
System-level Scheduling on Instruction Cell Based Reconfigurable Systems

Ying Yi1, Ioannis Nousias1, Mark Milward1, Sami Khawam1, Tughrul Arslan1, 2, Iain Lindsay1

School of Engineering and Electronics 1
University of Edinburgh, Edinburgh, EH9 3JL

Tel: (+44)131 650 5619 Email: M.Yi@ed.ac.uk

Institute for System Level Integration 2
Alba Centre, Livingston, Scotland, EH54 7EG, U.K
Tel: (+44) 131 6505592 Email: T.Arslan@ed.ac.uk

Abstract

This paper presents a new operation chaining
reconfigurable scheduling algorithm (CRS) based on list
scheduling that maximizes instruction level parallelism
available in distributed high performance instruction cell
based reconfigurable systems. Unlike other typical scheduling
methods, it considers the placement and routing effect,
register assignment and advanced operation chaining
compilation technique to generate higher performance
scheduled code. The effectiveness of this approach is
demonstrated here using a recently developed industrial
distributed reconfigurable instruction cell based architecture
[11]. The results show that schedules using this approach
achieve equivalent throughput to VLIW architectures but at
much lower power consumption.

1. Introduction

Leading-edge DSP applications such as mobile video, audio
and telecom require high performance on a small energy
budget. Three main existing methods to implement algorithm
solutions on silicon are programmable DSP (DSP),
Application Specific Integrated Circuit (ASIC) and Field
Programmable Gate Array (FPGA). DSPs are highly flexible
in terms of programmability. But have limited throughput,
even though very long instruction word (VLIW) DSPs offers
some parallelism in form of independence instruction level
parallelism. Hardwired ASIC implementations consume less
energy and realise the algorithm with increased parallelism but
this lacks post-fabrication flexibility. Field Programmable gate
arrays give a design close to the performance benefits of an
ASIC solution and provide a reduction in NRE cost due to
post-fabrication flexibility. However, the large number of the
transistors in FPGAs used for configuration and
interconnection has a huge impact on energy consumption and
silicon area[1]. Reconfigurable computing is an emerging
technology that combines the flexibility of FPGAs with the
programmability found in General Purpose Processor
(GPP)/DSPs in a unified and easy programming environment
[2-10]. One such architecture, that meets the above criteria, is
the one recently introduced by our research group [11].

A challenging issue in reconfigurable computing systems is
the development of a suitable programming interface. In order

to seamlessly integrate such architecture to existing design
methodologies, a high-level programming interface is
required, which will also simplify and reduce the design time
(Time to Market). The high level C language is used for
describing the entire application in our compiler environment.
However, traditional software is sequential in nature. This
poses a challenging task of taking an otherwise sequential
code to extract and exploit the available parallelism. The
design flow to automate the implementation of algorithms
from a high abstraction level to run on reconfigurable
computing system requires an efficient scheduling algorithm
that can translate general purpose software code onto the
reconfigurable device thereby maximising the resource
utilisation.

Operation chaining merges two operations one after
another in extended clock cycle to reduce the register
requirement for the application. This paper proposes an
efficient operation chaining reconfigurable scheduling (CRS)
algorithm. The CRS algorithm is based on the list scheduling
algorithm and adopts the advanced operation chaining
technique and considers the effects of register assignment,
power consumption, placement and routing delay against the
resource and time constraints. The CRS algorithm allows high
program throughput and low power consumption by ensuring
that the number of dependent and independent instruction
cells (ICs) is maximised at each scheduled step and at the
same time the total number of clock cycles of the longest-path
delay is minimised.

This paper is organised as follows. Section 2 of this paper
covers related and previous work on reconfigurable
computing architecture and briefly reviews the existing
hardware and software scheduling algorithms. A simple
overview of the target architecture is given in Section 3. The
detailed description of the proposed CRS scheduling
algorithm is presented in Section 4. Experimental results are
given in Section 5 followed by conclusions.

