
Performance Analysis of Greedy Shapers in Real-Time Systems

Ernesto Wandeler Alexander Maxiaguine Lothar Thiele
Computer Engineering and Networks Laboratory

Swiss Federal Institute of Technology (ETH)
8092 Zürich, Switzerland

{wandeler,maxiagui,thiele}@tik.ee.ethz.ch

Abstract— Traffic shaping is a well-known technique in the
area of networking and is proven to reduce global buffer require-
ments and end-to-end delays in networked systems. Due to these
properties, shapers also play an increasingly important role in the
design of multi-processor embedded systems that exhibit a consid-
erable amount of on-chip traffic. Despite their growing importance
in this area, no methods exist to analyze shapers in distributed em-
bedded systems, and to incorporate them into a system-level per-
formance analysis. Hence it is until now not possible to determine
the effect of shapers to end-to-end delay guarantees or buffer re-
quirements in these systems. In this work, we present a method to
analyze greedy shapers, and we embed this analysis method into
a well-established modular performance analysis framework. The
presented approach enables system-level performance analysis of
complete systems with greedy shapers, and we prove its applica-
bility by analyzing two case study systems.

1 Introduction

In the area of broad-band networking, traffic shaping is
a well-known and well-studied technique to regulate con-
nections and to avoid buffer overflow in network nodes, see
e.g. [3] or [6]. A traffic shaper in a network node buffers
the data packets of an incoming traffic stream and delays
them such that the output stream conforms to a given traf-
fic specification. A shaper may ensure for example that the
output stream has limited burstiness, or that packets on the
output stream have a specified minimum inter-arrival time.
A greedy shaper is a special instance of a traffic shaper, that
not only ensures an output stream stream that conforms to
a given traffic specification, but that also guarantees that no
packets get delayed any longer than necessary.

By limiting the burstiness of the output stream of a net-
work node, shapers typically drastically reduce the buffer
requirements on subsequent network nodes. And if some
sort of priority scheduling is used on a network node to
share bandwidth among several incoming streams, then a
limited burstiness of high-priority streams leads to better
responsiveness of lower-priority streams.

In addition, under some circumstances, shaping comes
for free from a performance point of view. To be more spe-
cific, if the output stream of a node is shaped with a greedy
shaper to conform again to the input traffic specification,
and if the buffer of the shaper accesses the same memory
as the input buffer of the node, then the end-to-end delay of
the stream and the total buffer requirements on the network
node are not affected by adding the shaper.

Due to these favorable properties, shapers also play an
increasingly important role in the design of real-time em-
bedded systems. Particularly, since modern embedded sys-
tems are often implemented as multi-processor systems
with a considerable amount of on-chip traffic.

In this domain, we may identify two main application ar-
eas for traffic shaping. First, shapers may be used internally,
to re-shape internal traffic streams to reduce global buffer
requirements and end-to-end delays, and secondly, shapers
may be added at the boundaries of a system, to ensure con-
formant input streams and to thereby prevent internal buffer
overflows caused by malicious input. Figure 1 shows two
simple example systems from these two application areas.

Shared
BUS

CNI1

External Input-Shaping

CPU1

TS1 σ1
S1’ S1’’S1

CNI2
CPU2

TS2 σ2
S2’ S2’’S2

CNI3

CNI4

S1’’’

S2’’’

CPU1

TS1
S1’’S1 σ1

TS2
S2’’S2 σ2

TS3
S3’’S3 σ3

S1’

S2’

S3’

MPSoC

Internal Re-Shaping

Figure 1. Two systems with greedy shapers.

The analysis of traffic shapers in communication net-
works is well-known [4]. But to our best knowledge, none
of the existing frameworks for modular system level per-

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



formance analysis of real-time embedded system considers
traffic shapers at this time, see e.g. [5], [7] or [1, 9].

Only [7] introduces a restricted kind of traffic shaping
through so-called event adaption functions (EAF’s). But
EAF’s play a crucial role in the fundamental ability of [7] to
analyze systems, and a designer has therefore a very limited
freedom to place or leave away, or to parameterize EAF’s.

