
Application-Specific Reconfigurable XOR-Indexing
to Eliminate Cache Conflict Misses

Hans Vandierendonck
Ghent University

Dept. ELIS / HiPEAC
St.-Pietersnieuwstraat 41
B-9000 Gent, Belgium

hans.vandierendonck@elis.ugent.be

Philippe Manet and Jean-Didier Legat
Université catholique de Louvain

Microelectronics Laboratory
Place du Levant, 3

B-1348 Louvain-la-Neuve, Belgium
{manet,legat}@dice.ucl.ac.be

Abstract

Embedded systems allow application-specific optimiza-
tions to improve the power/performance trade-off. In this
paper, we show how application-specific hashing of the ad-
dress can eliminate a large number of conflict misses in
caches. We consider XOR-functions: each set index bit is
computed as the XOR of a subset of the address bits.

Previous work has considered simpler bit-selecting func-
tions. Compared to such work, the contributions of this pa-
per are two-fold. Firstly, we present a heuristic algorithm
to construct application-specific XOR-functions. Secondly,
in order to adapt the hashing to the application, we show
that a reconfigurable XOR-function selector is inherently
less complex than a reconfigurable selector for bit-selecting
functions. This is possible by placing restrictions on the al-
lowed XOR-functions.

Our evaluation shows a reduction of cache misses for
standard benchmarks averaging between 30% and 60%, de-
pending on the cache size.

1. Introduction

Embedded processors use cache memories to hide the
memory latency. However, certain memory access patterns
are plagued by a large number of conflict misses, result-
ing in low performance and high energy consumption. This
is most common in direct mapped caches where the cache
RAM is accessed using the least significant bits of the mem-
ory address. Hash functions eliminate conflict misses by
hashing the address before accessing the cache. Hashing
changes the access pattern and removes patterns with many
conflict misses [10, 5, 12, 13].

A bit-selecting hash function selects the set index bits
from the address bits. Conflicts may be eliminated by se-

lecting higher-order address bits and leaving low-order bits
unselected [1]. A XOR-function is computationally more
complex as it computes every set index bit as the exclusive
or (XOR) of a subset of the address bits. XOR-functions
eliminate conflict misses for stride patterns [9] as well as
for complex subsets of matrices [3, 14].

A hash function that minimizes conflict misses for one
application does not necessarily perform well for another
application, making it beneficial to tune the hash function
to the executing application. This requires (i) algorithms to
construct the hash function and (ii) dedicated hardware to
dynamically reconfigurable the hash function.

In this paper, we present and analyze an algorithm for
constructing XOR-functions. It makes use of a clever
prediction-scheme that estimates the number of misses in-
curred by a hash function. This way, we sidestep the time-
complexity of simulating a large number of hash functions.

We discuss the hardware implementation of reconfig-
urable XOR-functions and investigate the trade-off between
conflict reduction and complexity of the hash functions. Fi-
nally, we determine a subset of XOR-functions with small
hardware complexity while maintaining performance.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses background and related work. The algo-
rithm for constructing XOR-functions is presented and an-
alyzed in Section 3. Section 4 discusses permutation-based
hash functions, a particular type of XOR-functions that al-
low for cheap reconfigurable indexing. The complexity of
reconfigurable indexing is discussed in Section 5. Section 6
evaluates the algorithm using embedded benchmarks.

2. Background and Previous Work

XOR-based hash functions are conventionally repre-
sented by a n×m binary matrix [9], where n is the num-
ber of hashed address bits and m is the 2-logarithm of the

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



number of sets in the cache. An n-bit block addresses a
is represented as a bit vector an−1an−2 . . .a0, with an−1 the
most significant bit and a0 the least significant bit. The hash
function represented by the matrix H maps n address bits to
m bits. The bit hr,c on row r and column c is 1 when address
bit ar is an input to the XOR computing the c-th set index
bit. The computation of the set index s can be expressed
as the vector-matrix multiplication over GF(2) denoted by
s = a H. Here, GF(2) is the domain {0,1} where addition
is replaced by XOR and multiplication by logical and.

