
An Effective Technique for Minimizing the Cost of
Processor Software-Based Diagnosis in SoCs

P. Bernardi, E. Sánchez, M. Schillaci, G. Squillero, M. Sonza Reorda
Politecnico di Torino

Dipartimento di Automatica e Informatica
Torino, Italy

{paolo.bernardi, edgar.sanchez, massimiliano.schillaci, giovanni.squillero, matteo.sonzareorda}@polito.it

ABSTRACT
The ever increasing usage of microprocessor devices is
sustained by a high volume production that in turn
requires a high production yield, backed by a controlled
process. Fault diagnosis is an integral part of the
industrial effort towards these goals. This paper presents a
novel cost-effective approach to the construction of
diagnostic software-based test sets for microprocessors.
The methodology exploits an existing post-production test
set, designed for software-based self-test, and an already
developed infrastructure IP to perform the diagnosis. An
initial diagnostic test set is built, and then iteratively
refined resorting to an evolutionary method. Experimental
results are reported in the paper showing the feasibility
and effectiveness of the approach for an Intel i8051
processor core.

1. Introduction
Microprocessor and microcontroller technology

nowadays is virtually ubiquitous. The ever increasing
usage of such devices is sustained by a high volume
production. This in turn demands for a high production
yield, backed by a controlled process. Fault diagnosis is an
integral part of the industrial effort towards these goals.

Correct identification of the most common defective
sections in a die helps to characterize the technological
process, and localization of a fault allows to effectively
direct physical investigation of the underlying defects.
Moreover, most high-volume devices undergo several
revisions. During these updates designers may decide to
change some characteristics of a particular chip section in
order to lower the impact of physical defects on the part
(e.g., by increasing the minimum separation between
active areas, or by changing the metal routing to obtain a
flatter surface). The two activities of fault localization and
design update are key in enhancing the final yield.

The high production volumes of many relatively
simple devices call for an economically sound diagnostic
methodology, since this has to be applied to a great
number of faulty devices. It is therefore important to be
able to devise a relatively low-cost diagnostic process.

Even more than test set construction, diagnostic set
construction is a time-consuming activity. Most of the
effort in diagnosis was directed towards combinational
circuits, while sequential circuits received less attention,
due to the widespread usage of scan-chain methodologies

for test. Hard-to-test faults require a high computational
effort for their coverage, but once detected they are
usually easy to diagnose; easy-to-test ones, on the other
hand, may be difficult to discriminate from each other and
require a special effort for diagnosis. This difficulty can
lead to long diagnostic tests, with correspondingly long
application times and high costs.

In this paper we concentrate on a software-based
diagnosis (SBD) methodology particularly suitable for
microprocessor cores embedded in SoCs.

The main novelty of the proposed method is the
automatic generation of a diagnostic test set using an
existing post-production test set. Starting from it, we build
an initial diagnostic test set which we progressively
improve using an evolutionary method.

We propose to exploit an existing Infrastructure IP
(IIP) [1] whose original purpose was software-based self
test (SBST) [11], which is also able to provide the
processor with the diagnostic test code, and to gather and
store the compressed results. This solution has a very low
hardware overhead, since the IIP circuitry has already
been included to perform the post-production test. The
advantages are numerous: the construction of the
diagnostic test set exploits an existing test set, leveraging
the economic benefit of reusing already performed work;
the process is automated, effectively saving resources;
being software-based, the diagnosis can be performed at-
speed, both increasing the diagnostic capability and
reducing the test application time; thanks to the reuse of
the existing IIP the methodology does not require the use
of high-performance (and high cost) test equipment.

As a case study we tackled SBD on a well-known
microprocessor, widely used as a microcontroller core.
The performed experiments allow to uniquely diagnose
61.83% of single suck-at faults, and to classify 84.30% in
equivalence classes containing less than 10 faults.

