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Abstract 

 
 

This paper presents a new operation chaining 
reconfigurable scheduling algorithm (CRS) based on list 
scheduling that maximizes instruction level parallelism 
available in distributed high performance instruction cell 
based reconfigurable systems. Unlike other typical scheduling 
methods, it considers the placement and routing effect, 
register assignment and advanced operation chaining 
compilation technique to generate higher performance 
scheduled code. The effectiveness of this approach is 
demonstrated here using a recently developed industrial 
distributed reconfigurable instruction cell based architecture 
[11]. The results show that schedules using this approach 
achieve equivalent throughput to VLIW architectures but at 
much lower power consumption. 
 
1. Introduction 
 
Leading-edge DSP applications such as mobile video, audio 
and telecom require high performance on a small energy 
budget. Three main existing methods to implement algorithm 
solutions on silicon are programmable DSP (DSP), 
Application Specific Integrated Circuit (ASIC) and Field 
Programmable Gate Array (FPGA). DSPs are highly flexible 
in terms of programmability. But have limited throughput, 
even though very long instruction word (VLIW) DSPs offers 
some parallelism in form of independence instruction level 
parallelism. Hardwired ASIC implementations consume less 
energy and realise the algorithm with increased parallelism but 
this lacks post-fabrication flexibility. Field Programmable gate 
arrays give a design close to the performance benefits of an 
ASIC solution and provide a reduction in NRE cost due to 
post-fabrication flexibility. However, the large number of the 
transistors in FPGAs used for configuration and 
interconnection has a huge impact on energy consumption and 
silicon area[1]. Reconfigurable computing is an emerging 
technology that combines the flexibility of FPGAs with the 
programmability found in General Purpose Processor 
(GPP)/DSPs in a unified and easy programming environment 
[2-10]. One such architecture, that meets the above criteria, is 
the one recently introduced by our research group [11].  

A challenging issue in reconfigurable computing systems is 
the development of a suitable programming interface. In order 

to seamlessly integrate such architecture to existing design 
methodologies, a high-level programming interface is 
required, which will also simplify and reduce the design time 
(Time to Market).  The high level C language is used for 
describing the entire application in our compiler environment. 
However, traditional software is sequential in nature. This 
poses a challenging task of taking an otherwise sequential 
code to extract and exploit the available parallelism. The 
design flow to automate the implementation of algorithms 
from a high abstraction level to run on reconfigurable 
computing system requires an efficient scheduling algorithm 
that can translate general purpose software code onto the 
reconfigurable device thereby maximising the resource 
utilisation.  

Operation chaining merges two operations one after 
another in extended clock cycle to reduce the register 
requirement for the application. This paper proposes an 
efficient operation chaining reconfigurable scheduling (CRS) 
algorithm. The CRS algorithm is based on the list scheduling 
algorithm and adopts the advanced operation chaining 
technique and considers the effects of register assignment, 
power consumption, placement and routing delay against the 
resource and time constraints. The CRS algorithm allows high 
program throughput and low power consumption by ensuring 
that the number of dependent and independent instruction 
cells (ICs) is maximised at each scheduled step and at the 
same time the total number of clock cycles of the longest-path 
delay is minimised. 

This paper is organised as follows. Section 2 of this paper 
covers related and previous work on reconfigurable 
computing architecture and briefly reviews the existing 
hardware and software scheduling algorithms. A simple 
overview of the target architecture is given in Section 3. The 
detailed description of the proposed CRS scheduling 
algorithm is presented in Section 4. Experimental results are 
given in Section 5 followed by conclusions.  
 