In this work, we will extend the framework presented in
[1, 9], to enable system level performance analysis of real-
time embedded systems with traffic shapers. It has to be
noted here, that in [4], Le Boudec and Thiran challenge the
ability of the methods in [9] to analyze traffic shapers, and
in [8], Schiøler et al. even claim that it is not possible to
analyze traffic shapers within the framework of [1, 9].

Contributions of this work:

• We present a method to analyze greedy shapers in the
area of multi-processor embedded systems.

• We embed this new analysis method into the well es-
tablished modular performance analysis framework of
[1, 9]. This enables system-level performance analysis
of complete systems with greedy shapers, i.e. amongst
others, we may analyze end-to-end delay guarantees
and global buffer requirements of such systems.

• We prove the applicability of the presented methods by
analyzing two small case study systems with greedy
shapers.

2 Modular Performance Analysis

In the domain of communication networks, powerful
abstractions have been developed to model flow of data
through a network. In particular Network Calculus [4] pro-
vides means to deterministically reason about timing prop-
erties of data flows in queuing networks. Real-Time Cal-
culus [9] extends the basic concepts of Network Calculus
to the domain of real-time embedded systems, and in [1] a
unifying approach to Modular Performance Analysis with
Real-Time Calculus has been proposed. It is based on a
general event and resource model, allows for hierarchical
scheduling and arbitration, and takes computation and com-
munication resources into account. Following, we introduce
some concepts of Network and Real-Time Calculus.

2.1 A General Event Stream Model

A trace of an event stream can be described by means
of a cumulative function R(t), defined as the number of
events seen on the event stream in the time interval [0, t].
While anyR always describes one concrete trace of an event
stream, a tuple α(∆) = [αu(∆), αl(∆)] of upper and lower

arrival curves [2] provides an abstract event stream model,
representing all possible traces of an event stream.

αu(∆) provides an upper bound on the number of events
seen on the event stream in any time interval of length ∆,
and analogously, αl(∆) denotes a lower bound on the num-
ber of events in a time interval ∆. R, αu and αl are related
to each other as follows:

αl(t− s) ≤ R(t) −R(s) ≤ αu(t− s) ∀s < t (1)

with αl(0) = αu(0) = 0.
Arrival curves substantially generalize traditional event

models such as sporadic, periodic, periodic with jitter, or
any other arrival pattern with deterministic timing behavior.
For example an event stream with a period p, a jitter j, and
a minimum inter-arrival distance d, can be modeled by the
following arrival curves:

α
l
(∆) =

�
∆ − j

p

�
; α

u
(∆) = min

��
∆ + j

p

�
,

�
∆

d

��
(2)

2.2 A General Resource Model

Analogously to the cumulative function R(t), the con-
crete availability of a computation or communication re-
source can be described by a cumulative function C(t), de-
fined as the number of available resources, e.g. processor or
bus cycles, in the time interval [0, t]. To provide an abstract
resource model, we define a tuple β(∆) = [βu(∆), βl(∆)]
of upper, βu, and lower, βl, service curves. Then, C, βu

and βl are related to each other as follows:

βl(t− s) ≤ C(t) − C(s) ≤ βu(t− s) ∀s < t (3)

with βl(0) = βu(0) = 0.

2.3 From Components to Abstract Components

In a real-time system, an incoming event stream is typi-
cally processed on a sequence of HW/SW components, that
we will interpret as tasks that are executed on possibly dif-
ferent hardware resources.

Abstract FP ComponentConcrete FP Component

0

2

4

6

8

∆

FP
0

2

4

6

8

∆ 0

2

4

6

8

∆

0

2

4

6

8

∆
β'(∆)

β(∆)

α'(∆)α(∆)

0

2

4

6

8

t

0

2

4

6

8

t 0

2

4

6

8

t

0

2

4

6

8

t
C’(t)

C(t)

R’(t)R(t)

T

Figure 2. A component and its abstraction.