For the purpose of automating the construction of hash
functions, it is desirable to transform the matrix to its null
space [13, 14]. The null space N(H) of a matrix H is the set
of all vectors that are mapped to the zero vector:

N(H) = {x ∈ {0,1}1×n | x H = 0}. (1)

The null space shows what addresses suffer conflict misses:
Two addresses x and y conflict when they are mapped to
the same set of the cache: x H = y H. This implies that
the bitwise XOR of these addresses is a member of the null
space of the set index function:

x H = y H ⇐⇒ (x⊕y)H = 0 ⇐⇒ (x⊕y)∈ N(H) (2)

Different matrices can have the same null space. In such
cases, the matrices would result in exactly the same cache
misses for the same blocks. By using the null space repre-
sentation, we avoid evaluating the same hash function mul-
tiple times during the design space exploration. The number
of n-to-m hash functions equals

N(n,m) =
m

∏
i=1

2n−i+1 −1
2i −1

, 0 ≤ m ≤ n (3)

There are 3.4e38 distinct matrices, hashing 16 address bits
to 8 set index bits but only 6.3e19 distinct null spaces.

Several authors have shown the advantages of XOR-
indexing caches [5, 12]. Their work draws on the insights
gained by Rau [9] who investigated polynomial hash func-
tions and their ability to map stride patterns conflict-free.

Seznec and Bodin [2] developed the skewed-associative
cache using a different hash function in each cache bank.
By using multiple hash functions the miss rate is not
strongly dependent on the hash functions.

Algorithms for automatically constructing hash func-
tions have been described in the case of bit-selecting hash
functions. Abraham and Agusleo [1] construct hash func-
tions from a list of frequently-occurring strides. Givargis [4]
presents a profile-based approach that constructs hash func-
tions for all access patterns. His algorithm is heuristic and
sub-optimal. An optimal algorithm is presented by Patel et
al. [8], who, in fact, developed a smart way to simultane-
ously simulate all bit-selecting hash functions. This is fea-
sible because the number of bit-selecting functions equals

Let ai = block address of reference i
Let n = length of vectors
Let misses(v) = accumulated misses for v, initially 0
for each reference i in program trace do

if ai is a compulsory miss then
push ai on stack

elsif reuse distance(ai) > cache size then
move ai to top of stack

else /* Count conflict vectors */
for each a j on stack above ai do

v = (ai ⊕a j) truncated to n bits
increment misses(v)

od
move ai to top of stack

fi
od

Figure 1. The profiling algorithm.

the number of combinations of m out of n. A direct exten-
sion of their algorithm to XOR-functions is unfeasible due
to the large number of such functions.

3. Algorithm for Constructing Optimized
XOR-Functions

In order to limit analysis time and to combat the com-
plexities resulting from the design space size, we developed
a heuristic algorithm consisting of two phases. First, profil-
ing information is gathered to identify when and how often
conflict misses occur. In the second phase, we use the pro-
filing information to efficiently search through the space of
hash functions.

3.1. The Profiling Phase

A conflict miss involving cache blocks x and y can only
occur if the vector v = x⊕ y is a member of the null space
N(H) (See Equation 2). In particular, an access to cache
block x is a conflict miss if the program touches a block y
since the previous access to x that is mapped to the same
set as x, i.e., (x⊕ y) ∈ N(H). Thus, it is possible to detect
conflict misses by keeping track of all blocks that are ac-
cessed between two accesses to the same block. This can
be achieved by making a single-pass traversal of the mem-
ory access trace of a program.