The paper is organized as follows: section 2 provides
a concise background in fault diagnosis for digital circuits;
section 3 details the proposed approach, with a discussion
of its key characteristics; section 4 presents some
experimental results; finally, section 5 concludes the
paper.
2. Diagnosis background

Fault diagnosis of VLSI circuits is one of the more
investigated arguments in the test discipline. In the 60’s,

3-9810801-0-6/DATE06 © 2006 EDAA

[2] [3] pioneered the field by introducing the first
classification structures and test generation algorithms.
More recently, some formal definitions aimed at unifying
the fault diagnosis notation have been given in [4] [5] (i.e.,
the concepts of Diagnostic Resolution, Diagnostic Power,
and Equivalence Class). These measures and concepts are
currently used to characterize diagnostic test generation
tools [6] [7], together with the usage of diagnostic trees
[16].

In practical terms, an equivalence class (EC) is a set of
faults exactly causing the same faulty behavior for each
applied pattern; diagnostic test generation aims at
determining a pattern set able to partition the circuit faults
in a set corresponding to ECs as small as possible. Up to
now, the methods to determine ECs and to generate
suitable patterns can be classified in structural and
functional [8] techniques, both analyzing the circuit
structure. These inspections permit to identify the possible
logic value allowing the separation of two potentially
equivalent faults by propagating different response values
on the observation points.

With respect to diagnostic techniques based on pattern
generation, software-based diagnosis of processors
presents additional problems:

• There is usually a common part of logic excited
each time one instruction is executed, since test
programs rely on instructions rather than on test
patterns.

• A test program suited to excite a specific module
of the processor could also cover a wide number
of faults not belonging to the pinpointed part, and
therefore offer a very reduced classification
ability.

• Many of the internal processor circuit elements
cannot be accessed directly using a specific
instruction, thus resulting hardly diagnosable.

In [9], Chen and Dey tackled software-based
diagnosis for the 2k-gate processor called PARWAN.
They proposed the following:

• A great number of short test programs are
generated in order to partition the fault universe
in as many subspaces as possible

• Each program presents a reduced set of
instructions to isolate faults related to different
processor functional parts

• Multiple copies of the same program are created,
each propagating errors on different observable
points in order to distinguish the faults affecting
the processor outputs

• At the end of the test set creation a binary tree is
built for use in the actual diagnosis process.

This technique is based on the processor functional
characteristics instead of a pure structural analysis.
Anyway, the effort required to generate a test set

following these guidelines is not trivial, and grows with
the complexity of the considered processor.

Differently from [9], the purpose of our paper is to
define a workflow for the automatic generation of a
diagnostic test set starting from an existing post-
production test set. Also, our approach uses an n-ary tree
for fault classification, increasing the diagnostic capability
of the set.
3. Proposed approach

The software-based diagnosis (SBD) methodology
discussed herein is an automated method able to generate a
suitable diagnostic set of programs starting from an initial
test set built for post-production testing. Additionally, it
exploits an evolutionary approach to improve the final
results. Figure 1 graphically describes the workflow of the
method.

Original
test set

Sporing

Spores
set

Sifting

Basic
Diagnostic

set

Evolutionary
Improvement

Diagnostic
Test set

ECs
OK?

Additional
Programs

OK

KO

Figure 1: Method Workflow

In synthesis, the workflow is divided in the following
steps:

• Sporing: the initial test set of programs is split up,
generating a vast set of small programs.

• Sifting: following a heuristic analysis, only the
most promising programs are kept in the test set.

• Evolutionary improvement: resorting to an
automatic tool, the diagnostic ability of the test
set is improved.

The following sections will better detail all the above
steps. Moreover, although it cannot be considered part of
the algorithm, the evaluation of the diagnostic capability
of the generated test set (diagnostic assessment) is
fundamental and will be described as well.
3.1 Sporing

A test set of programs for post-production testing is
usually devised to cumulatively cover the highest possible
number of faults. Each program is written with a specific
target, for example to cover the faults belonging to a
functional module of the processor. A conventional set of

programs could be generated by using different
approaches: by hand following some deterministic method
(as in [11]); exploiting the test engineer expertise by
writing test programs to cover corner cases; using
automatic approaches (as in [13] or [14]); or even
exploiting a random generation and compaction. In any
case, the diagnostic set construction method presented
here is independent on the origin of the initial test set of
programs.

