
Compiler-driven FPGA-area Allocation for Reconfigurable Computing

Elena Moscu Panainte Koen Bertels Stamatis Vassiliadis

Computer Engineering
Delft University of Technology, The Netherlands

http://ce.et.tudelft.nl
E-mail: {E.Panainte, K.Bertels, S.Vassiliadis}@ewi.tudelft.nl

Abstract

In this paper, we propose two FPGA-area allocation al-
gorithms based on profiling results for reducing the impact
on performance of dynamic reconfiguration overheads. The
problem of FPGA-area allocation is presented as a 0-1 in-
teger linear programming problem and efficient solvers are
incorporated for finding the optimal solutions. Additionally,
we discuss the FPGA-area allocation problem in two sce-
narios. In the first scenario, all hardware operations are
allocated on the FPGA while in the second scenario, any
hardware operation can be switched to software execution
in order to provide an overall performance improvement.
We evaluate our proposed algorithms using the MPEG2
and MJPEG encoder multimedia benchmarks and the hard-
ware implementations for SAD, DCT, IDCT, Quantization
and VLC tasks. We show that a significant performance im-
provement (up to 61 % for MPEG2 and 94 % for MJPEG)
is to be achieved when the proposed algorithms are used,
while the reconfiguration overhead is reduced by at least 36
% for MJPEG.

1. Introduction

Although the new generations of FPGAs provide sup-
port for partial and dynamic configuration, the huge recon-
figuration latency is still a major shortcoming of the cur-
rent FCCMs (see [7]). In this paper, we propose two FPGA-
area allocation algorithms for the tasks executed on the re-
configurable hardware. The goal is to minimize the FPGA-
area which is reconfigured at runtime and improve the over-
all performance, taking into account the application runtime
features. More specifically, we use the reconfiguration fre-
quency for the target application to guide the allocation al-
gorithms. Two scenarios are discussed: the first one corre-
sponds to the case when all hardware operations must be
placed/executed on the target FPGA while in the second
scenario, a hardware operation can be switched to its pure

software execution on the core processor in order to reduce
the pressure/competition for the FPGA area. The FPGA-
area allocation problem is formulated as a 0-1 integer lin-
ear programming (LP) problem and efficient LP solvers are
used for finding the optimal solutions.

The paper is organized in six sections. The background
and related work is presented in the following section.
Next, we discuss some motivational examples and define
the FPGA-area allocation problem addressed in this paper.
The proposed allocation algorithms are detailed in section
4. Finally, we provide the evaluation of the proposed algo-
rithms and present conclusions and future work.

2. Background and Related Work

In this paper, we assume the Molen programming
paradigm [9] for FCCMs (Field-programmable Custom
Computing Machines) with a core processor (GPP) and re-
configurable hardware (usually implemented as an FPGA).
The reconfigurable hardware is controlled by two instruc-
tions: i) SET for the FPGA configuration for a reconfig-
urable operation (Rop) and ii) EXECUTE for the Rop
execution on the FPGA. The Molen compiler [7] gener-
ates code for reconfigurable computing platforms following
the Molen programming paradigm. An important com-
piler optimization (see [7]) included in the Molen compiler
is to reduce the redundant SET instructions taking into ac-
count the predefined FPGA-area conflicts between the
considered Rops. In consequence, the compiler optimiza-
tion will benefit from an efficient FPGA-area allocation
that minimizes the FPGA-area overlaps for a target appli-
cation.

Previous approaches for FPGA-area allocation are
mainly focused on cases where the whole application is de-
composed in tasks which are all executed on the FPGA.
In [3], an optimal module placement based on pack-
ing classes is proposed. A backtracking solution with
bounding heuristics is presented in [5]. The proposed so-
lutions require detailed information (such as data flow

3-9810801-0-6/DATE06 © 2006 EDAA

graphs, dependency graphs of tasks) about the applica-
tion’s features and regular application behavior. Another
approach (see [4] [10] [2]) is the task allocation in an op-
erating system for reconfigurable computing. In such
cases, information about specific application behavior can-
not be used in order to guide this allocation, thus opti-
mization opportunities can be lost. Other related work [7]
addresses compiler optimization for reducing the num-
ber of redundant FPGA configurations based on a prede-
fined FPGA-area allocation. In the current paper, we pro-
pose two FPGA-area allocation algorithms that reduce
furthermore the number of FPGA configurations by min-
imizing the total reconfigured area for a given trace of
execution.