2. Related work  
 
2.1 Reconfigurable computing architecture 

 
The concept of a reconfigurable computing has been 

around since the 1960s consisting of a standard processor and 
an array of “reconfigurable” hardware [2]. In the last decade 
there has been a recent renaissance in this area of research 
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with many proposed reconfigurable architectures developed 
both in industry and academia such as, Matrix, Garp, Elixent, 
PACT XAPP, SiliconHive, Montium, Pleiades, Morphosys [3-
10] to name but a few. These designs have only really become 
feasible by the relentless progress of silicon technology, 
allowing for complex designs to be implemented onto a single 
chip. Nevertheless, the development of reconfigurable 
hardware architecture is only one side of the problem, often 
overlooked is the importance of appropriate software tools 
that are essential for the programmability of the system and 
gaining the maximum performance. However, a lot of the 
industrial companies do not disclose their programming 
techniques; furthermore many reconfigurable systems focus 
on developing the hardware side while the implementation of 
algorithms to the architecture is manually carried out. This has 
an impact on the effectiveness and ease of programmability. 
Additionally reconfigurable computing cores tend to be 
developed in terms of flexibility and high amount of parallel 
processing with little focus on the potential power savings 
aspect of the design. 

 
2.2 Scheduling algorithms 

 
A number of scheduling algorithms have been developed 

for hardware high-level synthesis. As soon as possible 
(ASAP) and as late as possible (ALAP) scheduling use 
precedence constraints [12] but do not consider resource 
usage. List scheduling methods [13] are targeted for resource-
constrained problems by identifying the available time instants 
in increasing order and scheduling as many operations at a 
certain instant before moving to the next. The integer linear 
programming (ILP) method [14] tries to find an optimal 
schedule using a branch-and-bound search algorithm, which is 
relatively straightforward to automate. However, most of these 
algorithms are based on the simplex method which is only 
applicable for very small problems. Force directed scheduling 
(FDS) [15] acts to minimise hardware subject to a given time 
constraint by balancing the concurrency of operations, the 
value to be stored, and data transfers. Iterative scheduling 
method [16] is a heuristic scheduling algorithm that permits 
escape from local minima. Each edge describes a precedence 
constraint between two nodes. The precedence constraint is an 
intra-iteration one if the edge has zero delays or inter-iteration 
if the edge has one or more delays [17]. All these algorithms 
concentrate only on the intra-iteration precedence constraints. 
The MARS scheduling algorithm [18] is a high-level DSP 
concurrent scheduling and resource allocation algorithm. It 
exploits both inter-iteration and intra-iteration precedence 
constraints. This scheduling algorithm implicitly performs 
algorithmic transformations such as pipelining and retiming, 
and is capable of generating valid architectures for algorithms 
that have randomly distributed delays.  

A number of effective local and global scheduling 
algorithms are known for instruction level parallelism. These 
include critical path list scheduling [13], trace scheduling [19], 

and percolation scheduling [20]. However, all existing 
hardware scheduling algorithms do not consider operation 
chaining and the timing effects of reconfigurable function unit 
and routing interconnection delay. In addition, these software 
scheduling algorithms are limited to independent instruction 
parallelism and to a fixed number of registers. Therefore, there 
is a strong requirement for new compiler scheduling 
technique(s) to consider issues such as operation chaining, 
interconnection delay, power consumption and register 
assignment. This is the issue addressed in this paper. 

 
3. Instruction cell based architecture  
 

To meet the needs of future mobile multimedia systems 
that are limited in battery resources and must operate in a 
changing application and communication environment, a 
dynamic reconfigurable system architecture was presented in 
[11]. The architecture aims at simultaneously maintaining 
high-throughput while still staying efficient in terms of power 
consumption and silicon cost. Such an architecture is targeted 
at high performance and low power communication, 
embedded and portable applications. 

The salient feature of the architecture is that both the 
programmable cells and their programmable interconnections 
can be dynamically reconfigured at specific points in time. In 
this architecture, the number and type of these cells are 
parameterisable upon application. The architecture, which is 
currently implemented on a UMC 0.13um CMOS technology 
library, consists of distinct 32-bit programmable functional 
units, general purpose registers, and an interconnection 
network. The basic and core elements of the architecture are 
the programmable cells which can be programmed to execute 
one type of operation similar to a CPU instruction. The ICs 
are interconnected through an island-style mesh architecture 
which allows operation chaining in the datapaths. The delay of 
each cycle is variable and programmable at run-time. 
Hardware feature are provided in the architecture to adapt the 
clock duty cycle.  

