Fast simulation of the communication networks is
possible by task graph based simulators, but such modeling
frameworks do not permit validation of task functionalities.
Moreover, intra-task memory accesses are completely kept
out of consideration in such cases.

The recent and future MP-SoC platforms will require in-
tensive synergy and interaction between software and hard-
ware development from the beginning of design cycles. De-
signers will like to start with a piece of software, coarsely
partitioned into several tasks, and a very basic communi-
cation architecture, and then refine it iteratively depending
on simulation results. In each step they will like to split,
merge and change different tasks, reassign them to different
processing elements, adapt the communication architecture
accordingly, validate the overall system functionality and see
the effects. The primary requirement for such a design-flow
is efficient software simulation within System-Level-Design
(SLD) environments with accurate task latency and memory
access modeling. Unfortunately most SLD tools are not suit-
able for such design-flow, since they use task models that are
either very coarse and simplistic (e.g statistical task graph
simulation tools) or extremely slow and complicated (i.e.
ISS).

This paper presents a novel MP-SoC design framework
that fills this void by incorporating fast software perfor-
mance estimation techniques in a Transaction Level Mod-
eling (TLM) environment. The key idea behind this paper
is to use code instrumentation methods from the domain of
software profiling to estimate the task latencies and mem-
ory accesses accurately as shown in Figure 1. The framework
uses the powerful source code instrumentation engine of a
fine-grained software profiling tool to insert extra function
calls inside software tasks. When the instrumented tasks
are run inside the TLM environment, the extra function
calls keep track of the cycle counts for the task execution,
and intercept and forward the intra-task memory accesses to
the TLM environment which simulates them over the com-
munication infrastructure.

The automatically inserted instrumentation code provides
an interface through which tasks can interact with the un-
derlying communication network. Such interaction allows
designers to consider performance and memory access bot-
tlenecks of software execution while designing the commu-

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



Figure 1: Extended MP-SoC development

nication architecture. Moreover, the network configurations
and task structures are easy to change in the simulation
environment, and task simulation is at least an order of
magnitude faster than ISS. This results in fast refinement
cycles with different network and task organizations, and
rapid convergence to an optimal MP-SoC design.

After a discussion of the related work, we briefly present
the methodology of the TLM environment and the software
profiling tool used in our approach. In chapter 4 we in-
troduce our concept and explain in detail the operational
semantics of our framework, as well as the resulting design
flow. Section 5 provides two case studies to demonstrate the
capabilities of our methodology and the final section sum-
marizes our work and presents some future directions.

2. RELATED WORK
Increasing complexity and heterogeneity of current and

future MP-SoC architectures are forcing system architects
to use new design techniques. System-Level-Design (SLD)
is considered to be the appropriate way to cope with such
rising complexity. Recently a number of different frame-
works have been introduced to capture arbitrary Models of
Computation (MoC) for the purpose of system level mod-
elling and tooling [1, 2, 3]. The TLM framework used in this
paper is based on SystemC due to its broad user acceptance
and tool support.

The highest possible level of abstraction during design
space exploration is based on statistical analysis [4] of the
given application. Madsen et al. propose the combined mod-
eling of NoC and RTOS scheduling at this high abstraction
level, where the application tasks are only represented as
a set of timing budgets for processing and communication
without any functional information [5].

Otherwise complementary to our top-down refinement
based design flow, the component design based paradigm [6]
advocates bottom-up platform composition from a parame-
terizable IP library, containing common off-the-shelf (cots)
platform elements. Such IP-based approaches bring clear
advantages in rapid exploration and implementation of the
general purpose and control-flow portion of the application,
whereas our approach focuses on the execution of the data-
plane processing.

In the field of simulation based SoC architecture analysis,
the ARTEMIS [7] project is focused on automatic refine-
ment of Kahn Process Network algorithm models to archi-

tecture models for the purpose of design space exploration
and synthesis. The Modeling Environment for Software and
Hardware (MESH) [8] is concerned with modeling heteroge-
nous MP-SoC platforms above the cycle-level domain. Here
schedulers are considered the central modeling element to
capture the behavior of MP-SoC platform mappings.