2. Related work

2.1 Reconfigurable computing architecture

The concept of a reconfigurable computing has been

around since the 1960s consisting of a standard processor and
an array of “reconfigurable” hardware [2]. In the last decade
there has been a recent renaissance in this area of research

 1

3-9810801-0-6/DATE06 © 2006 EDAA

with many proposed reconfigurable architectures developed
both in industry and academia such as, Matrix, Garp, Elixent,
PACT XAPP, SiliconHive, Montium, Pleiades, Morphosys [3-
10] to name but a few. These designs have only really become
feasible by the relentless progress of silicon technology,
allowing for complex designs to be implemented onto a single
chip. Nevertheless, the development of reconfigurable
hardware architecture is only one side of the problem, often
overlooked is the importance of appropriate software tools
that are essential for the programmability of the system and
gaining the maximum performance. However, a lot of the
industrial companies do not disclose their programming
techniques; furthermore many reconfigurable systems focus
on developing the hardware side while the implementation of
algorithms to the architecture is manually carried out. This has
an impact on the effectiveness and ease of programmability.
Additionally reconfigurable computing cores tend to be
developed in terms of flexibility and high amount of parallel
processing with little focus on the potential power savings
aspect of the design.

2.2 Scheduling algorithms

A number of scheduling algorithms have been developed

for hardware high-level synthesis. As soon as possible
(ASAP) and as late as possible (ALAP) scheduling use
precedence constraints [12] but do not consider resource
usage. List scheduling methods [13] are targeted for resource-
constrained problems by identifying the available time instants
in increasing order and scheduling as many operations at a
certain instant before moving to the next. The integer linear
programming (ILP) method [14] tries to find an optimal
schedule using a branch-and-bound search algorithm, which is
relatively straightforward to automate. However, most of these
algorithms are based on the simplex method which is only
applicable for very small problems. Force directed scheduling
(FDS) [15] acts to minimise hardware subject to a given time
constraint by balancing the concurrency of operations, the
value to be stored, and data transfers. Iterative scheduling
method [16] is a heuristic scheduling algorithm that permits
escape from local minima. Each edge describes a precedence
constraint between two nodes. The precedence constraint is an
intra-iteration one if the edge has zero delays or inter-iteration
if the edge has one or more delays [17]. All these algorithms
concentrate only on the intra-iteration precedence constraints.
The MARS scheduling algorithm [18] is a high-level DSP
concurrent scheduling and resource allocation algorithm. It
exploits both inter-iteration and intra-iteration precedence
constraints. This scheduling algorithm implicitly performs
algorithmic transformations such as pipelining and retiming,
and is capable of generating valid architectures for algorithms
that have randomly distributed delays.

A number of effective local and global scheduling
algorithms are known for instruction level parallelism. These
include critical path list scheduling [13], trace scheduling [19],

and percolation scheduling [20]. However, all existing
hardware scheduling algorithms do not consider operation
chaining and the timing effects of reconfigurable function unit
and routing interconnection delay. In addition, these software
scheduling algorithms are limited to independent instruction
parallelism and to a fixed number of registers. Therefore, there
is a strong requirement for new compiler scheduling
technique(s) to consider issues such as operation chaining,
interconnection delay, power consumption and register
assignment. This is the issue addressed in this paper.

3. Instruction cell based architecture

To meet the needs of future mobile multimedia systems
that are limited in battery resources and must operate in a
changing application and communication environment, a
dynamic reconfigurable system architecture was presented in
[11]. The architecture aims at simultaneously maintaining
high-throughput while still staying efficient in terms of power
consumption and silicon cost. Such an architecture is targeted
at high performance and low power communication,
embedded and portable applications.

