
Communication and Co-Simulation Infrastructure
for Heterogeneous System Integration

Guang Yang1, Xi Chen2, Felice Balarin3, Harry Hsieh2, Alberto Sangiovanni-Vincentelli1
1 University of California, Berkeley, CA 94720, USA
2 University of California, Riverside, CA 92521, USA

3 Cadence Berkeley Laboratories, Berkeley, CA 94704, USA

Abstract

With the increasing complexity and heterogeneity of em-
bedded electronic systems, a unified design methodology at
higher levels of abstraction becomes a necessity. Meanwhile,
it is also important to incorporate the current design prac-
tice emphasizing IP reuse at various abstraction levels. How-
ever, the abstraction gap prohibits easy communication and
synchronization in IP integration and co-simulation. In this
paper, we present a communication infrastructure for an in-
tegrated design framework that enables co-design and co-
simulation of heterogeneous design components specified at
different abstraction levels and in different languages. The
core of the approach is to abstract different communication
interfaces or protocols to a common high level communi-
cation semantics. Designers only need to specify the inter-
faces of the design components using extended regular ex-
pressions; communication adapters can then be automati-
cally generated for the co-simulation or other co-design and
co-verification purposes.

1. Introduction

As the complexity of electronic systems keeps increasing,
people are seeking design methodologies with higher pro-
ductivity. The system level design methodology, based on or-
thogonalization of design concerns, as well as pre-defined
platforms, has therefore been proposed for the next major
productivity gain [8]. Meanwhile, there is a wide consensus
that intellectual property (IP) reuse is the key to most poten-
tial solutions. No design team or even company can still af-
ford developing from scratch everything in an entire system
under the short time-to-market. Because of this trend, there
is a huge emerging demand of IPs with different function-
alities and at various abstraction levels. IPs at different ab-
straction levels are usually specified in different languages,
for instance, C/C++ and Simulink are used for generic algo-
rithms; SystemC for behavior level and transaction level IPs;
Verilog/VHDL for register transfer level and gate level IPs.

Although there are many IPs available on the market, de-
signing a system by IP integration is still a challenging task.
The main difficulty comes from two aspects:

• Unable to easily integrate IPs at different abstraction
levels. The communication between IPs is not well-
defined or has no obvious correspondence. Sometimes,
even in the same abstraction level, the granularity of the
communication still does not match.

• Unable to verify the system efficiently. In particular,
there is not a systematic and integrated design environ-
ment to handle co-simulation of IPs across multiple ab-
straction levels and specification languages.

To solve these problems, we propose a generic IP inte-
gration infrastructure with event representation of services
and communication adaptation based on regular expressions.
The communication interfaces at different levels of abstrac-
tion are specified with regular expressions, and are abstracted
(adapted) to a common semantics level. IP blocks or design
components, regardless of their abstraction levels or speci-
fication languages, can then be integrated together and co-
simulated as long as their interface specifications are avail-
able. In order to abstract different interface specifications
to the common formal communication semantics, commu-
nication adapters are automatically generated for the inte-
gration, co-simulation, or other co-design and co-verification
purposes.

This work is based on Metropolis [5] design framework
and methodology, which aim to provide an integrated co-
design environment that supports heterogeneous IPs from
different IP providers, at different levels of abstraction, and
specified in different languages. One of the most impor-
tant features of Metropolis that greatly enhances the abil-
ity to explore design space is function-architecture mapping.
The function of a system describes what needs to be imple-
mented. The architecture specifies what can be implemented.
They are specified and refined separately at a high abstrac-
tion level, and are eventually mapped together by synchro-
nizing the functional components to the architectural com-
ponents, which means if only one of the two synchronized

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



events can be scheduled to occur, the process containing the
event has to be blocked until the other event occurs also. In
the rest of this paper, we will present how we support com-
munication and mapping between heterogenous design com-
ponents in a unified design framework. Another important
feature in Metropolis is the ability to apply declarative con-
straints at the system level upon design components and their
events. Designers can choose imperative programs, declara-
tive constraints, or both due to convenience to specify behav-
iors. The mixture of them is regarded as the entire specifi-
cation. Once a unified interfacing infrastructure is available,
they can be easily applied to heterogenous design compo-
nents.

The rest of the paper is organized as follows. Section 2
discusses related work. In Section 3, we describe the formal
communication semantics. In Section 4, we propose a com-
munication and co-simulation infrastructure for system level
modeling with IP integration. Then, we demonstrate the ef-
fectiveness of our approach with a real world design exam-
ples in Section 5. Section 6 concludes the paper.