For every memory access in the program, the accessed
cache block is pushed on an LRU stack (Figure 1). An LRU
stack has the property that the blocks are sorted with the
most recently used block at the top and the least recently
used block at the bottom. When an access to block x oc-
curs in the memory access trace, then we need to know all
blocks that have been accessed more recently since the pre-



vious access of x. These blocks are found on the LRU stack
above block x. Then, we compute for every intermediately
accessed block y, the vector x⊕y. If (x⊕y) ∈ N(H), then
we know that a conflict miss occurs for block x. By remem-
bering how many times this vector occurs, we can make
an estimate of the number of conflict misses for any XOR-
function H. Let us assume that misses(v) represents the
number of times that vector v was encountered during anal-
ysis of the trace. Then the number of conflict misses that
occur for hash function H can be estimated as:

misses(H) = ∑
v∈N(H)

misses(v). (4)

The quantities misses(v) bear a small dependence on the
hash function. It is a good approximation to assume that
they are totally independent of the hash function. However,
this makes the optimization algorithm as a whole heuristic
and may produce sub-optimal results.

To improve the accuracy of the estimates, the profiling
algorithm filters out two types of cache misses that are not
solvable using XOR-indexing: (i) compulsory misses and
(ii) capacity misses. We assume that capacity misses have a
reuse distance larger than the cache capacity.

3.2. Searching the Design Space

The design space holding all XOR-functions is searched
for the hash function that incurs the fewest cache misses.
Search algorithms need to perform many evaluations before
they converge on a hash function. The evaluation of a hash
function is very fast when estimating the number of conflict
misses using the technique of the previous subsection.

We use the hill climbing search algorithm (also known
as steepest descend). This is an iterative algorithm starting
in a fixed or randomly selected point in the design space.
We start the algorithm in the null space of the conventional
index function. Note that the design space consists of null
spaces as this significantly reduces search times. The al-
gorithm evaluates all neighbors of this index function. In
our implementation, two null spaces are neighbors if they
differ in exactly one dimension, i.e., the dimensionality of
their intersection equals their own dimensionality minus 1.
If the neighbor with the fewest conflict misses incurs fewer
conflicts than the best null space found so far, then the algo-
rithm moves to that null space and iteratively investigates all
its neighbors. Otherwise, a local optimum has been found
and the algorithm stops.

When limiting the number of inputs per XOR-gate, con-
structing permutation-based XOR-functions or bit-selecting
functions, we run the search algorithm in exactly the same
way as for general XOR-functions. At the end, the algo-
rithm outputs the best function satisfying the criteria.

This algorithm constructs a hash function in 0.5 to 10
seconds on a 2 GHz Pentium 4, depending on the dimen-
sions of the function (rows and columns) and on the profil-
ing information.

3.3. Optimality

The presented algorithm is sub-optimal. The profiling
phase is not exact, leading to incorrectly estimating the con-
flict misses. The search phase can only investigate a fraction
of the design space. It is likely that both phases of the algo-
rithm can be improved, at the expense of execution speed.
However, we can proof [13] that it is impossible to devise
a profiling phase that computes correct profiling informa-
tion, i.e., Equation 4 allows one to correctly estimate the
number of conflict misses for all XOR-functions. In order
to improve the accuracy of the profiling phase, it is neces-
sary to change the structure and/or the amount of profiling
information.

4. Permutation-Based Hash Functions

Permutation-based hash functions are a special type of
XOR-functions. They map every aligned run of 2m con-
secutive cache blocks conflict-free. Thus, the mapping of
every run of 2m blocks to their set indices is a permutation
of 0, . . . ,2m − 1, hence the name. Permutation-based hash
functions satisfy the following property:

N(H) ∩ span(e0, . . . ,em−1) = {0} (5)

where ek is the vector of all zeroes except for a 1 at the k-th
position and the span is the smallest vector space contain-
ing all of its arguments. An equivalent definition is to state
that permutation-based hash functions have a matrix repre-
sentation where the m low-order rows are all zeroes except
for a diagonal of ones, i.e., row i equals ei for 0 ≤ i < m.