3. Problem Overview and Definition

Motivational Example: In order to clearly define the
FPGA-area allocation problem, we use a motivational ex-
ample (Figure 1(a)) which sketches an FPGA device and
the area requirements for three operations implemented on
the FPGA. In this paper, we assume FPGAs with column-
based reconfiguration (the reconfiguration may only be per-
formed for a full column of CLBs of the chip) such as the
well-known Xilinx Virtex devices. For one application that
uses the three hardware operations, a simple FPGA area al-
location (presented in 1(b)) places all operations starting
with the first column. Due to the FPGA area overlaps, such
allocation requires the FPGA reconfiguration before each
execution of the considered operations. As shown in [7],
FPGA reconfiguration is slow and thus, repetitive FPGA
reconfigurations can produce a significant performance de-
crease. In consequence, a better FPGA-area allocation is re-
quired in order to reduce the reconfiguration overhead. An
allocation strategy is possible only when the placement of
the hardware operations is not predefined.

Two important observations can be made regarding the
example from Figure 1. The first observation is that the
three considered operations cannot fit together on the FPGA
as the sum of the area of their hardware implementations
exceeds the total available FPGA-area. The second obser-
vation concerns the simple allocation strategy, where there
is unused FPGA-area while parts of the FPGA have to be
reconfigured before each execution. For the considered ex-
ample, even when the Rop2 and Rop3 do not have over-
lapping FPGA-area, the placement of Rop1 will introduce
FPGA-area overlaps with one of the two operations.

In order to determine an efficient FPGA-area allocation,
we propose an approach that divides the hardware opera-
tions in two categories: FIX and RW. An operation is called
FIX if it has no overlapping area with any other hardware
operations in the considered application. Such a FIX oper-
ation requires only one initial FPGA configuration (which

31 2

10 11 128 95 6 7431 2

FPGA

A= 12

a)

c)

85 6 7431 2

ROP3

A=8

ROP3

A=8

ROP1

A=3

431 2

10 11 128 95 6 7431 2

ROP2 ROP3
ROP1

b)

Trace: Rop1 Rop2 Rop1 Rop3 Rop1
Rop2 Rop1
Initial (Trace):
#SET Rop1 = 4
#SET Rop2 = 2
#SET Rop3 = 1

Final:
#SET Rop1 = 0 (FIX)
#SET Rop2 = 2 (RW)
#SET Rop3 = 1 (RW)

A=3

10 11 128 95 6 7431 2

ROP3

A=8A=4

ROP2ROP1

Fix Reloaded

A=4

ROP2

Figure 1. Example: a) Total FPGA-area and three Rops;
b) a simple FPGA-area allocation c) optimal allocation
based on the execution trace

can be preloaded and can be neglected). An operation is
called RW (reconfigurable) if its area overlaps with other
operations and it has to be configured before each execu-
tion. Loosely stated, the main idea of our approach is to
minimize the reconfigured FPGA-area based on the recon-
figuration frequency of each operation. Using profiling in-
formation, we determine the execution order for the hard-
ware operations (called trace) and compute the reconfig-
uration frequency in the trace. The goal is to allocate the
larger and frequently reconfigured operations as FIX oper-
ations. The example shown in Figure 1(c) presents the op-
timal FPGA-area allocation for a given execution trace. We
can observe the elimination of hardware configurations for
the operations allocated as FIX operations (Rop1 in this ex-
ample). The selection of the FIX operations is based on 0-1
linear programming and is explained in Section 4. The used
terminology and a formal description of the allocation prob-
lem is presented in the rest of this section.