2. Related Work

The MILAN project [4, 10] employs a model-based so-
lution for hardware/software co-design and co-simulation.
Different simulators can be integrated once different simula-
tion models are interpreted into a common model supported
in MILAN. Our approach mainly focuses on unifying com-
munication semantics between models at different levels of
abstraction. Much work has been done to solve communi-
cation gaps for hardware/software co-simulation, mostly fo-
cused on the register transfer level such as ISS and HDL. The
existing solutions are usually targeting some particular de-
sign languages or simulators, and the connections across dif-
ferent platforms are usually done manually [3, 14, 9]. In this
work, our focus is a generic co-design framework for hetero-
geneous design components regardless if they are software,
hardware, or both.

In [6], communication adapters between the transaction
level and register transfer level, which are called transactors,
can be automatically generated from interface specification
in regular expressions. This work is mainly targeting Sys-
temC and Verilog co-simulation within a single environment
such as NCSim or ModelSim. Using regular expressions to
specify IP interfaces for the purpose of generating simula-
tion monitors has been studied and presented in [12]. Pro-
tocol Compiler [13] is a design environment for designing
and generating controllers in HDLs from a graphical speci-
fication of communication protocols. Our work is targeting
a generic design framework that allows high level modeling
with integration of heterogenous design components written
in almost any languages.

CORBA [2] provides a middle communication layer
that enables interoperability between objects from differ-
ent operating systems, programming languages, and net-

works. CORBA is mainly software oriented and is powerful
enough to take care of almost everything between soft-
ware objects and underlying operating systems, so it might
not be efficient to use directly in the embedded system
co-design. Therefore, we use a more generic communica-
tion mechanism, inter-process communication (IPC), in our
experiment.

3. Communication Semantics Formalism

In different abstraction levels and in different program-
ming languages, the semantics of communication differ very
much. e.g. in SystemC transaction level models, communi-
cation is done via port-interface calls; in Verilog RTL mod-
els, signals can be sent across modules to achieve commu-
nication. To unify them, we need to build a common se-
mantics domain among all abstraction levels and applica-
ble to all programming languages. We chose tagged signal
model(TSM)[11]. In TSM, an event is a member of T ×V ,
where T is a set of tags and V is a set of values. In this paper,
we take T as time and V as action×process, where an action
identifies a location in the description, e.g. a line of code; a
process indicates the active entity that executes the action[5].
Depending on abstraction levels, T means differently, such
as an event ordering at the behavior level, or the exact tim-
ing at the register transfer level. Regardless of the abstrac-
tion levels, a model always generates a sequence of events. In
Metropolis, we abstract a sequence of events to a pair of rep-
resentative beginning and end events, which is defined as a
service. Following this idea, we can always transform a com-
munication semantics into a Metropolis service. The commu-
nication between two design components can then be defined
as one using services provided by the other.

A design component provides services through its input
ports and utilizes services through its output ports. Each port
is associated with a service. To clearly demonstrate the com-
munication semantics in terms of services, see Figure 1 and
Table 1. In Figure 1, ob and oe represent a service associ-
ated with the output port; ib and ie represent a service as-
sociated with the input port. For input ports, there are two
kinds of services defined, active and passive. An active in-
put service runs in its own thread. The calling of the active
service requires the synchronization between the output ser-
vice and the input service. This is one of the key concepts,
function-architecture mapping, embodied in Metropolis de-
sign methodology[5]. A passive input service can only be
initiated by an output service. Both the input and output ser-
vices run in the thread of the output service. Note that for
output ports, services are always active. The last row in Ta-
ble 1 captures the timing relation, which is the key of the for-
mal communication semantics. Intuitively, it says that active
input service and active output service should execute simul-
taneously. While passive input service should be invoked by
active output service and upon finishing, return to active out-
put service.