The salient feature of the architecture is that both the
programmable cells and their programmable interconnections
can be dynamically reconfigured at specific points in time. In
this architecture, the number and type of these cells are
parameterisable upon application. The architecture, which is
currently implemented on a UMC 0.13um CMOS technology
library, consists of distinct 32-bit programmable functional
units, general purpose registers, and an interconnection
network. The basic and core elements of the architecture are
the programmable cells which can be programmed to execute
one type of operation similar to a CPU instruction. The ICs
are interconnected through an island-style mesh architecture
which allows operation chaining in the datapaths. The delay of
each cycle is variable and programmable at run-time.
Hardware feature are provided in the architecture to adapt the
clock duty cycle.

An instruction cell based architecture has the same
flexibility of coarse-grain FPGA and programmability of DSP.
Since it employs a coarse-grained reconfigurable architecture,
such an architecture has lower power consumption than
generic fine-grained FPGA. A more detailed description of
this architecture can be found in [11].

4. System level CRS scheduling algorithm

Traditional high-level synthesis (HLS) is a translation
process which involves taking a behavioral description into a
register transfer level (RTL) structural description. Scheduling
is a critical task in this process. Scheduling partitions the
Control Data Flow Graph (CDFG) into time steps thereby
generating a scheduled CDFG model. After the scheduling
routine is performed, register allocation is used to minimise
the registers in the design. Differing from the traditional HLS

 2

process, the proposed method combines the scheduling,
routing, instruction cells binding and register allocation
together to suit the instruction cell-based architectures. We
present a new efficient multi-objective scheduling
optimisation to give both high throughput performance and
low power for new reconfigurable architectures. List
scheduling (LS) is the most commonly used compiler
scheduling technique for basic blocks. The main idea is to
schedule as many operations as possible at a certain clock
cycle before moving to the next clock cycle. This procedure
continues until all operations have been scheduled. The major
purpose of this way is to minimise the total execution time of
the operations in the DFG. Of course, the precedence relations
also need to be respected in list scheduling. All operations,
whose predecessors in the DFG have completed their
executions at a certain cycle t, are put in the so-called ready
list R[t]. The ready list contains operations that are available
for scheduling. If there are sufficient unoccupied resources at
cycle t for all operations in R[t], these operations can be
scheduled. However, if an appropriate resource for each
operation in R[t] is not available, a choice has to be made on
which operations will be scheduled at cycle t and which
operations will be deferred to be scheduled at a later time.
This choice is normally based on heuristics, each heuristic
defining a specific type of list scheduling. By computing
priories in a sophisticated way, they try to schedule the most
critical cells first, and to assign them to the right resource. LS
usually employ a priority vector to determine what tasks to
consider first. In this paper, we present three approaches
dealing with priority allocation mechanism and select the
optimum one to generate the configurable bits for the target
architecture.

 Fig. 1 provides an algorithmic description of the new
operation Chaining Reconfigurable Scheduling algorithm
(CRS) with resource and time constraints. The traditional list
scheduling can not be directly used on an instruction cell
based architecture because: 1) an efficient operation chaining
is required to deal with dependent instructions parallelism; 2)
register allocation need to be considered in the scheduling
algorithm; 3) The scheduling algorithm should also take the
time effects of reconfigurable function unit and routing
interconnection delay into account, which can change the data
path delay in reconfigurable devices. To easily compare the
CRS algorithm with simple list scheduling, the CRS algorithm
consists of simple list scheduling algorithm as shown in Fig.1
with the additional new lines marked with a @.

Since the design entry in the CRS scheduling algorithm is
the compiled and scheduled assembly code, the scheduler
must handle the additional complexity such as removal of
unnecessary registers. Register allocation is performed after
scheduling in high-level synthesis. Since the scheduling and
chaining of operations affect the register allocation, the CRS
scheduling algorithm also considers the register assignment.
The control flow graph is a fundamental data structure that is
used to generate the correct data dependence between two