Typically, the above mentioned SLD tools explore soft-
ware execution either on high abstraction level by anno-
tating estimated time consumptions, or evaluate the soft-
ware’s performance at low ISS level. Cai et al. propose a
method for profiling and design space exploration of system
architectures described in System-Level-Design Languages,
such as SpecC or SystemC. However the storage accesses
have to be explicitly modelled using predefined primitives in
such frameworks. Our focus is on software profiling in SLD
that does not require any explicit modeling of timing and/or
memory accesses and is able to bridge the gap between ab-
stract and fine-grained SW execution models. Therefore,
the current work focusses on SW profiling and performance
estimation at an intermediate level of abstraction.

Profiling, in itself, is a complex and well researched area,
and is often used for source code optimization in the do-
main of general purpose computing. Tools such as GNU
gprof/gcov [9] can provide users with per C statement or
function level execution statistics for identification of pro-
gram hot-spots. Unfortunately, such coarse grained infor-
mation is not suitable for performance evaluation of em-
bedded software. There also exists a number of assembly
level profiling tools, such as the SpixTool [10] for SPARC,
VTune [11] for Intel architectures or LISATek profiler [12]
tied with LISA based Instruction Set Simulators (ISS), that
can provide detailed processor specific information. How-
ever, such profilers are bound to specific architectures, and
not suitable for performance estimation in a general, target
processor independent way.

General, target independent, yet reasonably reliable soft-
ware performance estimation methods have been proposed
in [13, 14]. However, these tools do not provide estimates
of memory accesses which are extremely important for MP-
SoC design. [15] describes an approach for evaluating the
performance and memory access patterns of multimedia ap-
plications through profiling. But this tool is conceived for
algorithmic complexity evaluation, and its accuracy in per-
formance estimation of embedded software has not been re-
ported.

Tools such as [16] focus on estimating and counting mem-
ory accesses for power optimization, but ignore functional
validation and verification.

The tool most suitable for our purpose of combining early
SLD with fine-grained software execution is µP which has
been designed for pre-architecture exploration for customiz-
ing or designing an Application Specific Instruction-set Pro-
cessor (ASIP). As described in [17], the µP can provide fairly
accurate performance and memory access estimates w.r.t.
ISS and therefore, is the ideal vehicle for fast and early de-
sign space exploration.

3. DEVELOPMENT TOOLS
This section presents an overview of our TLM environ-

ment for early SLD space exploration. Then we introduce
the Micro-Profiler (µP) [17] that allows early software code
profiling and evaluation.

3.1 MP-SoC exploration framework
For early SLD space exploration we have already devel-

oped an MP-SoC exploration framework allowing simulation
of a large number of Processing Elements (PEs) and di-



verse communication architectures, like Networks-on-Chip
(NoCs). The framework is based on an extended y-chart
principle [18], where architectural models, timing models
and the functionalities of tasks can be independently devel-
oped. The communication protocols make use of a well de-
fined TLM interface compliant to the OCP IP standard [19].
Using our framework, seamless migration from abstract to
accurate models of both PEs and communication architec-
tures can be performed through an iterative refinement pro-
cess. Easy and fast refinement cycles are facilitated by XML
based configurations allowing system modifications without
the need of recompilation. A set of communication architec-
tures (like the AMBA AHB bus) as well as a set of PEs (like
the generic processor simulator called the Virtual Processing
Unit (VPU) introduced in [20]) are already available within
our framework.

Our framework is intended to be a workbench to assist the
user in easy and fast evaluation of different system design
decisions. It does not include automatic task partitioning,
restructuring or software-hardware partitioning capabilities.

The major limitation of our current framework is the user-
defined task timing model. The user has to manually pre-
compute and annotate the timing information in task bod-
ies. Such models often tend to be too optimistic, and mostly
neglect memory accesses due to SW execution.

The key element of this paper is to cope with this issue
and provide a fine-grained SW performance estimation. The
µP, introduced in the next subsection, is the perfect tool to
accomplish this goal.

3.2 Micro-Profiler
The micro-profiler (µP) is an application profiling tool

designed to assist the designers of Application Specific
Instruction-set Processors (ASIPs). Primarily, its goal is
to bridge the gap between an application/algorithm (as-
sumed to be given in C) and an ASIP architecture suitable
to achieve the maximum performance for the target applica-
tion. The µP provides the designer with important runtime
statistics of the application, such as the usage statistics of
different C operators for different data types, dynamic value
ranges of data types and constants, coarse performance es-
timates etc., for an effective pre-architecture exploration to
design or customize an ASIP.