Problem statement: We represent a set of
n reconfigurable hardware operations (Rops) as
ROP = {Rop1,Rop2, ..., Ropi, ...,Ropn}, where each
operation Ropi occupies for its hardware implementa-
tion an FPGA-area Ai. The total available area of the
target FPGA device is S. Although in this paper we ad-
dress the case when the reconfiguration is column-based

(the area is expressed as the number of columns), the exten-
sion to the 2D or 3D cases is straightforward. An execution
trace is a sequence of Rops that are executed for a set of rep-
resentative input data for the target application and it is
represented as T : Ropi,Rop j, ...,Ropk, A trace is nor-
malized if it does not contain two identical consecutive
Rops. This normalization represents the fact that con-
secutive hardware reconfigurations for the same Rop
are redundant and can be eliminated by compiler op-
timization (see [7]) or hardware prefetching. For each
Ropi ∈ ROP and a normalized trace T, the reconfigura-
tion frequency n(T)i represents the number of occurrences
of Ropi in the trace T.

As previously explained, the idea of our approach is
to divide the ROP set in two subsets FIX and RW, where
ROP = FIX

S

RW and FIX
T

RW = /0. The Rops in the FIX
set will have a dedicated area allocated on the FPGA that is
not used by other Rops (they do not have area overlaps with
other Rops). The advantage is that the FIX Rops will not
require an FPGA reconfiguration before their executions.
The total area occupied by the FIX Rops is ∑

Rop j∈FIX
A j.

The Rops in RW set are the operations that have area over-
laps. The reconfiguration overhead is proportional with the
FPGA-area which is reconfigured at runtime. The aim is to
minimize the total reconfigured area (the sum of the area of
the Rops from RW multiplied by their reconfiguration fre-
quency) which corresponds to the minimization of the re-
configuration overhead and implicitly, to the improvement
of the overall performance gain. A formal description of this
problem is as follows:

Problem Given a set ROP = {Rop1,Rop2, ...,
Ropi, ...,Ropn}, a total available FPGA-area S, a nor-
malized execution trace T, each Ropi having an FPGA-area
Ai and the reconfiguration frequency n(T)i, find RW ⊆ ROP

that minimizes the reconfigured area ∑
Ropi∈RW

n(T)i ∗Ai, un-

der the following constraint:

• ∀ Ropk ∈ RW , Ak + ∑
Rop j∈FIX

A j ≤ S, where FIX =

ROP−RW .

The constraint represents the requirement that any RW
Rop must have enough available area to coexists on the
FPGA at the execution time with all FIX Rops. Implicitly, as
the FPGA-area is a positive number, the constrain expresses
also the requirement that all FIX Rops should fit together on
the target FPGA. Once the RW set has been determined for
the above mentioned problem, an effective FPGA-area al-
location is straightforward. Assuming that Ai represents the
number of required columns, an FPGA-area allocation asso-
ciates with each Rops, the number of the first column where
Ai is placed. In the first step, the FIX Rops are consecutively

allocated on the FPGA. In the second step, the RW Rops are
all allocated at the end of the FPGA-area allocated for the
FIX Rops.

4. FPGA-area Allocation Algorithms

For the problem defined in the previous section, we pro-
pose its formulation as an integer linear pseudo-Boolean (0-
1) programming problem and consequently, the solutions
can be determined using efficient solvers (see [1]). More
specifically, we propose two scenarios. The first case (as-
sociated with the FIX/RW Algorithm) corresponds to the
above mentioned problem, where the Rops are placed in
the FIX or in the RW (Reloaded) part on the FPGA. In
the second case (corresponding to the FIX/RW/SW Algo-
rithm), we assume than an Rop can have three options for
execution: on the FIX or RW part or additionally, it can be
switched to its software execution (on GPP). The last op-
tions can be preferred for those Rops where the huge recon-
figurations latency consumes the gain produced by the fast
execution on the FPGA. In the rest of this section, we intro-
duce in detail the two FPGA-area allocation algorithms.