When hashing the set index, care should be taken to
properly compute the tag. The tag function and the set
index function together should be bijective, i.e., two dis-
tinct addresses should either have a different tag or a dif-
ferent set index. It can be shown that, in the case of
permutation-based functions, the tag can be computed by
selecting the high-order n − m address bits. This is the
same tag computation as for the conventional modulo in-
dexing. Indeed, the null space of the conventional tag func-
tion is N(T ) = span(e0, . . . ,em−1). For x �= y it follows that
x H = y H cannot occur at the same time as x T = y T be-
cause N(H) ∩ N(T ) = {0} (Equation 5).

Non-permutation-based functions need a different tag
function. We state without proof that the tag function is
a bit-selecting function in all cases. Bit-selecting functions



Table 1. Number of switches required for re-
configurable indexing with n = 16 and 4-byte
cache blocks.

cache size 1 KB 4 KB 16 KB
set index bits (m) 8 10 12

bit-select 256 256 256
optimized bit-select 144 136 112
general XOR 252 261 250
permutation-based 72 70 60

n-m

fixed
programmable

n
-m

ta
g
s

m
in

d
ic

e
s

m

n address bits

n-m

redundant

n address bits

(a) Bit-selecting function (b) Permutation-based

0

Figure 2. Reconfigurable selection networks.

are not permutation-based (except for the traditional mod-
ulo 2m function). The tag function selects the address bits
not included in the set index.

5. Reconfigurable XOR-Indexing

Reconfigurable XOR-indexing is necessary to dynami-
cally adapt to changes between applications. Patel et al. [8]
propose circuits for reconfigurable address bit selectors. In
this paper, we analyze their complexity in terms of the type
of function (bit-selecting vs. XOR-function), the inputs per
XOR, the number of hashed address bits (n) and set index
bits (m). There may be substantially fewer hashed address
bits than the total address bits (N). In this case, the N − n
high-order address bits are only used to compute the tag.

For bit-selecting functions, every set index bit and every
tag bit is selected among any of the n address bits. In to-
tal n 1-out-of-n selectors are needed. This solution is not
optimal: with a given selection pattern of m bits, all permu-
tations of those bits will lead to an equivalent configuration.
As shown in Figure 2(a), shaded connections are redundant,
reducing the complexity to m 1-out-of-(n−m+1) selectors
for the set index bits and n−m 1-out-of-(m+ 1) selectors
for the tag bits. Some practical values are listed in Table 1.

For XOR-functions, 2-input XOR-gates are sufficient to
achieve a low miss rate. Hereby, n + m selectors are neces-
sary. The optimization of the previous paragraph is applica-
ble to the first XOR input and the tag bits. For the second
input, a constant input must be allowed such that a bit can be

selected instead of hashed. In total, (n + 1)m−m(m−1)/2
switches are required.

It was noted in Section 2 that permutation-based hash
functions have a matrix representation where the low-order
m rows are zero except for the diagonal, which contains
ones. Thus, the first input of the XOR can be fixed to one of
the m low-order address bits. The second input to the XOR
is selected from among the n−m high-order address bits.
The tag is also fixed and equals the high-order N −m ad-
dress bits. A 2-input permutation-based function can there-
fore be implemented using m 1-out-of-(n−m+1) selectors
followed by a 2-input XOR-gate (Figure 2(b)).

The selectors are implemented with a pass gate and a
memory cell per switch. To reduce complexity, pass gates
can be simplified [8]. Nevertheless, the selectors require
many wires. These wires lead to very high capacitance
nodes, making them slow and power consuming. Bit-
selecting functions require n lines crossed by n. However,
permutation-based XOR-functions require only n−m lines
crossed by m.

XOR-gates based on pass transistors are fast and com-
pact. The first input of the XOR comes directly from the
address register, allowing us to take both the address and its
complement from the flip-flop. Consequently, 2 pass-gates
but only one invertor are needed per XOR-gate. Putting the
selector and the XOR-gates together shows that a reconfig-
urable 2-input XOR-function requires less gates and inter-
connections than a reconfigurable bit-selecting function.