As mentioned before, the original test set is supposed
to guarantee a high FC% of the processor but is likely
unsuitable for diagnostic purposes, because its only goal is
to cover faults, not distinguish them. A typical post-
production test program is normally written with a definite
set of goals, mainly compactness, short application time
and high fault coverage. For pattern-based diagnosis it has
been demonstrated that it is better to use many test sets
each of which covers few faults [15]; likewise, for
software-based diagnosis it is useful to have many very
small programs that cover the smallest possible fault set.

Spore
Test Set

Optimized
Fault

Simulator

Coverage
Matrix

Processor
Fault List

pass/fail

Sporing phase

Post-production
Test Set

Basic
Test Set

Processor
Fault List Additional

Test Program

Coarse
Classification

tool

Binary
Fault Tree

N-ary
Fault Tree

syndrome

Fine
Classification

tool

Fault
Simulator

Sifting phase

Reduced
Fault list

Test set
enhancement phase

ECs small
enough?

no

yes

Final
Test Set

a)

b)

c)

µGP

 Figure 2: proposed workflow

Usually the high fault coverage is obtained by the
stimulation of the functional modules of the processor
with a great amount of input data, generated in a looping
section of the test program. Many faults, especially in
arithmetic units, need specific bit patterns on the execution
unit inputs to be covered. If we could write a program that
delivers only those data needed to detect a specific fault,
and not others, that program would exhibit a very low fault
covering ability, but a fairly good diagnostic capacity.

The basic idea is therefore to obtain a number of very
small programs, each one covering a small number of
faults (ideally the smallest possible number, indeed) not
covered by other programs in the same set.

The spores are very small programs that put the
processor in a specific state in order to control some
specific part of the processor, execute a target instruction
and propagate the results to the primary outputs. Each
spore represents a completely independent program, able
to excite some processor function, observe the results, and
possibly signal fault occurrence. It is worth noting that the
spores are not written from scratch, but generated by
automatically breaking an existing test set in very small
fragments, thus fully exploiting its covering ability.

The sporing process is based on an ad hoc instruction
set simulator able to trace the execution data flow of each
instruction of the test program. Its goal is the generation of
independent and small programs able to exactly replicate
the behavior of the processor while executing a target
instruction. Clearly, each program belonging to the initial
test set is fragmented in a huge number of spores. More
details can be found in [10].

A first fault simulation is required to analyze the
generated spores. This preliminary fault simulation is
aimed at determining the fault coverage figure for each
generated spore. Figure 2.a refers to this process: the result
of this step is a coverage matrix storing for each spore the
information about covered faults.
3.2 Sifting

At this point we are left with an inordinate number of
spores, of the order of tens of thousands. It would be
impractical and wasteful to simply apply all these
programs to a faulty processor to diagnose it, so an effort
is appropriate to reduce this diagnostic set. This goal is
obtained by a sifting process, detailed below.

First of all, the fault covering ability of each spore is
considered in the context of the entire diagnostic set; the
important thing for a spore is not covering a large number
of faults, but covering faults which are not detected by
other spores: all the spores able to do this have to be
retained in the final diagnostic set.

Every fault is detected by a certain number of spores,
depending on whether it is easy-to-detect or a hard-to-
detect. This leads to the concept of density of the fault, that
is, the number of spores able to detect it.

The diagnostic capability of a spore is then evaluated
with respect to the whole set, using the density concept.
Every spore is assigned a preliminary fitness value
fs(Fd , sNF):

sF NF
F

dsf 11 ⋅⎟
⎠

⎞
⎜
⎝

⎛
= ∑

where F is the fault index over the covered faults, Fd is

the corresponding fault density and sNF is the number of
faults covered by the spore. The value of fs ranges from 0
to 1 and the higher its value the higher the diagnostic
capability of the spore. The spores are then sorted by
fitness value in decreasing order. In this way the spores

with higher diagnostic capability are preferred for
inclusion in the final diagnostic set. It is possible to note
that the highest fitness value equals 1, and it is assigned to
one spore covering only one fault of density 1. Finally,
starting from the top of this list, only the spores that cover
faults not detected by the previous ones are kept, while the
others are discarded as redundant. These test programs
compose the initial test set.
3.3 Diagnostic assessment

Immediately after the sifting phase, the diagnostic
ability of the selected initial test set is evaluated. This
computation has been divided in two steps, graphically
shown in figure 2.b. Similarly to the process formalized in
[9], a first coarse classification is based on the
construction of a compact diagnostic tree obtained by
processing only the pass/fail information related to each
test program included in the initial test set; this
information is simply extracted from the coverage matrix.
The binary tree structure is shown in figure 3.a.