4.1. FIX/RW Algorithm

As previously presented, we translate the FPGA-area al-
location problem in a 0-1 linear programming problem to
produce an optimal solution using efficient solvers.

0-1 Selection In the considered case, any Rop can be
executed on the FIX or RW part of the FPGA. In conse-
quence, we associate with any Ropi a variable xi such that

xi =

{

0 if Ropi ∈ FIX
1 if Ropi ∈ RW . Finding the optimal parti-

tion of ROP in FIX and RW is reduced to finding the opti-
mal 0-1 values for all xi.

Objective function In the problem definition in Section
3, the minimization of the reconfigured area ∑

Ropi∈RW
n(T)i ∗

Ai can be expressed as the following objective function

∑
Ropi∈ROP

n(T)i ∗ Ai ∗ xi. If Ropi is a FIX Rop, then xi = 0

and it does not increase the reconfigured area as it does not
need any configuration. In consequence, only the contribu-
tion of the RW Rops is included in the minimization objec-
tive function.

Linear Pseudo-Boolean Inequalities The system of
linear pseudo-Boolean inequalities of the linear program-
ming problem formulation corresponds to the constrains in-
cluded the initial problem. The constraint that ∀ Ropk ∈

RW , Ak + ∑
Rop j∈FIX

A j ≤ S can be expressed as follows:

min: +2*39*x1 + 3*13*x2 + 3*16*x3;

C1: + 13*x2 + 16*x3 ≤ 58 - 39
C2: + 39*x1 + 16*x3 ≤ 58 - 13
C3: + 39*x1 + 13*x2 ≤ 58 - 16

Figure 2. LP problem for the MPEG2 example in Sec-
tion 5 and FIX/RW Algorithm

A1 ∗ x1 + ∑
Rop j∈ROP

A j ∗ x j ≤ S

A2 ∗ x2 + ∑
Rop j∈ROP

A j ∗ x j ≤ S

...

Ai ∗ xi + ∑
Rop j∈ROP

A j ∗ x j ≤ S

...

An ∗ xn + ∑
Rop j∈ROP

A j ∗ x j ≤ S

This system of inequalities should be interpreted as fol-
lows: (1) The term ∑

Rop j∈ROP
A j ∗ x j represents the perma-

nently configured FPGA-area occupied by FIX Rops:
∑

Rop j∈ROP
A j ∗ x j = ∑

Rop j∈FIX
A j ∗ x j .

(2)The second observation regards the first term in the
inequalities, namely Ai ∗ xi. For the cases when Ropi ∈
FIX =⇒ xi = 0, the term Ai ∗ xi can be eliminated. The ith
inequality is transformed in ∑

Rop j∈ROP
A j ∗ x j ≤ S which rep-

resents the constraint that the total area allocated for FIX
Rops should be smaller or equal than the total available
FPGA-area S. Similarly, for the cases when Ropi ∈ RW =⇒

xi = 1, the inequality is transformed in Ai∗xi + ∑
Rop j∈ROP

A j ∗

x j ≤ S which represents the constraint that an RW Rop has
to fit on the FPGA together with all FIX Rops.

In our model implementation, each ith inequality should
not contain both xi and xi; thus it can be reduced as follows:

Ai ∗xi +
n

∑
j=1

A j ∗x j ≤ S ⇐⇒ Ai ∗xi +Ai∗xi +
i−1

∑
j=1

A j ∗x j +
n

∑
j=i+1

A j ∗

x j ≤ S ⇐⇒
i−1

∑
j=1

A j ∗ x j +
n

∑
j=i+1

A j ∗ x j ≤ S−Ai

Example A real example is presented in Figure 2,
for three Rops with A1 = 39,A2 = 13,A3 = 16,n(T)1 =
2,n(T)2 = 3,n(T)3 = 3 and S = 58. The solution to
this problem is {x1 = 0,x2 = 1;x3 = 1}, which corre-
sponds to FIX = {Rop1} and RW = {Rop2, Rop3}.