An instruction cell based architecture has the same 
flexibility of coarse-grain FPGA and programmability of DSP. 
Since it employs a coarse-grained reconfigurable architecture, 
such an architecture has lower power consumption than 
generic fine-grained FPGA. A more detailed description of 
this architecture can be found in [11]. 

 
4. System level CRS scheduling algorithm 
 

Traditional high-level synthesis (HLS) is a translation 
process which involves taking a behavioral description into a 
register transfer level (RTL) structural description. Scheduling 
is a critical task in this process. Scheduling partitions the 
Control Data Flow Graph (CDFG) into time steps thereby 
generating a scheduled CDFG model. After the scheduling 
routine is performed, register allocation is used to minimise 
the registers in the design. Differing from the traditional HLS 
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process, the proposed method combines the scheduling, 
routing, instruction cells binding and register allocation 
together to suit the instruction cell-based architectures. We 
present a new efficient multi-objective scheduling 
optimisation to give both high throughput performance and 
low power for new reconfigurable architectures. List 
scheduling (LS) is the most commonly used compiler 
scheduling technique for basic blocks. The main idea is to 
schedule as many operations as possible at a certain clock 
cycle before moving to the next clock cycle. This procedure 
continues until all operations have been scheduled. The major 
purpose of this way is to minimise the total execution time of 
the operations in the DFG. Of course, the precedence relations 
also need to be respected in list scheduling. All operations, 
whose predecessors in the DFG have completed their 
executions at a certain cycle t, are put in the so-called ready 
list R[t]. The ready list contains operations that are available 
for scheduling. If there are sufficient unoccupied resources at 
cycle t for all operations in R[t], these operations can be 
scheduled. However, if an appropriate resource for each 
operation in R[t] is not available, a choice has to be made on 
which operations will be scheduled at cycle t and which 
operations will be deferred to be scheduled at a later time. 
This choice is normally based on heuristics, each heuristic 
defining a specific type of list scheduling. By computing 
priories in a sophisticated way, they try to schedule the most 
critical cells first, and to assign them to the right resource. LS 
usually employ a priority vector to determine what tasks to 
consider first. In this paper, we present three approaches 
dealing with priority allocation mechanism and select the 
optimum one to generate the configurable bits for the target 
architecture. 

 

 

 

  Fig. 1 provides an algorithmic description of the new 
operation Chaining Reconfigurable Scheduling algorithm 
(CRS) with resource and time constraints. The traditional list 
scheduling can not be directly used on an instruction cell 
based architecture because: 1) an efficient operation chaining 
is required to deal with dependent instructions parallelism; 2) 
register allocation need to be considered in the scheduling 
algorithm; 3) The scheduling algorithm should also take the 
time effects of reconfigurable function unit and routing 
interconnection delay into account, which can change the data 
path delay in reconfigurable devices. To easily compare the 
CRS algorithm with simple list scheduling, the CRS algorithm 
consists of simple list scheduling algorithm as shown in Fig.1 
with the additional new lines marked with a @.  

Since the design entry in the CRS scheduling algorithm is 
the compiled and scheduled assembly code, the scheduler 
must handle the additional complexity such as removal of 
unnecessary registers. Register allocation is performed after 
scheduling in high-level synthesis. Since the scheduling and 
chaining of operations affect the register allocation, the CRS 
scheduling algorithm also considers the register assignment. 
The control flow graph is a fundamental data structure that is 
used to generate the correct data dependence between two 
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Algorithm CRS Scheduling 
Input: Assembly Code representing operations to schedule, 
           Space machine description (resource, clock cycle), 
           Routing delay generated by VPR algorithm; 
Output: Fast and parallel Netlist 
Begin 
Step 1: construct control flow graph (CFG) 
Step 2: construct data flow graph (DFG) 
Step 3: rename to eliminate anti/output dependences 
Step 4: assign priority to instructions based on cells flexibility 
Step 5: iteratively select & schedule instructions 
Cycle =1; 
Ready [Cycle] = Roots of DFG; 
Ready [Cycle+1] =φ; 
Scheduled [Cycle] =φ; 
@Available_Register[Cycle]={the output registers but not used as input registers