The heart of µP is its fine-grained code instrumentation
technique that inserts extra function calls in the original
source of an application to collect pertinent runtime statis-
tics. The next section shows how such code instrumentation
can be used to connect software execution with a TLM en-
vironment to perform fast and effective design space explo-
ration.

4. SW INSTRUMENTATION TECHNIQUE
In this section we present the key ideas behind our design

flow and present the principle of our proposed work.

4.1 Key Ideas
As has been already mentioned in the introduction, the

primary target of our work is to provide reliable software
performance estimates in SLD that can be useful for making
effective design decisions. This subsection briefly describes
how and where we differ from existing SLD tools by high-
lighting the key aspects of the proposed design flow.

The key contribution of this paper is to apply fine-grained,
automatic source code instrumentation techniques for im-
plicitly modeling intra-task memory accesses and estimating

Figure 2: Task execution work flow

cycle counts. As shown in Figure 2, our instrumenter (based
on the fine-grained µP tool) inserts additional instrumenta-
tion code into the tasks. Such instrumentation code dynam-
ically increments cycle counters and redirects the intra-task
memory accesses to the communication architecture when
the corresponding task is executed on a VPU in our TLM
environment.

Figure 3 on the next page depicts the common approaches
to evaluate software code performance in today’s SLD tools.
At one extreme lies the abstract and fast statistical analysis
tools where task models consist of only (statistically) esti-
mated task timings. At the other end lies ISS based system
modeling, which is accurate, but too slow and too involved
for quick design space exploration.

As already mentioned in Section 3, [20] describes a task
simulation framework on generic processor models called
VPUs. One example of such a task is provided in Fig-
ure 3 as coarse-grained and manual instrumentation. This
framework provides a way of validating task functionalities
in early SLD, but the user still has to model the task tim-
ings explicitly. For example, in Figure 3, the user has to
manually add the function call consume at the end of the
task to increment the cycle count by a pre-computed value.
Moreover, the intra-task memory accesses are difficult and
tedious to model, and is therefore not usually considered.

The applied fine-grained software instrumentation, pro-
posed within this paper, is done on Three Address Code
Intermediate Representation (3-AC IR) level where all C
operators and the majority of memory accesses are visible.
Additionally, high level standard IR optimizations, such as
constant propagation, constant folding and loop invariant
code motion, can be performed on this IR. Such optimiza-
tions prevent chances of false prediction (such as counting
operations that will be eventually eliminated by compiler
optimizations) in estimating cycle counts and memory ac-
cesses. The accuracy of the software simulation is compa-
rable to that of ISS, but it is almost an order of magnitude
faster (as is shown by the experimental evidences presented
later). The next subsections provide the details of our in-
strumentation framework and usage examples.

4.2 Instrumentation Principle
Since all operators and a majority of the memory accesses,

are explicitly visible in 3-AC IR, our instrumenter, as shown
in Figure 3, only needs to add an extra C line after each IR
operation to increase the cycle counter by the operator cost
(obtained through GetOpCost). The user can assign each



Figure 3: SW performance estimation

operator an appropriate cost that can be configured keep-
ing the intended target processor in mind. For example, if
the user intends to run a task on a processor which has a
latency of three for multiplication and that of one for addi-
tion, then he can assign costs one and three to addition and
multiplication operators, respectively. The total estimated
execution time of the task is given by the following formula:

Cycles = Σn
i=1E(Oi)× C(Oi)

where E(Oi) and C(Oi) are the execution count and cost
for an operator Oi, respectively.

The instrumenter also inserts function calls to intercept
and report all accesses to different source level data ele-
ments, such as arrays, structures and global variables, found
in any application. Usually memory accesses, for an appli-
cation written in a high level language like C, originate from
four sources :

1. Accesses to global scalar and composite variables (i.e.
structures) and arrays

2. Accesses to a function’s local composite variables

3. Accesses to dynamically allocated memory on the heap

4. Accesses during building-up and cleaning-up of a func-
tion’s stack frame

The local scalar variables are usually allocated in regis-
ters, and the number of memory accesses caused by them is
often negligible. The 3-AC IR makes the first three kinds
of memory accesses explicit by converting all global accesses
and local composite accesses to pointer dereference opera-
tions.

An example is shown in Figure 3 where an array element
is accessed by first calculating its address, and then loading
it explicitly. The instrumenter only identifies this opera-
tion, and adds a function call that redirects this access to
the communication network. After simulation of the mem-
ory access over the communication network, task execution
continues performing other operations, and probably addi-
tional memory accesses.