A fine classification is then performed for all the
equivalence classes (ECs) isolated by the coarse
classification and still composed of more than one fault.
This second classification is done by using the faulty
circuit responses on primary outputs (also called
syndromes) to build in parallel an n-ary tree for each EC to
be further divided. The n-ary tree structure is in figure 3.b.
To reduce the impact of this second fault simulation
process aimed at retrieving the faulty syndromes, an
incremental approach has been used whereas:

• the n-ary tree structure is updated at the end of the
fault-simulation of each test program in the initial
test set and faults included in ECs of size 1
definitively dropped out from the fault list

• faults not yet classified and not covered by the
next test program to be fault simulated are
temporarily dropped out from the fault list as their
syndrome is not useful for classification.

This process allows the generation of a compact fault
dictionary composed of

• pass/fail sequence leading to a Coarse EC
• the set of discriminating syndromes for each Fine

EC.
3.4 Evolutionary improvement

At this phase of the workflow, there is still a set of
unsatisfactorily large ECs. Thus, an effort is appropriate to
partition these large classes.

To improve the diagnostic ability of the test set we
resort to an evolutionary tool called µGP [12]. It is an
evolutionary approach to generic optimization problems
with a focus on the generation of test programs for
microprocessors. It is based on an evolutionary core, an
instruction library that allows targeting a specific
microprocessor and an external evaluator to provide the
core with the necessary feedback.

The evolutionary approach receives the information
about the large ECs and generates new assembly programs
able to split them. The fitness function provided as
feedback to the evolutionary core is the size of the largest
EC found using the fine classification. During this phase,
the ability of a generated program in dividing the large EC
is directly obtained by analyzing the faulty syndrome.

The fine classification tree is directly updated after
each program generation. This third part of the diagnostic
evaluation process is in figure 2.c.

1-10

1-5

1-4 5

1-4

6-10

6-10

6-10

t1

t2

t3

fail

fail

fail

pass

pass

pass

a)

t1

t2

t3

1-4

31

2/4

2 4

Syn_1
Syn_2

Syn_3

Syn_4

Syn_5

b)

Fault dictionary:

C1 111
1 t1:Syn_1
3 t1:Syn_2
2 t1:Syn_3 t3:Syn_4
4 t1:Syn_3 t3:Syn_6

C2 10
5

C3 001
6 ……
7 ……
….

Coarse EC1

Coarse EC2

Coarse EC3

2/4

Syn_6

fail

Fine EC1 Fine EC2

Fine EC3 Fine EC4

1-10

1-5

1-4 5

1-4

6-10

6-10

6-10

t1

t2

t3

fail

fail

fail

pass

pass

pass

a)

t1

t2

t3

1-4

31

2/4

2 4

Syn_1
Syn_2

Syn_3

Syn_4

Syn_5

b)

Fault dictionary:

C1 111
1 t1:Syn_1
3 t1:Syn_2
2 t1:Syn_3 t3:Syn_4
4 t1:Syn_3 t3:Syn_6

C2 10
5

C3 001
6 ……
7 ……
….

Coarse EC1

Coarse EC2

Coarse EC3

2/4

Syn_6

fail

Fine EC1 Fine EC2

Fine EC3 Fine EC4

Figure 3: two steps, coarse and fine, of the diagnostic tree

construction and the resulting fault dictionary

This process, using an n-ary diagnostic tree instead of
a binary one, is totally new with respect to the work
reported in [9]. The time it takes can be traded with the
quality of the obtained results.

4. Experimental evaluations
The feasibility and the effectiveness of the proposed

approach for the software-based diagnosis of processor
cores have been proved considering as a case of study an
Intel i8051 microcontroller, supposed to be embedded into
a SoC.