of basic block} 
While (Ready Lists ≠φ) //All Ready[i] lists 
{ 
  If (Ready [Cycle] =φ) then 
  { 
@    Initial available hardware resource;   
    Cycle = Cycle + 1; 
  } 
  While (Ready [Cycle] ≠φ) { 
@    Remove an op from Ready in priority order and a series low power

optimisation techniques are used to select an op 
     If (∃ free issue units of type(x) on cycle 
@      && operation can be chained in the same cycle) { 
           S (op) = Cycle; 
            F (op) = FinishTime (op); 
            Scheduled [Cycle] = Scheduled [Cycle] ∪ {op}; 
     For (each successor s of op in DFG){ 
                 If (s is ready) then  
                      Ready [Cycle] = Ready [Cycle] ∪ s; 
           } 
    } 
    else 
            Ready [Cycle+1] = Ready [Cycle+1] ∪ {op} 
  } 
@If (op uses register and each successor of op in Scheduled [Cycle])  
@then {//release register 
      Remove Register that saves the output of op and Put it in available register
list} 
@ N = the number of registers are needed in this clock cycle 
@ A = the number of registers are available in this cycle 
@ if (N<A) 
@      Assign Register to save the output of op 
@ else { 
@       Remove some scheduled ops in terms of priority until N ≤A; 
@       Assign Register to save the output of op;} 
Θ Further scheduling using CPLS (this step is only used for MPLS) 
@Calculate the longest critical path and variable clock cycles 
} 
@ Resource binding – using hamming distance. 
End Algorithm 

Fig.1 Operation Chaining Reconfigurable Scheduling Algorithm with 
Resource and Clock Cycle Constrained 
asic blocks and to find the instruction parallelism for 
ifferent basic blocks.  

Three methods are adopted on the CRS scheduling 
lgorithm, and the output code with the minimal number of 
lock cycles (highest throughout) or lowest power 
onsumption is selected as scheduler’s output. The first 
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method is called the critical-path reconfigurable scheduling 
(CPRS). In this context, the longest path from a node to an 
output node of the DFG is called its critical path. The 
maximum of all critical path lengths gives a lower bound 
value of the total time necessary to execute the remaining part 
of the schedule. Operations with higher priority have smaller 
mobility that is defined as the length of schedule interval 
(mobility = ALAP-ASAP). Therefore, in CPRS scheduling, 
nodes with the greatest critical-path lengths are selected to be 
scheduled at cycle t. The second method is called independent 
instruction priority reconfigurable scheduling (IPRS). In 
IPRS, nodes are selected to be scheduled at cycle t if they 
minimally increase the critical path of this clock cycle 
compared to other available nodes. Finally, the third method 
called mixed priority reconfigurable scheduling (MPRS) is 
also used in the CRS scheduler, which combines the CPRS 
and IPRS algorithm. In MPRS, nodes are firstly scheduled 
using IPRS method, and the CPRS algorithm is executed 
again after register allocation (A line marked with a Θ in Fig.1 
is adopted only for MPRS). The CPRS algorithm will generate 
the minimal execution time for fixed clock system. Since the 
CRS algorithm adopts variable clock cycles, the CPRS 
scheduling method may result in longer execution time 
compared to the IPRS scheduling. As the CRS algorithm 
combines with register allocation, the finite amount of register 
may limit IPRS method. The MPRS scheduling may generate 
better scheduling than the CPRS and IPRS scheduling. 