One major limitation of our framework is that we cannot
realistically estimate the memory accesses made in function

prologues and epilogues. Therefore our approach can devi-
ate significantly in predicting the total number of memory
accesses when an application makes a considerable number
of function calls. However we can statistically analyze the
average number of memory accesses per function call for an
application for a particular target processor architecture and
increment the memory access counter accordingly.

4.3 Combined Execution
Figure 4 illustrates the execution of an instrumented task

in our SLD framework. After instrumentation, the func-
tionality of the task remains unchanged. However, after
execution of each step, additional code (e.g. lines 3,5 and 7
in Figure 4) increases the cycle counter by the cost of the
executed operation. If the user wants to roughly estimate
the advantages/disadvantages of using one processor over
another for the task execution, he needs only to change the
costs of these operators in a configuration file. These dy-
namically calculated cycle counts are then returned as task
latencies to the communication framework.

The simulation of intra-task memory accesses (as done by
the LOAD function in line 9 of Figure 4) is a little more
involved. The LOAD function is invoked with a memory
address, and is expected to return the value contained in
this memory address. At the same time, it is expected to
simulate this memory access over the communication net-
work and increment the cycle counter at the end of this
simulation.

The problem, however, is that the task is compiled and ex-
ecuted on a host machine, and during execution, it accesses
memory regions over which the simulation framework has
no control. The instrumenter solves this problem by adding
some initialization code that creates a map between the
variable names and their runtime host machine addresses.
When a memory access is made, functions such as LOAD
can retrieve the name of a variable from this map based
on the address supplied. It then consults another memory
map that contains the user defined memory location for that
variable in the MP-SoC memory subsystem. The communi-
cation network is simulated with this SoC memory address
and the network activities and cycle count increases are duly
noted.

For example, in Figure 4, the array x can be mapped to
an address Ahost in the host machine by the host compiler.
At the same time, the user might want to see the effect
of putting this element in address Asoc (= 0x100) - some
location residing inside, say, a shared memory accessed over
a common bus. This can be done by adding an entry in the

Figure 4: Simulation environment



configuration file. During execution, the LOAD function is
called with the address of Ahost + a. LOAD first maps this
address to the array variable x, and then simulates an access
to the corresponding MP-SoC memory region starting with
Asoc.

Such configurable memory mapping enables the user to
explore different memory architectures very easily. For ex-
ample, in Figure 4, the user can experiment with the perfor-
mance of the communication architecture, its load character-
istics, the overall memory access latencies and the resulting
slowdown/speed-up of the task, by putting the variable x in
shared or dedicated memories, accessed over different com-
munication architectures etc. by editing a few XML files.

5. CASE STUDY
This section presents case studies to demonstrate the pos-

sible uses of our techniques in SLD. Any SLD tool for rapid
and early design space exploration must be benchmarked
with the following criteria in mind

1. Speed and modeling efficiency. Tools for early
design space exploration must have a clear advantage,
in terms of speed and ease of applying model changes,
over techniques suitable for later design phases.

2. Accuracy of the results. Although at early stages
of design it is difficult to quantify the exact perfor-
mance benefits of various design choices, the relative
merits/demerits of different decisions must be clearly
visible.

3. Usefulness that is characterized by the kind of in-
formation/design hints the user can obtain from the
tool and how easily that can be translated to a design
decision.

The following two subsections provide two case studies to
rate the current work w.r.t. the above parameters. The final
subsection summarizes the results of the case studies.

The applications we have selected for the case studies
come from network processing and speech processing - two
of the most prominent embedded application domains. The
first algorithm is the well known blowfish symmetric key
block cipher algorithm. The second one is G.729 - an ad-
vanced speed processing algorithm. The SoC architecture
chosen for the case study consists of a single MIPS32 [21]
processor core connected to a flat memory over a single
AMBA AHB bus.

Each application has been instrumented through µP and
converted to tasks that can be run on our framework. The
tasks have been run on a VPU parameterized according to
the MIPS32 characteristics. We compared the results ob-
tained through our framework to a reference system running
one LISATek based MIPS32 Instruction Accurate ISS and
having the same memory architecture. Since our main goal
is to demonstrate the usage scenarios of our tools, we only
suggest hints for improving the communication architecture.