One of the major problems in testing a SoC is the
reduced accessibility of each single embedded core: to
improve the observability of the i8051 to be diagnosed, we
resorted to the solution proposed in [1] to support the
software-based self-test procedure of processor cores. The
i8051 core is complemented with a 24 bit multiple input
signature register (MISR) connected to its parallel output
ports. The faulty signature, or syndrome, stored by the
MISR can be read at the end of each test program
execution. The synthesized microcontroller, obtained
using a generic home-developed library, contains 37,417

equivalent gates, and the collapsed fault list counts 12,642
faults.

Let D(n) be the percentage of faults that are classified
into a class of cardinality less than or equal to n by the
diagnostic test set. D(1) is the percentage of faults that are
uniquely classified; D(10) is the percentage of faults that
can be considered correctly classified, because the exact
analysis of equivalence between faults cannot be
performed for medium or large sequential circuits.

We started from a post-production test set composed
of 8 test programs written by a skilled test engineer,
reaching a fault coverage of about 92% on the collapsed
list. 7 out of 8 programs aim at covering the ALU faults
and are generated by following the deterministic approach
described in [11]; the remaining program has been written
resorting to the same technique, but it aims at the coverage
of those faults in the decoding and control units still not
covered. The sporing process generates about 60k test
programs and the average number of instruction for these
programs is 7: each program includes an initial and a final
part, required to obtain the syndrome saving. More details
about the program structure and sporing can be found in
[10].

The fault simulation process required to proceed to the
sifting phase has been done exploiting an in-house
developed tool and required about 75 hours on 3 SUN
Blade processor-based workstations.

 Post-

production
test set

Initial
test set

Final
test set

Programs [#] 8 7,231 7,266
Test set size [KB] 4 165 177
Max Clock Cycles 1.00M 1.93M 2.02M
D(1) [%] 11.56 35.70 61.93
D(10) [%] 32.90 58.02 84.30

TABLE I: the equivalence class summary for the analyzed
processor core

The sifting phase, including the fault simulation,
required about 100 hours on the same hardware. And the
test set obtained processing coverage matrix is composed
of 7,231 test programs (about 12% of the original set).

Table I shows the main characteristics of the three test
sets: post-production; initial (sifted); final (enhanced). The
rows reports: the number of test programs in the test set;
the test set size; the maximum length of a test program in
clock cycles; the result of the diagnostic assessment D(1)
and D(10). Table II, on the other hand, details the size of
the equivalence classes for the three test sets.

It is interesting to note that the initial test set
demonstrates a D(10) equal to 58% of the processor faults.
The biggest class, composed of 3,755 faults, is the one
including those faults detected by all the test programs of
the test set. Apart from this class, the greatest class has
size 84.

The diagnostic enhancement of the test set eventually
consisted in the generation of 35 new test programs. Each
generation process is started by evolving an initial
population of 20 test programs. The biggest class obtained
by this enhancement process has size 1,092.

If the diagnostic test set is considered as a monolithic
block to be entirely uploaded and executed on the
Automatic Test Equipment (ATE), it is composed of all
7,266 programs and requires 2,020,656 clock cycles.
However, if an intelligent/interactive ATE enabling the
diagnostic process to be stopped as soon as the fault (or
the faults) responsible for the wrong behavior has been
individuated, the diagnostic process can be reduced to the
execution of an average of 3,762 programs (corresponding
to 900,858 clock cycles).

EC size

Post-
production

test set
[# fault]

Sifted
test set

[# fault]

Enhanced
test set
[# fault]

1 1,334 4,120 7,148
2 802 872 1,106
3 543 522 546
4 360 264 336
5 255 150 155
6 138 150 180
7 112 154 91
8 80 224 72
9 63 81 36

10 110 160 60
11 – 100 2,335 1,090 720

>100 5,410 3,755 1,092
TABLE II: equivalence class summary for the analyzed
processor core

The figures 4 to 6 graphically show fault classification
obtained at the end of each phase.

5. Conclusions and future work
A novel automated approach for the generation of

software-based diagnostic sets for microprocessors has
been presented. It exploits an existing post-production
software-based test set and uses the existing Infrastructure
IP designed for applying it, thus it is cost-effective and can
be seamlessly fit into an existing design flow.