6. Experimental Evaluation

We apply the optimized XOR-function algorithm
to embedded benchmarks from the MediaBench [7]
and MiBench [6] suites. The benchmarks are run
with large data sets when available. The bench-
marks are compiled for the SA-110 ARM processor
by the ARM C compiler using optimization level 2.
They are simulated using the PowerAnalyzer simulator
(http://www.eecs.umich.edu/˜panalyzer/).

We applied the algorithm to determine optimized XOR-
functions for three cache sizes: 1, 4 and 16 KB. All caches
are direct mapped and have 4-byte cache blocks. The num-
ber of hashed address bits n = 16. Different hash functions
are generated per benchmark.

The first experiment determines the impact on the miss
rate of using permutation-based XOR-functions versus gen-
eral XOR-functions. We do not present full results due
to space limitations. On average, general XOR-functions
reduce the data cache miss rate by 34.6% (1 KB), 44.0%
(4 KB) and 26.9% (16 KB), compared to conventional bit-
selecting indexing. Permutation-based functions eliminate
approximately the same fraction of misses: 32.3% (1 KB),
43.9% (4KB) and 26.7% (16KB). Thus, limiting the design



Table 2. Baseline misses/K-uop and percentage of cache misses removed with optimized XOR-
functions in data caches and instruction caches.

benchmark
1 KB cache 4 KB cache 16 KB cache

base 2-in 4-in 16-in base 2-in 4-in 16-in base 2-in 4-in 16-in

da
ta

ca
ch

es

dijkstra 69.0 21.2 21.3 22.1 36.6 17.2 15.0 17.9 20.0 1.3 1.5 1.4
fft 10.5 69.4 79.8 81.9 4.1 76.4 76.5 76.4 1.0 12.7 12.7 12.7
jpeg enc 61.9 42.7 44.4 45.6 33.9 36.6 36.8 36.8 15.9 15.2 15.5 15.5
jpeg dec 104.9 29.3 31.8 33.0 39.1 21.3 27.2 27.4 21.5 52.2 57.7 57.3
lame 16.4 4.4 10.0 10.3 9.9 5.6 6.0 5.9 6.1 45.2 47.1 47.2
rijndael 141.3 -2.6 -3.3 -2.7 48.1 4.6 5.8 5.8 20.7 100.0 100.0 100.0
susan 19.7 16.9 17.0 17.1 11.6 22.4 23.1 23.2 6.9 7.1 7.7 7.7
adpcm dec 24.6 29.5 37.3 37.8 1.0 87.8 91.9 91.9 0.1 0.0 0.0 0.0
adpcm enc 32.4 51.3 51.7 51.7 0.5 90.8 90.8 90.8 0.0 0.0 0.0 0.0
mpeg2 dec 10.3 38.9 49.3 49.6 2.9 61.0 63.4 63.9 0.7 25.1 27.7 27.7
average 18.9 30.1 33.9 34.6 10.4 42.3 43.6 44.0 6.0 25.9 27.0 26.9

in
st

ru
ct

io
n

ca
ch

es

dijkstra 13.2 36.6 51.1 51.0 1.0 62.0 62.1 62.1 0.0 0.0 0.0 0.0
fft 294.5 8.5 9.6 10.6 87.7 17.3 27.0 27.0 5.4 72.9 72.9 72.9
jpeg enc 37.5 50.5 55.5 55.5 1.0 44.8 61.2 62.4 0.4 80.0 85.8 85.8
jpeg dec 37.4 19.6 24.6 27.0 5.4 43.9 80.8 80.8 3.0 92.6 92.7 92.7
lame 125.1 3.9 13.1 15.2 21.3 23.7 45.8 45.8 3.6 73.7 84.5 84.5
rijndael 624.4 0.0 0.0 0.0 167.7 0.1 -0.1 -0.1 128.2 100.0 100.0 100.0
susan 255.2 7.9 13.3 13.5 54.3 56.4 69.3 69.3 0.2 76.2 76.2 76.2
adpcm dec 31.3 1.8 13.6 13.6 0.8 76.8 83.1 83.1 0.1 0.0 0.0 0.0
adpcm enc 70.4 16.5 22.5 19.1 0.6 61.0 87.3 87.3 0.1 0.0 0.0 0.0
mpeg2 dec 128.7 55.5 58.7 68.7 15.4 92.1 92.5 93.1 0.4 80.2 83.5 83.5
average 143.6 20.1 26.2 27.4 27.7 47.8 60.9 61.1 5.6 57.5 59.6 59.6

space to permutation-based functions does not significantly
limit performance.