Figure 2 shows on the left side such a component. An
event stream R(t) enters the component and is processed

2



using a hardware resource whose availability is modeled by
C(t). After being processed, the events are emitted on the
component’s output, resulting in an outgoing event stream
R′(t), and the remaining resources that were not consumed
are made available to other components and are described
by an outgoing resource availability trace C ′(t).

The relations between R(t), C(t), R′(t) and C ′(t) de-
pend on the component’s processing semantics, and the out-
going event stream R′(t) will typically not equal the incom-
ing event stream R(t), as it may, for example, exhibit more
or less jitter. Analogously, C ′(t) will differ from C(t).

For modular performance analysis with real-time calcu-
lus, we model such a HW/SW component as an abstract
component as shown on the right side of Fig. 2. Here, an
abstract event stream α(∆) enters the abstract component
and is processed using an abstract hardware resource β(∆).
The output is then again an abstract event stream α′(∆), and
the remaining resources are expressed again as an abstract
hardware resource β′(∆).

Internally, an abstract component is specified by a set of
relations, that relate the incoming arrival and service curves
to the outgoing arrival and service curves:

α′ = fα(α, β) β′ = fβ(α, β)

Again, these relations depend on the processing semantics
of the modeled component, and must be determined such
that α′(∆) and correctly models the event stream with event
trace R′(t) and that β′(∆) correctly models the resource
availability C ′(t).

As an example, consider a component modeling a task
that greedily uses the resources offered to it. This compo-
nent can be described by the relations fα as follows1 [1]:

α
′u
FP = min{(αu ⊗ βu) � βl, βu} (4)

α
′l
FP = min{(αl � βu) ⊗ βl, βl} (5)

Such a component is very common in the area of real-time
embedded systems, and we will refer to it as a Fixed Priority
(FP) component.

2.4 Abstract Performance Models

To analyze the performance of a concrete system, we
need to capture its essential properties in an abstract per-
formance model, that consists of a set of inter-connected
abstract components. For this, first all concrete system com-
ponents are modeled using their abstract representation (as
described in the preceding section). And then, the arrival-
curve inputs and outputs of these abstract components are
inter-connected to reflect the flow event streams through the
system.

1See the Appendix for a definition of ⊗ and �

When several components of the concrete system are al-
located to the same hardware resource, they must share this
resource according to a scheduling policy. In the perfor-
mance model, the scheduling policy on a resource can be
expressed by the way the abstract resources β are distrib-
uted among the different abstract components.

For example, consider preemptive fixed priority schedul-
ing: Abstract component A with the highest priority may
use all available resources on a hardware, whereas abstract
component B with the second highest priority only gets
the resources that were not consumed by A. This is mod-
eled by using the service curves β′

A that exit A as input
to B. For some other scheduling policies, such as GPS or
TDMA, resources must be distributed differently, while for
some scheduling policies, such as EDF or non-preemptive
scheduling, different abstract components, with tailored in-
ternal relations, must be used.

2.5 Analysis

In the performance model of a system, various perfor-
mance measures can be computed analytically.

For instance, for an FP component the maximum delay
dmax experienced by an event is bounded by [4, 1]:

dmax ≤ sup
λ≥0

{
inf{τ ≥ 0 : αu(λ) ≤ βl(λ+ τ)}}

def
= Del(αu, βl) (6)

and when processed by a sequence of components, the total
end-to-end delay experienced by an event is bounded by [4]:

dmax ≤ Del(αu, βl1 ⊗ βl2 ⊗ . . .⊗ βln) (7)

Similarly, the maximum buffer space bmax required to
buffer an event stream in front of such an FP component is
bounded by:

bmax ≤ sup
λ≥0

{αu(λ) − βl(λ)} def= Buf(αu, βl) (8)

and when the buffers of consecutive components access the
same shared memory, the total buffer space is bounded by:

bmax ≤ Buf(αu, βl1 ⊗ βl2 ⊗ . . .⊗ βln) (9)

3 Performance Analysis of Greedy Shapers

To enable analysis of systems with greedy shapers in
the Modular Performance Analysis framework, we need to
introduce a new abstract component that models a greedy
shaper, as depicted in Fig. 3. We will first explain the behav-
ior and the implementation of concrete greedy shapers, and
will then introduce the internal relations for abstract greedy
shapers.