b
d

a
c
c

Algorithm CRS Scheduling
Input: Assembly Code representing operations to schedule,
 Space machine description (resource, clock cycle),
 Routing delay generated by VPR algorithm;
Output: Fast and parallel Netlist
Begin
Step 1: construct control flow graph (CFG)
Step 2: construct data flow graph (DFG)
Step 3: rename to eliminate anti/output dependences
Step 4: assign priority to instructions based on cells flexibility
Step 5: iteratively select & schedule instructions
Cycle =1;
Ready [Cycle] = Roots of DFG;
Ready [Cycle+1] =φ;
Scheduled [Cycle] =φ;
@Available_Register[Cycle]={the output registers but not used as input registers

of basic block}
While (Ready Lists ≠φ) //All Ready[i] lists
{
 If (Ready [Cycle] =φ) then
 {
@ Initial available hardware resource;
 Cycle = Cycle + 1;
 }
 While (Ready [Cycle] ≠φ) {
@ Remove an op from Ready in priority order and a series low power

optimisation techniques are used to select an op
 If (∃ free issue units of type(x) on cycle
@ && operation can be chained in the same cycle) {
 S (op) = Cycle;
 F (op) = FinishTime (op);
 Scheduled [Cycle] = Scheduled [Cycle] ∪ {op};
 For (each successor s of op in DFG){
 If (s is ready) then
 Ready [Cycle] = Ready [Cycle] ∪ s;
 }
 }
 else
 Ready [Cycle+1] = Ready [Cycle+1] ∪ {op}
 }
@If (op uses register and each successor of op in Scheduled [Cycle])
@then {//release register
 Remove Register that saves the output of op and Put it in available register
list}
@ N = the number of registers are needed in this clock cycle
@ A = the number of registers are available in this cycle
@ if (N<A)
@ Assign Register to save the output of op
@ else {
@ Remove some scheduled ops in terms of priority until N ≤A;
@ Assign Register to save the output of op;}
Θ Further scheduling using CPLS (this step is only used for MPLS)
@Calculate the longest critical path and variable clock cycles
}
@ Resource binding – using hamming distance.
End Algorithm

Fig.1 Operation Chaining Reconfigurable Scheduling Algorithm with
Resource and Clock Cycle Constrained
asic blocks and to find the instruction parallelism for
ifferent basic blocks.

Three methods are adopted on the CRS scheduling
lgorithm, and the output code with the minimal number of
lock cycles (highest throughout) or lowest power
onsumption is selected as scheduler’s output. The first

3

method is called the critical-path reconfigurable scheduling
(CPRS). In this context, the longest path from a node to an
output node of the DFG is called its critical path. The
maximum of all critical path lengths gives a lower bound
value of the total time necessary to execute the remaining part
of the schedule. Operations with higher priority have smaller
mobility that is defined as the length of schedule interval
(mobility = ALAP-ASAP). Therefore, in CPRS scheduling,
nodes with the greatest critical-path lengths are selected to be
scheduled at cycle t. The second method is called independent
instruction priority reconfigurable scheduling (IPRS). In
IPRS, nodes are selected to be scheduled at cycle t if they
minimally increase the critical path of this clock cycle
compared to other available nodes. Finally, the third method
called mixed priority reconfigurable scheduling (MPRS) is
also used in the CRS scheduler, which combines the CPRS
and IPRS algorithm. In MPRS, nodes are firstly scheduled
using IPRS method, and the CPRS algorithm is executed
again after register allocation (A line marked with a Θ in Fig.1
is adopted only for MPRS). The CPRS algorithm will generate
the minimal execution time for fixed clock system. Since the
CRS algorithm adopts variable clock cycles, the CPRS
scheduling method may result in longer execution time
compared to the IPRS scheduling. As the CRS algorithm
combines with register allocation, the finite amount of register
may limit IPRS method. The MPRS scheduling may generate
better scheduling than the CPRS and IPRS scheduling.