5.1 Blowfish
The Blowfish algorithm, designed by B. Schneier, [22] is a

symmetric block cipher algorithm with 64-bit block size and
variable length keys (up to 448 bits). Our implementation of
the algorithm consists of three different functions initializa-
tion, encryption and decryption. The accuracy comparison
of the instrumented code for each function w.r.t. that of
MIPS ISS is summarized in Figure 5. The instrumented
code running on the VPU deviates only by 8% and 14%

Figure 5: Results of the blowfish algorithm

in predicting the execution cycles and memory accesses, re-
spectively. Such estimates fall well within any reasonable
limit of tolerance for early design space exploration. The
simulation speed is at approximately 2.3 Mcycles/sec, which
is a factor of 9.1 faster compared to instruction accurate ISS
based execution.

A closer look at the simulation results reveals that more
than 80% of the intra-task memory accesses go to array vari-
ables commonly known as S-boxes. Such a biased memory
access pattern dictates that these S-boxes should be moved
to a fast memory (such as a scratch-pad) connected over a
local bus to the processor to reduce memory latencies and
power consumption. Following this hint we added an ex-
clusive memory and mapped the S-Boxes into that. Then
we performed simulations of the application with different
memory access latencies. The results are illustrated in Ta-
ble 1 which shows that the decryption algorithm can have
significant speed-up by merely moving the S-Boxes to the
exclusive memory. Such changes to the architecture require
modifications of less than 10 lines in the XML configuration
files and therefore can be performed in a couple of min-
utes. This demonstrates the fidelity of our proposed frame-
work in assisting the system architect to perform simulation,
modification, validation and exploration of design decisions
quickly.

memory latency in cycles execution time of
(for S-Box variables) one decryption operation

10 100%
5 71.5%
3 62.2%
1 57.4%

Table 1: Effect of S-Box mapping

5.2 G.729
The G.729 algorithm [23] is a fairly complex 8-kbps

Conjugate-Structure Algebraic-Code-Excited Linear Predic-
tion (CS-ACELP) speech compression algorithm. This au-
dio data compression algorithm is standardized by the In-
ternational Telecommunication Union (ITU) and is mostly
used in Voice-over-IP (VoIP) products. The speed and cy-
cle count comparisons for this algorithm w.r.t. MIPS32 ISS
are shown in Figure 6. The execution cycle estimates are
off by approximately 7.5%, whereas the deviation in mem-
ory access estimates is slightly higher at 20%. This relatively
high (than blowfish) error in memory access profiling results
due to large chain of function calls, and hence large num-
ber of loads and stores in function prologues and epilogues,



Figure 6: Results of the G.729 case-study

which is difficult to estimate at 3-AC IR level. The simula-
tion speed is again increased by a factor of approximately 9
compared to instruction accurate ISS based execution.

A deeper look at the memory access behavior of the ap-
plication showed the following characteristics

• 40% of all memory accesses occur in reading and writ-
ing the input and output data streams, respectively.

• During the frame decode operation, generation of the
excitement vector [23] causes approximately 20% of all
memory accesses.

Following these hints, the user might be tempted to put
the input and output data-streams and the excitement vec-
tor arrays in fast and local memories. The impact of this
decision on the overall system performance can be easily
evaluated by changing the network configuration files and
the corresponding memory maps.

5.3 Result Summary
This subsection summarizes the results obtained through

our tools. The tools can achieve from 80% to 98% accuracy
in cycle count estimates and memory profiles. Moreover, the
speed of profiling is at least one order of magnitude faster
than that of ISS. This makes it ideal for early design space
exploration.

Our framework permits a variety of experiments with the
software and the communication architecture. For example,
the user can see the effects of diverse memory architectures
by simply changing the memory map configurations files, or
he can evaluate the results of having a different processor
core by simply changing the costs of different operators.

Our tools provide an excellent framework for Soft-
ware/SoC co-simulation from very early stages of design.
The first advantage is that the software development can
start right from the beginning of system design and does
not need to wait till the initial architecture is finalized. This
can result in significantly shorter design cycles. Moreover,
hints from software evaluation can be easily incorporated
into hardware development and its effects seen from early
design stages. Such synergetic development is a must for
future MP-SoCs.