4.2. FIX/RW/SW Algorithm

The FIX/RW algorithm previously presented has two im-
portant limitations: i) it cannot find a viable FPGA alloca-
tion if there is an Ropi with Ai > S because the constraint
set is unsatisfiable; and ii) although the FPGA execution
is (usually) faster than the software execution for any Rop,

the reconfiguration overhead can significantly increase the
overall execution time. In order to eliminate these rigid lim-
itations, we propose the FIX/RW/SW algorithm where the
Rops can additionally be switched to software execution.
The FPGA-area allocation problem can again be formulated
as 0-1 LP problem including the following components.

0-1 Selection In this case, a Rop has three options for ex-
ecution: on the FIX or RW part on the FPGA or additionally
in software (SW). The allocation problem involves the divi-
sion of ROP in three subsets FIX, RW and SW, such that
ROP = FIX

S

RW
S

SW and FIX
T

RW = /0, FIX
T

SW =
/0, RW

T

SW = /0. These options can be expressed using
three boolean variables for each Ropi, namely x f ixi,xrwi

and xswi, where x f ixi =

{

1 if Ropi ∈ FIX
0 if Ropi 6∈ FIX and

similar for xrwi and xswi. Moreover, a Rop must be in-
cluded in only one subset; this constraint can be expressed
as x f ixi + xrwi + xswi = 1. Finding the optimal partition of
ROP in FIX, RW and SW is reduced to finding the opti-
mal 0-1 values for all x f ixi,xrwi and xswi.

Objective function In the problem definition of the pre-
vious FIX/RW Algorithm, the goal of the objective func-
tion is the minimization of the total reconfigured area. This
function cannot be used in the current scenario as all Rops
can be switched to their software execution; thus in the
FIX/RW/SW algorithm, the goal is the performance gain.
The new objective function is the minimization of the ex-
ecution time for the considered Rops and is expressed as

n

∑
i=1

cost f ixi∗x f ixi +
n

∑
i=1

cost rwi∗xrwi +
n

∑
i=1

cost swi∗xswi,

where cost f ixi/cost rwi/cost swi represent the total exe-
cution time for Ropi in FIX/RW/SW respectively and their
values can be determined using profiling information and
estimations.

Linear Pseudo-Boolean Inequalities The system of lin-
ear pseudo-Boolean inequalities of the linear programming
problem formulation is similar to the previous FIX/RW sys-
tem:

A1 ∗ xrw1 +
n

∑
j=1

A j ∗ x f ix j ≤ S

A2 ∗ xrw2 +
n

∑
j=1

A j ∗ x f ix j ≤ S

...

Ai ∗ xrwi +
n

∑
j=1

A j ∗ x f ix j ≤ S

...

An ∗ xrwn +
n

∑
j=1

A j ∗ x f ix j ≤ S

The main idea is the same as in the previous algorithm:
each RW Rop must have allocated enough FPGA-area to fit
with all FIX Rops on the FPGA.

As a final observation for both algorithms, we notice that
the generated FPGA-area allocations will preserve the ap-
plication semantics even if the input execution trace T is

XC2VP20

XC2VPX20

XC2VP30

XC2VP40

XC2VP50

XC2VP4

XC2VP7

SAD DCT IDCT DCT Quant VLC

FIX Rop SW Rop

MPEG2 MJPEG

Figure 3. FPGA allocation for the FIX/RW/SW algorithm

not a representative trace. In such cases, some performance
gain may be lost, but the application has the correct behav-
ior.

5. Results

In this section, we present the evaluation of the perfor-
mance achieved by the proposed algorithms in the MPEG2
and MJPEG case study.