3



Abstract Greedy ShaperConcrete Greedy Shaper

0

2

4

6

8

∆

GS
0

2

4

6

8

∆
0

2

4

6

8

∆

σ

α'(∆)α(∆)

0

2

4

6

8

∆

0

2

4

6

8

t
0

2

4

6

8

t

σ

R’(t)R(t)

σ

Figure 3. A greedy shaper and its abstraction.

3.1 Concrete Greedy Shapers

A greedy shaper with a shaping curve σ delays events of
an input event stream, so that the output event stream has σ
as an upper arrival curve, and it outputs all events as soon
as possible.

Consider a greedy shaper with shaping curve σ, which
is sub-additive and with σ(0) = 0. Assume that the shaper
buffer is empty at time 0, and that it is large enough so that
there is no event loss. In [4], Le Boudec and Thiran proved
that for an input event trace R to such a greedy shaper, the
output event trace R′ is given by:

R′ = R⊗ σ (10)

In practice, a greedy shaper with a shaping curve
σ(∆) = min∀i{bi + ri∆} with σ(0) = 0 can be im-
plemented using a cascade of leaky buckets. Every leaky
bucket has a bucket size bi and a leaking rate ri, and the
leaky buckets are arranged with decreasing leaking rate
within the cascade. Initially all buckets are empty. When
an event arrives at a leaky bucket stage, a token is gener-
ated. If there is enough space in the bucket, the token is put
into the bucket and the event is sent to the next stage im-
mediately. Otherwise, the event is buffered until the bucket
emptied enough to put the token in.

3.2 Abstract Greedy Shapers

Theorem 1 (Abstract Greedy Shapers) Assume an event
stream that can be modeled as an abstract event stream with
arrival curves [αu, αl] serves as input to a greedy shaper
with a sub-additive shaping curve σ with σ(0) = 0. Then,
the output of the greedy shaper is an event stream that can
be modeled as an abstract event stream with arrival curves

αu
′
GS = αu ⊗ σ (11)

αl
′
GS = αl ⊗ (σ�σ) (12)

Further, the maximum delay and the maximum backlog at
the greedy shaper are bounded by

dmax,GS = Del(αu, σ) (13)

bmax,GS = Buf(αu, σ) (14)

Proof: To prove (11) we use the fact that R � R is the
minimum upper arrival curve of a cumulative function R,
and we use the properties

(f � g) � h = f � (g ⊗ h)

(f ⊗ g) � g ≤ f ⊗ (g � g)

that were proven in [4]. We can then compute

R
′ � R

′
= (R⊗ σ) � (R⊗ σ)

= ((R⊗ σ) � R) � σ = ((σ ⊗ R) � R) � σ

≤ (σ ⊗ (R� R)) � σ

≤ (σ ⊗ α
u
) � σ = (α

u ⊗ σ) � σ

= α
u ⊗ σ

To prove (12) we use the fact that R�R is the maximum
lower arrival curve of a cumulative function R. We can then
compute

R
′�R′

= (R⊗ σ)�(R⊗ σ)

= inf
λ≥0

sup
0≤v≤λ

inf
v≤u≤v+µ

{R(u) − R(v) + σ(µ+ λ− u) − σ(λ− v)}

When we separately evaluate this formula for 0 ≤ u ≤ v,
for v ≤ u ≤ v + µ and for v + µ ≤ u ≤ λ+ µ, we get

(R⊗ σ)�(R⊗ σ) ≥ min{(R�R) ⊗ (σ�σ), R�R, σ�σ}
= (R�R) ⊗ (σ�σ)

The complete proofs for (13) and (14) are omitted here
due to space restrictions, but they were deducted starting
from the following relations:

d(t) = inf{τ ≥ 0 : R(t) ≤ R
′
(t+ τ)}

= inf{τ ≥ 0 : 0 ≤ inf
0≤u≤t+τ

{σ(t+ τ − u) + R(u) − R(t)}}

b(t) = R(t) − R
′
(t) = R(t) − (σ ⊗ R)(t)

= sup
0≤u≤t

{R(t) − R(u) − σ(t− u)}

�

Relations (11) and (12) can now be used as internal rela-
tions of an abstract greedy shaper, and (13) and (14) can be
used to analyze delay guarantees and buffer requirements of
greedy shapers in a performance model.