A dd1 A dd2 A dd3

A dd7

A dd5

A dd8

A dd9

A dd6

A dd4 [0 , 0]

[1 , 1]

[2 , 2]

[3 , 3]

[0 , 0] [0 , 2] [0 , 2]

[1 , 3]

[4 , 4]

Fig. 2: Input Date Control Flow Graph

These scheduling techniques will be illustrated using the
example shown in Fig.2. Assuming the architecture provides 5
operational elements that can execute 3xADD and 2xREG
simultaneously and the addition is executed in one clock
cycle, the ASAP and ALAP times for each adder are shown in
square brackets in Fig.2. Table 1 compares three different
CRS algorithm to see how they impact on the number of clock
cycles needed to run Fig.2. function. In Table 1, ET refers to
the total clock cycles of execution times (ET) and SC is
scheduled cells. Table 1 shows that the CPRS scheduling
generates longer ET than the IPRS scheduling, and the same
ET as the MPRS scheduling. However, the ET of the different
algorithms is heavily dependent on machine description.
Tables 2 and 3 give the different scheduling results based on

the different machine description. More shown in Table 1 and
2, the CPRS algorithm results in longer (Table 1) or shorter
(Table 2) ET than the IPRS algorithm, which is caused by the
number of registers. Otherwise, the IPRS algorithm generates
the shorter ET time if there are enough registers (Table 3). As
the functional resources only include adders in this example,
the results using the MPRS algorithm is either the same as
CPRS (Table 1-2) or the same as IPRS (Table 3). However,
when applied to a greater variation in resource as in a
reconfigurable instruction cell based machine, it generates
different results. The compiler will schedule the input code
using all methods and select an appropriate output code for
their requirement.

Table 1: Comparisons of Schedulers (3 adders and 2 registers)

CPRS IPRS. MPRS Execution
Step Cycles SC. Cycles SC. Cycles SC.

1 2 [1,2,5] 1 [1,2] 2 [1,2,5]
2 2 [3,6] 1 [5,3] 2 [3,6]
3 2 [4,8,7] 1 [6] 2 [4,8,7]
4 1 [9] 2 [4,8,7] 1 [9]
5 1 [9]

ET 7 6 7

Table 2: Comparisons of Schedulers (4 adders and 2 registers)

CPRS IPRS. MPRS Execution
Step Cyc. SC. Cyc. SC. Cycles SC.

1 2 [1,2,5,3] 1 [1,2] 1 [1,2,5,3]
2 2 [6,4,8,7] 2 [5,3,6] 1 [6,4,8,7]
3 1 [9] 3 [4,8,7,9] 2 [9]

ET 5 6 5

Table 3: Comparisons of Schedulers (5 adders and 5 registers)

CPRS IPRS. MPRS Execution
Step Cyc. SC. Cyc. SC. Cyc. SC.

1 3 [1,2,5,3,6] 2 [1,2,3,4,5] 2 [1,2,3,4,5]
2 3 [4,8,7,9] 3 [6,7,8,9] 3 [6,7,8,9]

ET 6 5 5

For each basic block, a data flow graph (DFG), which
represents data dependence among the number of operations,
is used as an input to the CRS scheduling algorithm. One
limitation of running a design on processors is the number of
operations that can be executed in a single cycle. To maximise
the number of operations executed in a single cycle, operation
chaining and variable clock cycle are added to the CRS
scheduling algorithm. It reduces the total number of registers
usage, decreases the power consumption by reducing memory
access, and increases throughput by variable clock cycles.
When chaining an operation, scheduling algorithms must
consider not only the operation’s impact on the critical path
but also the programmable routing delay. The scheduling
algorithm in the tool flow includes pre-scheduling and post-
scheduling. The pre-scheduling algorithm considers the
operation and estimated routing time effects on the critical

 4

path. The Netlist after pre-scheduling will be fed into a
standard placement and routing tool VPR [22]. The
corresponding routing information given by VPR tool is used
as input to post-scheduling algorithm in order to generate the
Netlist that met design requirement. The CRS algorithm is
used in the first phase for performance optimization. After
that, the resource binding is generated by using Hamming
distance as our power cost model to estimate the transition
activity in instruction cell configuration bus [23]. Hamming
distance is the number of bit differences between two binary
strings. The resource binding scheme with the minimum
Hamming distance is chosen to reduce the power
consumption.