6. CONCLUSION
In this paper, we propose an approach that assists simul-

taneous software and hardware development, functional val-
idation and evaluation at SLD. The main contribution of
this paper lies in combining two different worlds — early

task level MP-SoC architecture exploration, and software
profiling for performance estimation — into a single frame-
work. The combined tool-set allows easy and fast design
space exploration with high simulation speed and modeling
efficiency, and enables system architects to design and adapt
SoC communication architectures according to the require-
ments of software. The combined software-hardware simu-
lation facilitates a stepwise refinement of both the software
task model and the SoC architecture from the very begin-
ning of the design cycle. Two case studies show the efficiency
of the design flow, and demonstrate how the tool-set can be
used in an iterative refinement process.

The major shortcoming of our approach is the inability
of our software profiler to provide reliable cycle count es-
timates for non-RISC architectures, especially VLIW and
super-scalar machines. Our future work will mostly concen-
trate on this issue. Taking effects of Operating Systems (OS)
and Real-Time services into our performance estimation is
another promising area of work.

7. REFERENCES
[1] T. Grötker, S. Liao, G. Martin, S. Swan. System Design with

SystemC. Kluwer Academic Publishers, 2002.
[2] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone,

A. Sangiovanni-Vincentelli. Metropolis: An integrated
electronic system design environment. IEEE Computer,
36(4):45–52, April 2003.

[3] D. Gajski, J. Zhu, R. Dömer et al. SpecC: Specification
Language and Methodology. Kluwer Academic Publishers,
2000.

[4] L. Thiele, S. Chakraborty, M. Gries, S. Kunzli. A framework for
evaluating design tradeoffs in packet processing architectures.
In Proc. of the Design Automation Conference (DAC), 2002.

[5] Jan Madsen et al. Network-on-chip modeling for system-level
multiprocessor simulation. In Proceedings of the 24th IEEE
International Real-Time Systems Symposium RTSS03, pages
82–92, December 2003.

[6] M.-A. Dziri, W. Cesio, F.R. Wagner, A.A. Jerraya. Unified
Component Integration Flow for Multi-Processor SoC Design
and Validation. In ”Proc. Int. Conf. on Design, Automation
and Test in Europe(DATE)”, 2004.

[7] A.D. Pimentel, L.O. Hertzberger, P. Lieverse, P. van der Wolf,
E.F. Deprettere. Exploring Embedded-Systems Architectures
with Artemis. IEEE Computer, 34(11):57–63, November 2001.

[8] J.M. Paul, A. Bobrek, J.E. Nelson, J.J. Pieper, D.E. Thomas.
Schedulers as Model-Based Design Elements in Programmable
Heterogeneous Multiprocessors. In Proc. of the Design
Automation Conference (DAC), 2003.

[9] GNU. http://www.gnu.org/.
[10] Sun Microsystems. SpixTools: Introduction and User’s

Manual, TR-93-6.
[11] Intel. VTune.
[12] LISATek Product Line. CoWare, http://www.coware.com.
[13] E. Harcourt P. Giusto, G. Martin. Reliable estimation of

execution time of embedded software. In ”Proc. Int. Conf. on
Design, Automation and Test in Europe(DATE)”, 2001.

[14] E. Harcourt et al L. Lavagno, J. R. Bammi. Software
performance estimation strategies in a system-level design tool.
In ”Proc. Int. Symp. on Hardware/Software Codesign
(CODES)”, 2000.

[15] M. Mattavelli M. Ravasi. High-level algorithmic complexity
evaluation for system design. In Journal of Systems
Architecture, no. 48, Elsevier, 2003.

[16] Power Escape. http://www.powerescape.com/.
[17] K. Karuri et al. Fine-grained Application Source Code Profiling

for ASIP Design. In 42nd Design Automation Conference,
Anaheim, California, USA, June 2005.

[18] E. Bensoudane P.G. Paulin, C. Pilkington. Stepnp: A
system-level exploration platform for network processors. IEEE
Design & Test of Computers, 19(6):17–26, Nov-Dec 2002.

[19] OCP IP. http://www.ocpip.org/.
[20] T. Kempf, T. Kogel et al. A Modular Simulation Framework

for Spatial and Temporal Task Mapping onto Multi-Processor
SoC Platforms. In Proc. of the Conf. on Design, Automation
& Test in Europe(DATE), Munich, Germany, March 2005.

[21] MIPS Technologies Inc. http://www.mips.com/.
[22] B. Schneier. Applied Cryptography. Addison-Wesley Publishing

Company, Boston, June 1996.
[23] Recommendation G.729. http://www.itu.int/.


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