4 Applications & Case Studies

In this section, we analyze the two system designs de-
picted in Fig. 1. The analysis results will clearly reveal the
positive influence of greedy shapers to a system’s perfor-
mance and buffer requirements when applied internally, or
to a system’s robustness when applied externally. We de-
liberately chose two small system designs that clearly fo-
cus on the influence of the greedy shapers, and that do not
dilute the analysis results by any possibly hard recogniz-
able influences of other system properties. Modular Per-
formance Analysis with Real-Time Calculus was however
already used several times to analyze bigger and more com-
plex system designs, and the abstract greedy shapers can
seamlessly be integrated into bigger performance models.

4



4.1 Internal Shaping for System Improvement

Consider a distributed real-time system with 2 CPU’s
that communicate via a shared bus, as depicted on the left
side in Fig. 1. CPU1 and CPU2 both process an incom-
ing event stream S1 and S2, and send the resulting event
streams S′′

1 and S′′
2 via the shared bus to other components.

The shared bus implements a fixed-priority protocol, where
sending the events from CPU1 has priority over sending
the events from CPU2. Events that are ready to be sent get
buffered in the communication network interfaces CNI1
and CNI2 that connect CPU1 and CPU2 with the shared
bus.

In this system, S′′
1 may differ considerably from S1. For

example S′′
1 may be bursty even when S1 is a strictly peri-

odic event stream. This may happen for example, if besides
TS1, other tasks are executed on CPU1 using a TDMA
scheduling policy. Or also if FP scheduling is used and
TS1 has a low priority. In both cases, the processor may
not be available to TS1 during some time interval in which
all arriving events of S1 get buffered, and it may be fully
available to TS1 during a later time interval in which all the
buffered events will be processed and emitted, leading to a
burst on S′′

1 .
Now suppose that event stream S′′

1 is bursty. Whenever
a burst of events arrive on S′′

1 , the shared bus gets fully oc-
cupied until all buffered events of S′′

1 are sent. During this
period, event stream S′′

2 will receive no service, and S′′
2 will

experience a delay caused by the burstiness of S′′
1 . More-

over, also the buffer demand in CNI2 will increase with
increasing burstiness of S′′

1 .
In this system, it may be an interesting option to place

a greedy shaper at the output of CPU1, that shapes event
stream S′

1. This greedy shaper will limit the burstiness of
S′′

1 , and will therefore reduce the influence of CPU1 and
S1 to the delay of S′

2 and the buffer requirements of CNI2.
To investigate the effect of adding greedy shapers to the

system with internal re-shaping in Fig. 1, we analyze it with
Modular Performance Analysis, using the abstract greedy
shaper component that we introduced in Section 3.

We assume that S1 and S2 are both strictly periodic with
a period p = 1ms. In both CPU’s, the CPU may not be
available to process the tasks TSi for up to 5ms. After
this period of at most 5ms, the processor is fully available
and can process 5 events per ms (βuCPU1 = βuCPU2 =
5∆[e/ms], βlCPU1 = βlCPU2 = max{0,∆ − 5}[e/ms]).
The bus can send 2.5 events per ms (βuBUS = βlBUS =
2.5∆[e/ms]).

With this specification, we analyze four different sys-
tem designs. First, we analyze the system without greedy
shapers, secondly, we place a greedy shaper only at the out-
put of CPU1 to shape S′

1, then, we place a greedy shaper
only at the output of CPU2 to shape S′

2, and finally we will

add two greedy shapers to shape both S′
1 as well as S′

2. We
use the upper arrival curves αuS1 and αuS2 as shaping curves
σ1 and σ2, respectively, and we assume that the buffers of
the greedy shapers and the corresponding processing tasks
access the same memory. On the left side of Fig. 4, the
abstract performance model of the fourth system design is
depicted.