 
A dd1  A dd2  A dd3  

A dd7  

A dd5  

A dd8  

A dd9  

A dd6  

A dd4  [0 , 0 ] 

[1 , 1 ] 

[2 , 2 ] 

[3 , 3 ] 

[0 , 0 ] [0 , 2 ] [0 , 2 ]

[1 , 3 ]

[4 , 4 ] 
 

Fig. 2: Input Date Control Flow Graph 

These scheduling techniques will be illustrated using the 
example shown in Fig.2. Assuming the architecture provides 5 
operational elements that can execute 3xADD and 2xREG 
simultaneously and the addition is executed in one clock 
cycle, the ASAP and ALAP times for each adder are shown in 
square brackets in Fig.2. Table 1 compares three different 
CRS algorithm to see how they impact on the number of clock 
cycles needed to run Fig.2. function. In Table 1, ET refers to 
the total clock cycles of execution times (ET) and SC is 
scheduled cells. Table 1 shows that the CPRS scheduling 
generates longer ET than the IPRS scheduling, and the same 
ET as the MPRS scheduling. However, the ET of the different 
algorithms is heavily dependent on machine description. 
Tables 2 and 3 give the different scheduling results based on 

the different machine description. More shown in Table 1 and 
2, the CPRS algorithm results in longer (Table 1) or shorter 
(Table 2) ET than the IPRS algorithm, which is caused by the 
number of registers. Otherwise, the IPRS algorithm generates 
the shorter ET time if there are enough registers (Table 3). As 
the functional resources only include adders in this example, 
the results using the MPRS algorithm is either the same as 
CPRS (Table 1-2) or the same as IPRS (Table 3). However, 
when applied to a greater variation in resource as in a 
reconfigurable instruction cell based machine, it generates 
different results. The compiler will schedule the input code 
using all methods and select an appropriate output code for 
their requirement. 

 
Table 1: Comparisons of Schedulers (3 adders and 2 registers) 

CPRS IPRS. MPRS Execution 
Step Cycles SC. Cycles SC. Cycles SC. 

1 2 [1,2,5] 1 [1,2] 2 [1,2,5] 
2 2 [3,6] 1 [5,3] 2 [3,6] 
3 2 [4,8,7] 1 [6] 2 [4,8,7] 
4 1 [9] 2 [4,8,7] 1 [9] 
5   1 [9]   

ET 7 6 7 

Table 2: Comparisons of Schedulers (4 adders and 2 registers) 

CPRS IPRS. MPRS Execution 
Step Cyc. SC. Cyc. SC. Cycles SC. 

1 2 [1,2,5,3] 1 [1,2] 1 [1,2,5,3] 
2 2 [6,4,8,7] 2 [5,3,6] 1 [6,4,8,7] 
3 1 [9] 3 [4,8,7,9] 2 [9] 

ET 5 6 5 

Table 3: Comparisons of Schedulers (5 adders and 5 registers) 

CPRS IPRS. MPRS Execution 
Step Cyc. SC. Cyc. SC. Cyc. SC. 

1 3 [1,2,5,3,6] 2 [1,2,3,4,5] 2 [1,2,3,4,5] 
2 3 [4,8,7,9] 3 [6,7,8,9] 3 [6,7,8,9] 