Target Applications, Rops and FPGA The target C
applications considered in this section are the well-known
multimedia benchmarks MPEG2 and MJPEG encoders; the
input sequence for the MPEG2 is the set of three frames
that comes with the benchmark, while for MJPEG we use
30 color frames from ”tennis” in YUV format with a res-
olution of 256x256 pixels. The Rops candidate for exe-
cution on the FPGA are i) for MPEG2 - SAD (sum of
absolute-difference), 2D DCT (2 dimensional discrete co-
sine transform) and IDCT (2D inverse DCT) with the real
FPGA implementations presented in [9] and ii) for MJPEG
- DCT, Quantization and VLC (Variable Length Coding)
with the the real FPGA implementations for Quantization
and VLC presented in [8]. The target reconfigurable plat-
forms are Xilinx Virtex II Pro devices (see [12]) with CLB
array sizes varying from 40 x 22 for XC2VP4 up to 88
x 70 for XC2VP50 and also including one PowerPC pro-
cessor. The required FPGA-area (expressed in slices) and
FPGA execution time (converted in PowerPC at 300 MHz
cycles) for the considered Rops are presented in Table 1,
columns 2-3. We estimate the FPGA reconfiguration time
per CLB based on the total configuration time: 47.55 ms
for the whole XC2VP50 chip (CLB array of 88x70) us-
ing SelectMAP at 50MHz (as presented in [11]); thus, the
reconfiguration overhead (converted in PowerPC cycles) is
2315 cycles per CLB. The basic configuration time for the
considered Rops is presented in Table 1, columns 4. For
the software execution, the profiling results for computing
cost sw for each Rop are based on simulations using the
PowerPC simulator from Simics [6]. The time spent for the
software execution for the considered Rops reported to the
total software execution time is presented in Table 1, last
column.

Rop Slices EXEC[cycles] SET[Kcycles] SW [%]
MPEG2

SAD 13613 49 7880 62 %
DCT 4314 306 2498 15%
IDCT 5436 315 3146 1 %

MJPEG
DCT 4314 306 2498 80%
Quant 1179 104 683 3%
VLC 6422 110 3718 12.5 %

Table 1. HW/SW features for the Rops that candidate
for FPGA execution

FPGA-area Allocation Algorithms Evaluation A
comparison between the estimated performance for the
MPEG2 / MJPEG encoder applications and the two
FPGA-area allocation algorithms is presented in Fig-
ure 4. The reference unit of this comparison (SW) is
the pure software execution when all Rops are exe-
cuted on the GPP. We also include in this comparison
the performance estimated for the naive FPGA-area al-
location presented in Section 3 and denoted as NAlloc
for MPEG2. The performance for the proposed algo-
rithms are represented as FIX/RW Alg and FIX/RW/SW
Alg. The corresponding solutions for the FIX/RW/SW al-
gorithm are graphically represented in Figure 3. In all
cases, we considered that only one FPGA reconfigura-
tion is performed before a sequence of consecutive Rop
executions. Otherwise, in the case when an FPGA con-
figuration is performed before each Rop execution, the
overall performance is decreased by several orders of mag-
nitude (see [7]). For both algorithms, we use an efficient
LP solver implementation based on Davis-Putman enumer-
ation methods presented in [1] and publically available as a
software package.

From Figure 4, we notice that the FIX/RW algo-
rithm does not generate solutions for the FPGAs with rel-
atively small CLB arrays (as explained in Section 4.2),
while FIX/RW/SW algorithm guarantees that a better (or
equal, in the worst case) solution compared to SW is se-
lected. However, for the FPGA devices with large CLB
arrays both algorithms select the best solution - all Rops al-
located as FIX Rops - which corresponds to an overall per-
formance improvement of 61 % for MPEG2 and 94 % for
MJPEG. In an example scenario using the FIX/RW al-
gorithm for the MPEG2 application and XC2VP40 de-
vice where the partial and dynamic hardware configura-
tion is needed, it can be observed that the reconfiguration
overhead is reduced by 47 %. For the MJPEG applica-
tion, the reconfiguration overhead is reduced in all cases by
at least 36 %. In Figure 3, we notice, that FIX/RW/SW al-
gorithm does not select RW Rops, but SW or FIX Rops
are preferred. This observation is explained by the huge re-
configuration latency of the considered devices. Addition-