5. Experimental Results

Benchmark tests are conducted using different CLS
scheduling algorithms (CPLS, IPLS and MPLS) and are
targeted on the same reconfigurable instruction cell based
architecture [11] to demonstrate the performance of each CLS
algorithm. Table 4 shows the execution time and energy
consumption where the benchmarks are running on the
architecture at the same frequency (125MHz) and the same
hardware resources are used. The power consumption values
for our reconfigurable architecture are obtained after post-
layout simulation by the Synopsys PrimePower using UMC
0.13um technology.

Table 4: Comparison of Different Scheduling Method

Benchmark Method Execution
Times (us)

Energy (uJ)
consumption

CPLS 2.352 0.1309
IPLS 2.192 0.108 2D-DCT

MPLS 2.192 0.112
CPLS 1.998 0.263
IPLS 1.98 0.248 FIR

MPLS 1.98 0.249
CPLS 0.194 0.015
IPLS 0.186 0.0154 IIR

MPLS 0.188 0.0156
CPLS 9.286 1.59
IPLS 9.086 1.519 MinError

MPLS 9.286 1.529
CPLS 42.496 0.7980
IPLS 43.224 0.8003 OFDM

MPLS 41.6 0.7905
CPLS 501.488 0.2296
IPLS 452.162 0.225 Viterbi

MPLS 452.1 0.227
CPLS 283.046 1.004
IPLS 281.08 0.878 Dhrystone

MPLS 282.06 0.925

From the table, we can see that for all the benchmarks the

CPLS, IPLS and MPLS algorithms achieve slightly different
execution times and power consumption values. Here,

scheduled code can be selected by the end user’s design
criteria, e.g. power, throughput. In order to provide the high
throughput, the output code with the lowest execution time is
selected. The optimal solution is heavily dependent on
applications, it may be generated by CPLS, IPLS or MPLS
algorithm. This has been illustrated in Section 4 (Table 1-3).
In most benchmarks, the CPLS scheduling algorithm provides
less register usage but however it has higher energy
consumption compared to other scheduling algorithms. From
scheduling and simulation analysis, the code generated by the
CPLS scheduling algorithm has longer combinational logic
path than other algorithms, which results in high power
consumption. However, the CPLS algorithm provides less
energy consumption in some cases. Once again, energy
consumption is dependent on applications. The compiler will
schedule the input code using all methods and select an
appropriate output code for their requirement. The CLS
scheduling algorithm provides the potential lower energy
consumption and a similar throughput compared to others
DSP/VLIW processor [11].

6. Conclusions

In this paper we have presented a new scheduling algorithm
(CRS) targeted for an instruction cell based reconfigurable
computing architecture. Unlike other scheduling methods, it
considers the placement, routing effect, register assignment,
resource binding and advanced operation chaining issue found
in new distributed reconfigurable computing architectures,
allowing efficient implementations of complete high
performance system solutions. Future work will deal with
extending the scheduling technique to include instruction
pipelining and code size minimization.

7. References

[1] Power Comparison, RapidChip® Platform ASICs vs. FPGAs
[2] G. Estrin, “Organization of Computer Systems -The Fixed Plus

Variable Structure Computer,” Proc. Western Joint Computer
Conf., New York, 1960, pp. 33-40

[3] E. Mirsky and A. DeHon, “Matrix: A Reconfigurable Computing
Architecture with Configurable Instruction Distribution and
Deployable Resources” IEEE symposium on FPGAs for custom
computing machines, April 1996, pp.157-166.