External Input-Shaping

FP

βCPU1

α1’
GS FP

α1’’ α1’’’α1

βBUSσ1

FP

βCPU2

α2’
GS FP

α2’’ α2’’’α2

σ2

α1 GS FP
α1’ α1’’

βCPUσ1

α2 GS FP
α2’ α2’’

σ2

α3 GS FP
α3’ α3’’

σ3

Internal Re-Shaping

Figure 4. Performance models.

Using the four performance models, we analyzed the
maximum required buffer spaces of the different buffers, as
well as the end-to-end delays of both event streams S1 and
S2. The results are shown in Table 1.

Table 1. Effect of Re-Shaping.
shapers buffer delay

CPU1 CPU2 CNI1 CNI2 Tot S1 S2

none 6 6 4 9 25 5.4 9

S1 6 6 1 6 19 5 5.8
∆% - - −75% −33% −24% −7.4% −36%

S2 6 6 4 4 20 5.4 8.6
∆% - - - −56% −20% - −4.4%

both 6 6 1 1 14 5 5.4
∆% - - −75% −89% −44% −7.4% −40%

From the results, we learn that placing greedy shapers
helps to reduce the total buffer requirements from 25 down
to 14 events that need to be buffered at most. Moreover,
the greedy buffers also reduce the end-to-end delay of both
event streams, namely by 7.4% for S1, and by a total of 40%
for S2.

When we look at the results, we also recognize the well-
known property of greedy shapers that re-shaping is for free
[4]. Since we use σ1 = αuS1 and σ2 = αuS2, the greedy
shapers effectively only re-shape S1

1 and S2
2 , and therefore

the buffer requirements of CPU1 and CPU2 are not af-
fected by adding the greedy shapers.

4.2 Input-Shaping for Separation of Concerns

Typical large embedded systems often process several
event streams in parallel. To achieve separation of con-
cerns in such systems, they are often implemented using
time-triggered scheduling policies, or servers. While these

5



scheduling policies help to decouple the influence of the
various event streams to each other, they often do not use
the available resources efficiently.

On the other hand, powerful methods were developed to
analyze systems with event-triggered scheduling policies,
such as RM or EDF. In these systems, resources are used
efficiently, but on the downside, the various event streams
may heavily influence each other. Slight changes in the tim-
ing behavior of a high-priority stream may increase the total
delay of a lower-priority stream considerably, possibly lead-
ing to a missed deadline, or to buffer overflows somewhere
in the system.

To overcome this problem, greedy shapers may be placed
at the input to such systems. Every incoming event stream
Si gets shaped with an individual shaping curve σi that cor-
responds to its design-time timing specification. The system
can then be analyzed using the design-time timing speci-
fications, and at run-time, non-adherence of Si to its tim-
ing specification will have no influence to the delay of any
other event streams, but will at most increase the total de-
lay of Si itself. And moreover, no buffers will overflow
inside the system. Instead, only the buffers of the greedy
shapers themselves may overflow. But since these buffers
are clearly localized at the boundary of the system, individ-
ual handling policies could easily be implemented.

Lets assume a real-time system as shown on the right
side of Fig. 1. Here, a single CPU processes three event
streams with a fixed-priority scheduling policy. The high-
priority stream S1 is strictly periodic with p1 = 5ms, the
medium-priority stream S2 is strictly periodic with p2 =
10ms, and the low-priority stream S3 is strictly periodic
with p3 = 20ms. The CPU processes 0.35 events per ms.

To illustrate the influence of greedy shapers at the input
of such a system, we add a jitter of j1 = 0.1ms to stream
S1, and we then analyze the effect of this to the end-to-end
delays of the three event streams, both with and without
greedy shapers. The results, computed using Modular Per-
formance Analysis are shown in Table 2.