In the second experiment, we determine the impact of
the number of inputs per XOR for permutation-based func-
tions. We run the optimization algorithm three times for
every cache configuration, each time generating hash func-
tions with a different degree of complexity. We consider
data caches and instruction caches (Table 2). We show the
misses per K-uop (base) and the percentage of misses re-
moved with permutation-based XOR-functions with at most
2 inputs (2-in), 4 inputs (4-in) or without a limitation on the
inputs (16-in).

The optimized 2-input XOR-functions eliminate 30%,
42% or 26% of cache misses, depending on cache size (Ta-
ble 2). Allowing more inputs for the XOR-gates allows
more powerful functions, but increases circuit-complexity.
This additional strength is, on average, marginally use-
ful and eliminates only a few additional percents of cache
misses. This benefit diminishes with increasing cache size.

The same trends hold for the instruction caches (Table 2).
The miss rate reduction is much larger in instruction caches
than in data caches, showing averages around 50% (4 KB
cache) and 60% (16 KB cache). Sometimes virtually all
cache misses are eliminated.

The constructed hash functions introduce additional

cache misses in a few situations. The percentage of addi-
tional misses is, in every case, very small and results from
the heuristic nature of the algorithm. If needed, this adverse
effect can be tested for and one can revert to the conven-
tional index function if it occurs.

6.1. Discussion of Optimality

We test optimality by constructing bit-selecting func-
tions and comparing the presented algorithm to the optimal
algorithm [8]. Because the optimal algorithm is very slow,
we have only been able to gather results for the short Power-
Stone benchmarks [11]. We report results only for the 4 KB
data cache (Table 3); other cache configurations yield sim-
ilar results. Comparing the optimal bit-selecting functions
(column ’opt’) to the heuristically generated bit-selecting
functions (column ’1-in’) shows that optimal results are ob-
tained for all but 3 benchmarks (bcnt, blit and compress).

The permutation-based XOR-functions out-perform the
optimal bit-selecting functions. The 2-input XOR-functions
eliminate 11.7% of cache misses, while the optimal bit-
selecting functions eliminate 8.5%, implying that cer-
tain frequently-occurring memory access patterns can be
mapped conflict-free by XOR-functions but not by bit-
selecting functions.



Table 3. Percentage of misses removed by
XOR- and optimal bit-selecting functions.
bench opt 1-in 2-in 4-in 16-in FA

adpcm 0.0 0.0 0.2 0.2 0.2 0.2
bcnt 5.2 0.0 0.0 0.0 0.0 0.0
blit 14.7 8.6 14.3 14.3 14.3 0.0
compress 3.2 3.0 2.4 2.8 2.9 2.7
crc 0.0 0.0 0.0 0.0 0.0 0.0
des 0.0 0.0 8.8 8.6 10.1 17.8
engine 36.2 36.2 36.2 36.2 36.2 36.2
fir 7.7 7.7 7.7 7.7 7.7 7.7
g3fax 0.0 0.0 37.1 41.1 41.1 57.0
jpeg 2.3 2.3 1.4 1.6 1.6 7.2
pocsag 3.0 3.0 3.0 3.0 3.0 3.0
qurt 0.0 0.0 0.0 0.0 0.0 0.0
ucbqsort 46.6 46.6 46.6 46.6 46.6 46.6
v42 0.0 0.0 5.6 6.2 6.0 18.0
average 8.5 7.7 11.7 12.0 12.1 14.0

We expect that there is room to develop algorithms for
optimal XOR-functions, because the XOR-functions are
sub-optimal (see bcnt, blit and compress) and hashing may
out-perform full associativity (column ’FA’) due to sub-
optimality of the LRU replacement policy.