ET 6 5 5 
 

For each basic block, a data flow graph (DFG), which 
represents data dependence among the number of operations, 
is used as an input to the CRS scheduling algorithm. One 
limitation of running a design on processors is the number of 
operations that can be executed in a single cycle. To maximise 
the number of operations executed in a single cycle, operation 
chaining and variable clock cycle are added to the CRS 
scheduling algorithm. It reduces the total number of registers 
usage, decreases the power consumption by reducing memory 
access, and increases throughput by variable clock cycles. 
When chaining an operation, scheduling algorithms must 
consider not only the operation’s impact on the critical path 
but also the programmable routing delay. The scheduling 
algorithm in the tool flow includes pre-scheduling and post-
scheduling. The pre-scheduling algorithm considers the 
operation and estimated routing time effects on the critical 
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path. The Netlist after pre-scheduling will be fed into a 
standard placement and routing tool VPR [22]. The 
corresponding routing information given by VPR tool is used 
as input to post-scheduling algorithm in order to generate the 
Netlist that met design requirement. The CRS algorithm is 
used in the first phase for performance optimization. After 
that, the resource binding is generated by using Hamming 
distance as our power cost model to estimate the transition 
activity in instruction cell configuration bus [23].  Hamming 
distance is the number of bit differences between two binary 
strings. The resource binding scheme with the minimum 
Hamming distance is chosen to reduce the power 
consumption. 
 
5. Experimental Results 

Benchmark tests are conducted using different CLS 
scheduling algorithms (CPLS, IPLS and MPLS) and are 
targeted on the same reconfigurable instruction cell based 
architecture [11] to demonstrate the performance of each CLS 
algorithm. Table 4 shows the execution time and energy 
consumption where the benchmarks are running on the 
architecture at the same frequency (125MHz) and the same 
hardware resources are used. The power consumption values 
for our reconfigurable architecture are obtained after post-
layout simulation by the Synopsys PrimePower using UMC 
0.13um technology. 

 
Table 4: Comparison of Different Scheduling Method 

Benchmark Method Execution 
Times (us) 

Energy (uJ) 
consumption  

CPLS 2.352 0.1309 
IPLS 2.192 0.108 2D-DCT 

MPLS 2.192 0.112 
CPLS 1.998 0.263 
IPLS 1.98 0.248 FIR 

MPLS 1.98 0.249 
CPLS 0.194 0.015 
IPLS 0.186 0.0154 IIR 

MPLS 0.188 0.0156 
CPLS 9.286 1.59 
IPLS 9.086 1.519 MinError 

MPLS 9.286 1.529 
CPLS 42.496 0.7980 
IPLS 43.224 0.8003 OFDM 

MPLS 41.6 0.7905 
CPLS 501.488 0.2296 
IPLS 452.162 0.225 Viterbi 

MPLS 452.1 0.227 
CPLS 283.046 1.004 
IPLS 281.08 0.878 Dhrystone 

MPLS 282.06 0.925 
 
From the table, we can see that for all the benchmarks the 

CPLS, IPLS and MPLS algorithms achieve slightly different 
execution times and power consumption values. Here, 

scheduled code can be selected by the end user’s design 
criteria, e.g. power, throughput. In order to provide the high 
throughput, the output code with the lowest execution time is 
selected. The optimal solution is heavily dependent on 
applications, it may be generated by CPLS, IPLS or MPLS 
algorithm. This has been illustrated in Section 4 (Table 1-3). 
In most benchmarks, the CPLS scheduling algorithm provides 
less register usage but however it has higher energy 
consumption compared to other scheduling algorithms. From 
scheduling and simulation analysis, the code generated by the 
CPLS scheduling algorithm has longer combinational logic 
path than other algorithms, which results in high power 
consumption. However, the CPLS algorithm provides less 
energy consumption in some cases. Once again, energy 
consumption is dependent on applications. The compiler will 
schedule the input code using all methods and select an 
appropriate output code for their requirement. The CLS 
scheduling algorithm provides the potential lower energy 
consumption and a similar throughput compared to others 
DSP/VLIW processor [11].  
 
6. Conclusions 

In this paper we have presented a new scheduling algorithm 
(CRS) targeted for an instruction cell based reconfigurable 
computing architecture. Unlike other scheduling methods, it 
considers the placement, routing effect, register assignment, 
resource binding and advanced operation chaining issue found 
in new distributed reconfigurable computing architectures, 
allowing efficient implementations of complete high 
performance system solutions. Future work will deal with 
extending the scheduling technique to include instruction 
pipelining and code size minimization.  
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