Figure 1. Service Example in Communication

event =< time,action,process >

Communication Active Input Passive Input
ib =< tib,aib,IP2 > ib =< tib,aib,p >

Semantics ie =< tie,aie,IP2 > ie =< tie,aie ,p >
tib ≤ tie tib ≤ tie

Active Output

tob = tib ≤ toe = tie
tob ≤ tib ≤ tie ≤ toeob =< tob,aob,IP1 >

oe =< toe,aoe,IP1 >
p = IP1

tob ≤ toe

Table 1. Formal Communication Semantics

For design components at different levels of abstraction,
according to the classification of their communication se-
mantics, we can abstract their communication interfaces or
protocols to a common higher level semantics with services
denoted by a beginning event eb =< tb,vb > and an end
event ee =< te,ve >, where tb ≤ te.
1. Register Transfer Level: Usually, register transfer level
and lower level design components are described in HDLs
such as Verilog or VHDL. Their communication is done via
signals, which correspond to physical wires and voltage tran-
sitions. There are two cases when abstracting signals into a
service.

(1). One event or one signal occurring on a wire corre-
sponds to a service. For example, a system reset service could
be triggered by an asynchronous reset signal. In this case,
we split the single reset event e′ =< t,v > into two separate
events e′b =< t,v > and e′e =< t+∆,v >, where ∆ is a posi-
tive infinitesimal, i.e. infinitely small but positive real num-
ber. This is the same trick played by Verilog/VHDL simula-
tors. In this case, it actually implies that e′e occurs infinitesi-
mally close but after e′b, i.e. tb = te = t.

(2). A set of signals work altogether to perform a com-
munication task. This usually occurs when there is a
communication protocol, such as memory access or
bus transaction. During an entire communication ses-
sion, the set of signals will generate and receive a se-
quence of events < e1,e2, ...,en >, whose time tags satisfy
t1 ≤ t2 ≤ ... ≤ tn. Up to the protocol or designer, the se-
quence of events can be abstracted to a service with a begin-
ning event ei and an end events ej, where 1 ≤ i < j ≤ n, and
ti = tb , tj = te.
2. Transaction Level: In a transaction level model, services
are usually modeled as function calls. A function naturally
generates a sequence of events < e1,e2, ...,en >, and is usu-
ally represented by the first and the last events in the se-

quence. i.e. ei = e1 and ej = en. Therefore, the communica-
tion semantics is t1 = tb and tn = te.
3. Behavior Level: Behavior level often just dictate the al-
gorithm to solve a problem without detail correspondence to
low level data or timing. It is very likely that a service is just
a portion of the system behavior. Designers again need to ex-
tract the beginning and end events representing the portion
out of the sequence of events generated by the system. After
the extraction, it is exactly like the case in transaction level.
4. Arbitrary Mixture of Abstraction Levels: The definition
of services are powerful enough to capture arbitrary combi-
nations of abstraction levels. For example, a few transactions
at a lower granularity might correspond to a single transac-
tion at a higher granularity, or a set of services can be com-
bined to form another higher level service. The formalism is
the same as in previous two cases, where the beginning and
end events are extracted and used to present the new service.

4. Communication and Co-Simulation Infras-
tructure

4.1. Co-Simulation Flow

Generator
Adaptor

Adaptor IP BlockCommnication
Relation

Constraints

Regular Expression−based
Comm Protocol Description

Co−Simulation
Engine

Mapping Relation Language Dependent Simulator

Figure 2. Co-Simulation Work Flow

The proposed co-simulation work flow is shown in Fig-
ure 2. The bold boxes are provided by designers. The reg-
ular bordered shapes are tools. The dotted boxes are gen-
erated by tools. The co-simulation infrastructure consists of
an automatic generator for communication adapters and the
co-simulation engine in charge of event synchronization be-
tween design components. Designers specify the communi-
cation protocols using regular expressions. IP blocks and the
automatically generated adapters form the new IPs then can
communicate at the service level. The service level commu-
nication relations (connections) between IP blocks are also
provided by designers. In addition to the regular commu-
nication, mapping relations and declarative constraints are
taken into account all together at simulation stage by the co-
simulation engine.



4.2. Specification

In the specification of the communication interfaces at dif-
ferent levels of abstraction, there are four issues that we need
to solve: event order, data mapping, service mapping and
event generation.

4.2.1. Event Definition There exists a standard def-
inition of a Metropolis event, which is a three tuple
e :< time,action,process >. In order to capture explicit data
mapping, we add additional events, i.e. em : Dc ↔ Ds, where
Dc is the datum/variable in the communication protocol be-
ing abstracted and Ds is the variable in the scope of begin-
ning or end event of a service (The scope of an event includes
all variables visible at the action of the event.) This defini-
tion captures the data correspondence between the commu-
nication protocol and the service.