7. Conclusion

We presented an algorithm to construct XOR-functions
that eliminate cache conflict misses. The algorithm is
heuristic and profiles the cache accesses made by a pro-
gram. Based on this profiling information, the best suitable
XOR-function is computed.

The optimal XOR-function depends on the executed pro-
gram, so it requires a reconfigurable XOR-function. To re-
strict complexity, we allow only permutation-based func-
tions with 2-input XOR-gates: Such reconfigurable XOR-
functions require less gates and interconnections than re-
configurable bit-selecting functions. Furthermore, they
yield lower miss rates.

The algorithm is applied to generate XOR-functions for
instruction and data caches, yielding average reductions of
30% to 60% of the miss rate for standard benchmarks. We
show that the presented algorithm computes optimal bit-
selecting functions for all but 3 benchmarks. Algorithms
for optimal XOR-functions are not known, but our analysis
suggests that there is potential room for improvement.

Acknowledgments

This research is sponsored in part by the Fund for Scien-
tific Research-Flanders (FWO), the Institute for the Promo-
tion of Innovation by Science and Technology in Flanders

(IWT) and Ghent University. Philippe Manet is funded by
the Walloon region.

References

[1] S. G. Abraham and H. Agusleo. Reduction of cache inter-
ference misses through selective bit-permutation mapping.
Technical Report CSE-TR-205-94, The University of Michi-
gan, 1994.

[2] F. Bodin and A. Seznec. Skewed associativity improves pro-
gram performance and enhances predictability. IEEE Trans-
actions on Computers, 46(5):530–544, May 1997.

[3] J. M. Frailong, W. Jalby, and J. Lenfant. XOR-schemes:
A flexible data organization in parallel memories. In Pro-
ceedings of the 1985 International Conference on Parallel
Processing, pages 276–283, Aug. 1985.

[4] T. Givargis. Improved indexing for cache miss reduction
in embedded systems. In Design Automation Conference,
2003.

[5] A. González, M. Valero, N. Topham, and J. M. Parcerisa.
Eliminating cache conflict misses through XOR-based
placement functions. In Proceedings of the International
Conference on Supercomputing, pages 76–83, July 1997.

[6] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. MiBench: A free, commer-
cially representative embedded benchmark suite. In 4th An-
nual Workshop on Workload Characterization, Dec. 2001.

[7] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Medi-
aBench: A tool for evaluating and synthesizing multimedia
and communications systems. In Proceedings of the 30th
Conference on Microprogramming and Microarchitecture,
pages 330–335, Dec. 1997.

[8] K. Patel, L. Benini, P. Macii, and M. Poncino. Reducing
cache misses by application-specific re-configurable index-
ing. In International Conference on Computer-Aided De-
sign, pages 125–130, Nov. 2004.

[9] B. R. Rau. Pseudo-randomly interleaved memory. In Pro-
ceedings of the 18th Annual International Symposium on
Computer Architecture, pages 74–83, May 1991.

[10] M. Schlansker, R. Shaw, and S. Sivaramakrishnan. Ran-
domization and associativity in the design of placement-
insensitive caches. Technical Report HPL-93-41, HP Labo-
ratories, June 1993.

[11] J. Scott, L. Lee, J. Arends, and B. Moyer. Designing the
low-power M Core architecture. In Proceedings of the IEEE
Power Driven Microarchitecture Workshop, pages 145–150,
June 1998.

[12] N. Topham and A. González. Randomized cache placement
for eliminating conflicts. IEEE Transactions on Computers,
48(2):185–192, Feb. 1999.

[13] H. Vandierendonck. Avoiding Mapping Conflicts in Micro-
processors. PhD thesis, Ghent University, 2004.

[14] H. Vandierendonck and K. De Bosschere. XOR-based hash
functions. IEEE Transactions on Computers, 54(7):800–
812, Sept. 2005.


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