[4] J.R. Hauser “Augmenting a Microprocessor with Reconfigurable
Hardware” Thesis, University of California, Berkeley, 2000

[5] D-Fabrix processing array, Reconfigurable Signal Processor,
www.elixent.com, 2004

[6] XPP, PACT, “OFDM decoder for wireless LAN – whitepaper”
www.pactcorp.com, May 2002

[7] Reconfigurable Computing, Philips, Avispa,
www.siliconhive.com, 2004

[8] P.M. Heysters, G.J.M Smit and E. Molenkamp, “Montium –
Balancing between Energy-Efficiency, Flexibility and
Performance” Engineering of Reconfigurable Systems and
Algorithms, 2003, pp.235-241.

 5

http://www.elixent.com/
http://www.siliconhive.com/

[9] M. Wan, H. Zhang, V. George, M.Benes, A. Abnous, V. Prabhu
and J.Rabaey, “Design Methodology of a Low Energy
Reconfigurable Single-Chip DSP System” Journal of VLSI
Signal Processing, 2000, pp. 53-63.

[10] H. Singh, M.-H. Lee, et al. “Morphosys: an integrated
reconfigurable system for data-parallel and computation-
intensive applications”. IEEE Trans. on Comp., vol49(5):, May
2000, pp. 465–481.

[11] Reconfigurable Instruction Cell Array, U.K. Patent Application
Number 0508589.9.

[12] P. DeWilde et al., “Parallel and Pipelined VLSI Implementation
of Signal Processing Algorithms”, in VLSI and Modern Signal
Processing, eds. Kung, Whitehouse, and Kailath, Prentice Hall,
1985.

[13] S. Davidson, D. Landskov, B.D. Shriver, P.W. Mallett, “Some
Experiments in Local Microcode Compaction for Horizontal
Machines”, IEEE Trans. On Computer, vol. 30, no. 7, 1981, pp.
460-477.

[14] J. Lee, Y. Hsu, and Y. Lin, “A new Integer Linear Programming
Formulation for the scheduling Problem in Data-Path
Synthesis,” Proc. of the Int’l. Conf. on Computer Aided Design,
1989, pp. 20-23.

[15] P. G. Paulin and J. P. Knight; “Force Directed Scheduling For
the behavioral synthesis of ASIC’s,” IEEE Trans. On Computer
Aided Design, Vol.8, June 1989, pp.661-679.

[16] I-C. Park and C-M Kyung, “Fast and Near Optimal Scheduling

in Automatic Data Path Synthesis,” Proc. of the 28th DAC, 1991,
pp. 680-685.

[17] K. K.Parhi, “VLSI Digital Signal Processing Systems Design
and Implementation”, John Wiley & Sons, Inc., 1999.

[18] C-Y Wang and K. K.Parhi, “The MARS High-Level DSP
Synthesis System”, VLSI Design Methodologies for Digital
Signal Processing Architectures, Kluwer Academic Publishers,
1994.

[19] J.A. Fisher, “Trace Scheduling: A Technique for Global
Microcode Compaction”, IEEE Trans. On Computers, vol. 30,
no. 7, 1981, pp. 478-490.

[20] A. Aiken, A. Nicolau, “A Development Environment for
Horizontal Microcode”, IEEE Trans. On Software Engineering,
no. 14, 1988, pp. 584-594.

[21] M.W. Hwu, R.E. Hank, D.M. Gallagher, A.M. Scott, D.M.
Lavery, G.E. Haab, J.C. Gyllenhaal, and D.I. August, “Compiler
Technology for Future Microprocessors”, Proceeding of the
IEEE, 83(12), December 1995, pp.1625-1639.

[22] V. Betz and J. Rose, “VPR: A new packing, placement and
routing tool for FPGA research”, in Proc., FPL 1997.

[23] Chingren Lee, Jeng Kuen Lee, TingTing Hwang and Shi-Chun
TSAI, “Compiler Optimization on VLIW Instruction
Scheduling for Low Power”, ACM Transactions on Design
automation of Electronic Systems, Vol. 8, No. 2, April 2003,
Pages 252-268.

 6

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