Generally speaking, the above definitions work for all im-
perative languages, such as C, C++, SystemC, and HDLs.
However, if we look at the native communication mecha-
nisms in these languages, we can tune the definition to make
it better fit in the languages. For example, C and C++ com-
municates via function calls, which are consistent with the
service definition. SystemC communicates through transac-
tion ports, which are similar to function calls. HDLs commu-
nicate via hardware signals. Events flowing on signals have
not only a time stamp, but also the new value of the signal.
We can extend the event definition for this case and let it
carry the value as well, i.e. e(v), where v ∈ {0,1,DC}. We
use DC and ∗ interchangeably to denote a don’t-care value.
Similarly, for a multiple-bit signal, any event occurred in in-
dividual bit is considered an event for the entire signal.

4.2.2. Event Order When abstracting an event or a set of
events to a service, especially when there exists a complex
communication protocol, the event order needs to be spec-
ified. This is the template to identify the execution and in-
vocation of the service. Therefore, it can be correctly re-
layed to the corresponding design component. To specify
the event order, we chose to use regular expressions. First, it
is the most well-known technique for specifying sequences,
which most designers feel comfortable with. Second, it can
be extended easily to have strong enough expressive power
to specify most communication interfaces at various abstrac-
tion levels[1][7][12].

The alphabet of the regular expression is
Σ= {B,E,e(v),em}, where B and E are two special
events indicating beginning and end events of a service re-
spectively, e(v) are events on all signals, and em are the
data mapping between a communication protocol and a ser-
vice. Designers can specify the event ordering in the com-
munication protocol using e(v). For example, in the simplest
hand-shaking protocol, we have req, ack and go sig-
nals. Suppose we use value one to denote the low-to-high
event of the signals. Then we can use the expression

{req(1),ack(1),go(1)} to specify the hand-shaking proto-
col.

4.2.3. Service Mapping Having the event ordering, we
need to decide how the event sequence should correspond
to a service represented by a beginning and an end events.
Designers could insert B into the regular expression where
they think the service should begin once the prefix event se-
quence has been detected. Similarly, E is inserted as the end
of the service. For the hand-shaking example, it could be
{req(1),ack(1),B,go(1),E}.

4.2.4. Data Mapping Another very important ingredi-
ent of a service is data. Let’s modify the hand-shaking
protocol and let it send a datum out and receive a pro-
cessed datum in after the ready event occurs. On the
service side, there are corresponding variables input
and out put. If we look at the protocol as a function
call, out is the function argument and in is the re-
turn value. The communication protocol now becomes
{req(1),ack(1),B,out ↔ input,ready(1), in ↔ out put,E}.
Note that naturally the data transfer for a service should hap-
pen right after event B and right before event E, but this
is not a hard requirement. Designers can insert data map-
ping anywhere needed in the regular expression.

4.2.5. Event Generation The semantics of services we
are proposing is at a virtual level, which could sweep from
below register transfer level to above behavior level. In re-
ality, it is often the case that when we move from a lower
abstraction level to a higher abstraction level, we lose infor-
mation, e.g. timing. Conversely, when going from a higher
abstraction level to a lower abstraction level, we need to syn-
thesize with additional information. In bridging the commu-
nication across IPs, the adapter receives all the input events
and detect event sequence due to regular expressions. At the
same time, adapters will generate output events (including
data mapping) at the ‘right’ time. If the design is not sensi-
tive to the exact timing but to the event ordering, we can de-
pend on the regular expression to generate output events at
the correct points. Otherwise, if the timing is crucial, we can
augment the regular expression to include that information as
well.

4.3. Discussion on Expressiveness

In this paper, it is not our primary goal to extend regu-
lar expression such that it is expressive enough to describe
any communication protocols. In fact, there are some exist-
ing work to do that. For instance, in [12], two extensions
are found helpful to express protocols with state storage and
pipelining. PSL also extends the regular expression in a sim-
ilar way plus the more versatile repetition expressions. Any
of them could be chosen to specify communication protocols
based on their expressiveness and convenience. Our infras-



tructure is not biasing one over another and could accommo-
date all.