0

100

0

97,5

0

86,1

0

20,7

0

85,9

18,2

0

85,9

18,2

122,4

52,8

6 6

83,4

38,8

6 6

38,7 38,7

6 6

0

20

40

60

80

100

120

XC2VP4 XC2VP7 XC2VP20 XC2VPX20 XC2VP30 XC2VP40 XC2VP50

MPEG2

 MJPEG MPEG2 FIX/RW Alg MPEG2 FIX/RW/SW Alg

MJPEG FIX/RW Alg MJPEG FIX/RW/SW Alg

Relative

Performance

100 x 100 x

SW

NAlloc

[40 x 22] [40 x 34] [56 x 46] [56 x 46] [80 x 46] [88 x 58] [88 x 70]

Figure 4. Performance comparison for the FPGA-area allocation algorithms

ally, we determine that for the MPEG2 application and
XC2VP30 device the RW Rops are used only when the re-
configuration latency is at least 10 times smaller than the
current values. In consequence, the FPGA reconfigura-
tion must be at least one order of magnitude faster for an
efficient dynamic FPGA usage.

6. Conclusions

In this paper, we have presented two FPGA-area allo-
cation algorithms for minimizing the huge reconfiguration
overhead of the current FPGAs. The presented results show
that a performance gain of up to 61 %for MPEG2 and 94
% for MJPEG is to be expected when the proposed alloca-
tion algorithms are used. In our future work, we will extend
the allocation algorithms to take also into account the re-
configuration order of the considered Rops and to exploit
parallelism.

References

[1] P. Barth. A Davis-Putnam based enumeration algorithm for
linear pseudo-Boolean optimization. Research Report MPI-
I-95-2-003, Max-Planck-Institut für Informatik, Im Stadt-
wald, D-66123 Saarbrücken, Germany, January 1995.

[2] M. Dales. Managing a reconfigurable processor in a gen-
eral purpose workstation environment. In In Proceedings of
DATE, pages 10980–10985, Munich, Germany, 2003.

[3] S. Fekete, E. Khler, and J. Teich. Optimal fpga module place-
ment with temporal precedence constraints. In Proceedings
of DATE, pages 658–665, 2001.

[4] M. A. George, M. Pink, D. Kearney, and G. Wigley. Effi-
cient allocation of fpga area to multiple users in an operat-
ing system for reconfigurable computing. In Proceedings of
ERSA, pages 238–242, 2002.

[5] R. Maestre, F. J. Kurdahi, N. Bagherzadeh, H. Singh, R. Her-
mida, and M. Fernndez:. Kernel scheduling in reconfigurable
computing. In Proceedings of DATE, pages 90–96, 1999.

[6] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A full system simulation platform. IEEE
Transactions on Computers, 35(2):50–58, February 2002.

[7] E. M. Panainte, K. Bertels, and S. Vassiliadis. Instruc-
tion scheduling for dynamic hardware configurations. In
Proceedings of DATE, pages 100–105, Munich, Germany,
March 2005.

[8] Sundance. FC-JPEG04 JPEG Compression Design Spec-
ification. pages 1–4, http://www.sundance.com/docs/FC-
JPEG04 Sundance - 300504.pdf, 2004.

[9] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels,
G. Kuzmanov, and E. Moscu Panainte. The Molen Poly-
morphic Processor. IEEE Transactions on Computers,
53(11):1363– 1375, November 2004.

[10] H. Walder and M. Platzner. Online scheduling for block-
partitioned reconfigurable devices. In In Proceedings of
DATE, pages 290–295, Munich, Germany, 2003.

[11] Xilinx Corporation. Virtex-II Pro Platform FPGA Handbook
v2.0, October 2002.

[12] Xilinx Corporation. Virtex-II Pro and Virtex-II Pro X Plat-
form FPGAs: Functional Description, June 2004.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