Table 2. Effect of Input-Shaping.
Without Shaping With Shaping

d1 d2 d3 d1 d2 d3

j1 = 0 2.86 8.57 20 2.86 8.57 20
j1 = 0.1 2.86 8.57 28.57 2.96 8.57 20

∆% 0 0 +43% +3.5% 0 0

Looking at the results, we clearly see the big influence
of the little non-adherence of S1 to the maximum delay of
the completely independent stream S3, if no input shaping
is applied. On the other hand, we observe that input shap-
ing effectively isolates the influence of the malicious input
stream S1 to the other present event streams. Now, only S1

is affected from its own malbehavior.

5 Conclusions

We introduced a new method to analyze greedy shapers,
and we embedded this method into the modular perfor-
mance analysis framework of [1, 9], by introducing a new
abstract component that models a greedy shaper. This ap-
proach enables system level performance analysis of real-
time systems with greedy shapers. We proved the applica-
bility of the presented methods through performance analy-
sis of two case study systems with greedy shapers. In these
case study systems, we could analyze the detailed buffer
requirements of all system components, and we could pro-
vide end-to-end delay guarantees for the processed event
streams. The analysis thereby clearly revealed the positive
influence of greedy shapers to the system’s performance and
buffer requirements.

Appendix: Min-Max Algebra

The operators ⊗, � and � are defined as:
(f ⊗ g)(∆) = inf

0≤λ≤∆
{f(∆ − λ) + g(λ)} (15)

(f � g)(∆) = sup
λ≥0

{f(∆ + λ) − g(λ)} (16)

(f � g)(∆) = inf
λ≥0

{f(∆ + λ) − g(λ)} (17)

A curve σ is sub-additive, if
σ(a) + σ(b) ≥ σ(a+ b) ∀a, b ≥ 0 (18)

Acknowledgements
This research has been funded by the Swiss National Science Foundation (SNF)

under the Analytic Performance Estimation of Embedded Computer Systems project
200021-103580/1, and by ARTIST2.

References

[1] S. Chakraborty, S. Künzli, and L. Thiele. A general framework for analysing
system properties in platform-based embedded system designs. In Proc. 6th
Design, Automation and Test in Europe (DATE), pages 190–195, March 2003.

[2] R. Cruz. A calculus for network delay. IEEE Trans. Information Theory,
37(1):114–141, 1991.

[3] S. Gringeri, K. Shuaib, R. Egorov, A. Lewis, B. Khasnabish, and B. Basch.
Traffic shaping, bandwidth allocation, and quality assessment for mpeg video
distribution over broadband networks. IEEE Networks, 12(6):94–107, 1998.

[4] J. Le Boudec and P. Thiran. Network Calculus - A Theory of Deterministic Queu-
ing Systems for the Internet. LNCS 2050, Springer Verlag, 2001.

[5] P. Pop, P. Eles, and Z. Peng. Schedulability Analysis and Optimization for the
Synthesis of Multi-Cluster Distributed Embedded Systems. In Design, Automa-
tion and Test in Europe (DATE 2003), pages 184–189, 2003.

[6] J. Rexford, F. Bonomi, A. Greenberg, and A. Wong. Scalable architectures for
integrated traffic shaping and link scheduling in high-speed ATM switches. IEEE
Journal on Selected Areas in Communications, 15(5):938–950, 1997.

[7] K. Richter, M. Jersak, and R. Ernst. A formal approach to mpsoc performance
verification. IEEE Computer, 36(4):60–67, April 2003.

[8] H. Schioler, J. Jessen, J. D. Nielsen, and K. G. Larsen. CyNC - towards a general
tool for performance analysis of complex distributed real-time systems. In Pro-
ceedings of the WiP Session of the 17th EUROMICRO Conference on Real-Time
Systems (ECRTS 05), pages 61–64. IEEE, 2005.

[9] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling
hard real-time systems. In Proc. IEEE International Symposium on Circuits and
Systems (ISCAS), volume 4, pages 101–104, 2000.

6


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