4.4. Implementation

The most complicated step in the implementation of the
co-simulation infrastructure is the generation of adapters.
The input of the generator includes the four pieces of in-
formation described in Section 4.2. From a regular expres-
sion, we can generate an equivalent finite automaton. The al-
gorithm to do that can be found in any introductory com-
puting theory books. In the generated finite automaton, a
state represents a particular prefix matching; edges are la-
beled with events. If the events are inputs to the adapter, on
observing such events, the automaton transfers from the cur-
rent state to the next state; if the events are data mappings
or need to be generated, the adapter will do so and trans-
fer to the new state. Among all the states, an initial state is
always the place from which event matching starts; accept-
ing states indicate the successful matching of regular expres-
sions. In later co-simulation, the finite automata perform the
adaptation of communication protocols by detecting event
sequences, passing mapped data and generating events as
needed.

Because IP blocks can be specified in any design lan-
guages and at any abstraction level, each communication
adapter associated with an IP block needs to include two
parts, a language dependent part that can directly commu-
nicate with the IP block and a language independent part that
has a common service level interface and can be synchro-
nized by the co-simulation engine. Since the generated finite
automaton needs to handle signals from the original IP block,
we put it in the language dependent part of the adapter. In
our experiment, we have implemented our co-simulation en-
gine using standard C++, so is the language independent part
of an adapter. Between co-simulation engine and adapters,
the communication is implemented with UNIX Inter-Process
Communication (IPC) library. For example, in the case of
Verilog, the automaton is generated in Verilog; Programming
Language Interface (PLI) is used to access the IPC at the op-
erating system level to communicate with co-simulation en-
gine. VHDL, Matlab, and Metropolis all have standard inter-
faces that can talk with the operating system. We believe that
there is no technical difficulty in using any other modern lan-
guages or platforms for implementation.

5. Case Study

We use a JPEG encoder design to illustrate the ef-
fectiveness of our approach for the communication and
co-simulation infrastructure. In Figure 3, the upper por-
tion shows the high level functional model of a JPEG en-
coder consisting of discrete cosine transform (DCT), Quan-
tization and Huffman encoder. The lower portion is an ab-
stract dual-processor architecture. Each micro-processor has

CPU CPU

DCT

SRAM SRAM

Huffman

Fu
nc

tio
n

A
rc

hi
te

ct
ur

e

Quant

B U S

SDRAM

Verilog
Object

C
Object

mmm 
Object

Adaptor

Mapping

Regular
Comm.

Figure 3. JPEG Encoder Block Diagram

a local SRAM module. They also connect to a bus to com-
municate with each other through another SDRAM memory
module. Figure 4 shows the abstraction level and design lan-
guage for each block.

In this case study, we apply a particular mapping between
the function and architecture. Because the architecture has
two processors, we partition the function into two stages
and let each stage run on a separate processor. This way
we achieve a two-stage pipelined JPEG encoder. We group
the Quantization and Huffman encoder together and let them
share one processor. The DCT block uses the other. Note
that mapping is a very flexible and efficient design explo-
ration step in our system level design methodology. There are
mechanisms in Metropolis to map two separate services onto
a single service. Designers can even specify the scheduling of
the two services using either imperative schedulers or declar-
ative constraints. Then, the co-simulation engine is able to
take the scheduling into account. Since these are not the fo-
cus of this paper, we will not discuss them in details.

Mapping

DCT

 Quant, Huffman

C

Behav.L

Trans.L

Regular
Comm.

Metropolis MetaModel

Bus, CPU

RTL

Verilog

Cache, Mem

Figure 4. Design Component Classification

In this example, there exist multiple abstraction lev-
els, multiple design languages, both regular communi-
cations and mappings. In order to make design compo-
nents talk across abstraction levels, adaptors are gen-
erated based on the communication protocol descrip-
tion and inserted between abstraction levels. Figure 5
shows the SRAM timing diagram for read operation.
The following regular expression captures this proto-
col, which can be used to adapt to a read service with addr
as the address argument and data as the memory data.
{B,data read(1),m addr ↔ addr,clk(1),clk(1)+,data ready(1),
clk(1),m data ↔ data,clk(0),data read(0),m addr ↔ Z,clk(1),E}

The generated automaton is shown in Figure 6. The events



on the edges without boxes will be observed by the adapter.
As soon as an event is observed, the automaton transfers to
the next state. If there are events in boxes on outgoing edges
from a state, the automaton takes that transition immediately
and generate the events accordingly. This could result in ei-
ther generating new regular events or passing mapped data.
The automaton is realized by a standard Verilog FSM. The
code size is linear in the number of states in the automaton.
Memory write service, and SDRAM read/write services are
similar to the SRAM read service. For the other kind of com-
munication, mapping between function blocks and CPUs, the
adaptation is much easier than memory read/write services.
This is because the CPUs are written in transaction levels.
Their operations are abstracted with read, write and execute
services. On the function blocks side, we also extract the
same set of operations by chopping the behaviors into cor-
responding pieces. This way the mapping relation becomes
one-to-one.