The reported results clearly show the effectiveness of
the method on a widely used microprocessor core, thus
highlighting the industrial relevance of the approach.

Work is currently under way to improve the
workflow, with particular effort upon the reduction of the
computational effort required.

6. References
[1] P. Bernardi, M. Rebaudengo, M. Sonza Reorda, “Using

Infrastructure IPs to support SW-based Self-Test of
Processor Cores”, IEEE International Workshop on
Microprocessor Test and Verification, 2004, pp. 22-27

[2] H. Y. Chang, “A Distiguishability criterion to selecting
efficient diagnostic tests”, Proc. Spring Joint Computer
Conference, 1968, pp. 529-534,

[3] A. D. Friedman, “Fault Detection in Redundant Circuits”,
IEEE Trans. Computers, vol. EC-16, February 1967, pp. 99-
100

 [4] P. Camurati, D. Medina. P. Prinetto, M. Sonza Reorda: “A
diagnostic test pattern generation algorithm”, IEEE
International Test Conference, 1990, pp. 52-58

 [5] T. Griining, U. Mahlstedt, H. Koopmeiners: “DI- ATEST: a
fast diagnostic test pattern generator for combinational
circuits”, ICCAD-91: IEEE International Conference on
Computer Aided Design, Santa Clara, CA (USA),
November 1991, pp. 194-197

[6] A. Veneris, R. Chang, M.S. Abadir, M. Amiri, “Fault
equivalence and diagnostic test generation using ATPG”
IEEE ISCAS 2004, Vol.5, pp. V-221 - V-224

[7] S. Chakravarty, “A Sampling Technique for Diagnostic
Fault Simulation”, IEEE International VLSI Test
Symposium, 1996, pp. 192-197

[8] N. Jha and S. Gupta, “Testing of Digital Systems”,
Cambridge University Press, 2003

[9] Li Chen, S. Dey, “Software-based diagnosis for processors”,
Design Automation Conference, 2002, pp. 259-262

[10] E. Sánchez, M. Sonza Reorda, G. Squillero, “On the
transformation of Manufacturing Test Sets into On-Line
Test Sets for Microprocessors”, IEEE International
Symposium on Defect and Fault Tolerance in VLSI
Systems, 2005, pp. 494-504

[11] N. Kranitis, G. Xenoulis, D. Gizopoulos, A. Paschalis, Y.
Zorian, “Low-cost Software-Based Self-Testing of RISC
Processor Cores” IEE Proceedings of Computers and
Digital Techniques, 2003, Volume 150, Issue 5, pp. 355-360

[12] G. Squillero, “MicroGP – An Evolutionary Assembly
Program Generator” Genetic Programming and Evolvable
Machines. Springer Science + Business Media B.V. ISSN:
1389-2576

[13] F. Corno, E. Sánchez, M. Sonza Reorda, G. Squillero
“Automatic Test Program Generation - a Case Study” IEEE
Design & Test, Special issue on Benchmarking for Design
and Test, 2004, Volume 21, Issue 2, pp. 102-109

[14] P. Parvathala, K. Maneparambil, W. Lindsay, “FRITS - a
microprocessor functional BIST method”, IEEE
International Test Conference, 1990, pp. 52-58

[15] I. Pomeranz, S. M. Reddy, “A diagnostic test generation
procedure based on test elimination by vector omission for
synchronous sequential circuits”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
May 2000, Volume 19, Issue 5, pp. 589-600

[16] V. Boppana, I. Hartanto, W.K. Fuchs, “Full fault dictionary
storage based on labeled tree encoding”, IEEE VLSI Test
Symposium, 1996, pp.174-179.

Faults by EC size

11.56%

21.34%

20.23%

46.87%

1

2-10

11-100

>100

Figure 4: Post-production test set diagnostic properties

Faults by EC size

35.70%

22.33%

9.44%32.53%

1

2-10

11-100

>100

Figure 5: Initial test set diagnostic properties

Faults by EC size

61.93%

22.37%

6.24%

9.46%

1

2-10

11-100

>100

Figure 6: Final test set diagnostic properties

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