clk

data_ready

m_data

data_read

m_addr

Figure 5. SRAM Read Timing Diagram

m_data data

Zm_addr

addrm_addr

clk(0) clk(1)
E

B

data_read(0)

data_read(1) clk(1) clk(1)

clk(1)

data_ready(1)

clk(1)

Figure 6. SRAM Read Adaptor Automaton

Upon finishing the communication adaptation, we run co-
simulation on the function-architecture model. The simula-
tion outputs the correct JPEG image converted from a raw
image. The CPU running DCT takes 208216 cycles; how-
ever, the other CPU running both Quantization and Huffman
takes only 34736 cycles. The numbers show the imbalance
of the two pipeline stages, which suggests a better function
partition, e.g. move more work over from DCT to Quan-
tization/Huffman. Based on this information, we go down
into details of DCT, which consists of smaller blocks of Pre-
process, DCT1, Transpose1, DCT2 and Transpose2. We then
re-map DCT2 and Transpose2 to the other CPU. The new
simulation result justifies the new mapping, where the CPU
running Pre-process, DCT1 and Transpose1 takes 102699 cy-
cles; the other CPU takes 133892 cycles. This kind of explo-
ration is exactly what we want to achieve by co-simulation
across abstraction levels and languages. One measurement
we planned to do is to analyze the simulation overhead on

adapters. Due to the simple automaton-based mechanism, we
believe the overhead should be small.

6. Conclusions

In this paper, we has presented a unified communication
and co-simulation infrastructure for integration of heteroge-
nous design components and IPs. Our approach is based
on a standard high level communication semantics formal-
ism that enables easy communication and synchronization
between different abstraction levels. Co-simulation adapters
can be automatically generated from the specification of de-
sign component interfaces. Verification is a future research
direction in the topic of co-design infrastructure for hetero-
geneous IP blocks. We are also interested in more complex
communication protocols with pipelines or conditionals.

References
[1] http://www.eda.org/vfv, 2003.
[2] CORBA homepage. http://www.corba.org, 2005.
[3] A. Amory and et al. A heterogeneous and distributed co-

simulation environment. In Proceedings of the 15 th Sympo-
sium on Integrated Circuits and Systems Design, 2002.

[4] A. Bakshi, V. Prasanna, and A. Ledeczi. MILAN: A model
based integrated simulation framework for design of embed-
ded systems. In Proceedings of Workshop on Languages,
Compilers, and Tools for Embedded Systems, June 2001.

[5] F. Balarin and et al. Metropolis: an Integrated Electronic Sys-
tem Design Environment. IEEE Computer, 36(4):45– 52, Apr.
2003.

[6] F. Balarin and R. Passerone. Functional Verification Method-
ology Based on Formal Interface Specification and Transactor
Generation. Design Automation and Test in Europe, 2006.

[7] C. Eisner and D. Fisman. Sugar 2.0 proposal presented to the
accellera formal verification technical committee. Mar. 2002.

[8] K. Keutzer and et al. System level design: orthogonalization
of concerns and platform-based design. IEEE Transactions on
Computer-Aided Design, 19(12):1523–1543, Dec. 2000.

[9] C. Kreiner, C. Steger, and R. Weiss. A hardware/software
cosimulation environment for DSP applications. In Proceed-
ings of 25th Euromicro Conference, 1999.

[10] A. Ledeczi and et al. Overview of the model-based integrated
simulation framework. Technical Report ISIS-01-201, Van-
derbilt University, Jan. 2001.

[11] A. Lee and A. Sangiovanni-Vincentelli. A framework for
comparing models of computation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
17(12):1217–29, Dec 1998.

[12] M. T. Oliveira and A. J. Hu. High-level specification and au-
tomatic generation of IP interface monitors. In Proceedings of
the 39th Design Automation Conference, 2002.

[13] A. Seawright and et al. A system for compiling and debug-
ging structured data processing controllers. In Proceedings of
the European Design Automation Conference, 1996.

[14] C. Valderrama and et al. Automatic generation of interfaces
for distributed C-VHDL cosimulation of embedded systems:
an industrial experience. In Proceedings of Seventh IEEE In-
ternational Workshop on Rapid System Prototyping, 1996.


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



