
Efficient Design Space Exploration of High Performance Embedded
Out-of-Order Processors

Stijn Eyerman Lieven Eeckhout Koen De Bosschere
ELIS, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium

{seyerman,leeckhou,kdb}@elis.UGent.be

Abstract

Previous work on efficient customized processor design
primarily focused on in-order architectures. However, with
the recent introduction of out-of-order processors for high-
end high-performance embedded applications, researchers
and designers need to address how to automate the design
process of customized out-of-order processors. Because of
the parallel execution of independent instructions in out-
of-order processors, in-order processor design methodolo-
gies which subdivide the search space in independent com-
ponents are unlikely to be effective in terms of accuracy for
designing out-of-order processors. In this paper we propose
and evaluate various automated single- and multi-objective
optimizations for exploring out-of-order processor designs.
We conclude that the newly proposed genetic local search
algorithm outperforms all other search algorithms in terms
of accuracy. In addition, we propose two-phase simulation
in which the first phase explores the design space through
statistical simulation; a region of interest is then simulated
through detailed simulation in the second phase. We show
that simulation time speedups can be obtained of a factor
2.2X to 7.3X using two-phase simulation.

1. Introduction
High performance embedded applications such as mul-

timedia, networking, imaging, high end consumer applica-
tions, etc. are an important market segment today. And be-
cause of the high performance requirements of these em-
bedded applications, computer companies move into (or did
already move into) using out-of-order processors. Examples
are NEC’s VR55000 and VR77100 Star Sapphire and Sand-
Craft’s SR710X0 64-bit MIPS processors. For these high
end embedded systems it is extremely important to optimize
the design for a given application or a given set of applica-
tions with a limited engineering effort. The design question
then is how to organize the microprocessor’s microarchi-
tecture, i.e., how big should the caches be, what should the
processor width be, how many in-flight instructions should
there be, etc.

A lot of prior work has been done on automated design
space exploration methodologies for in-order (incl. VLIW)
architectures, see for example PICO [8], Sherpa [13] and the

references therein. The in-order processor design method-
ologies often assume that the whole system can be broken
up into independent subcomponents. Each of those subcom-
ponents then gets optimized before reassembling the whole
system. Because of the complex interactions in out-of-order
processors such as parallel executions of independent in-
structions, latency hiding mechanisms, speculative execu-
tion, etc., it is unlikely that these design methodologies can
be used for customized out-of-order processor design.

In this paper we propose the use of automated de-
sign space exploration for efficiently exploring the
out-of-order processor design space. We evaluate vari-
ous single-objective and multi-objective search algorithms
and propose genetic local search as a new single-objective
search algorithm that outperforms all other search algo-
rithms in terms of accuracy. In addition, we also pro-
pose two-phase simulation to prune the design space. The
idea is to explore the design space quickly using a fast sim-
ulation technique as a first step. And we propose statistical
simulation for this purpose. We then explore a small re-
gion of interest identified in the first phase through detailed
(and thus slower) cycle-accurate architectural simula-
tion. The overall simulation speedup obtained through
two-phase simulation is 2.2X to 7.3X in our experi-
ments. And we show that two-phase simulation can be
applied to single-objective as well as to multi-objective op-
timization criteria.

2. Previous work
There exists a lot of work on design space exploration.

Obviously, we cannot discuss the whole literature written
on this topic. For a detailed description on design space ex-
ploration techniques, we refer to [5]. Since our main contri-
butions are on design space pruning and automated design
space exploration, we will revisit some of those.

2.1. Design space pruning
A first approach to reducing the total simulation time is

to prune the design space through what could be called hier-
archical design space exploration. Hekstra et al. [6] for ex-
ample describe how they explored the TriMedia CPU64 de-
sign. In order to explore the huge design space, they first
probe the design space in order to identify the architectural
parameters that affect overall performance the most. These

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



corner cases then determine bounds on specific design pa-
rameters which reduces the design space to be explored in
detail.

Mohanty et al. [9] first uses constraint analysis to
prune the design space of a heterogeous system de-
sign. The pruned design space is then explored using
a set of component-specific high-level simulation mod-
els and system-wide performance estimation. In a fi-
nal step, the complete system is simulated in a low-level
cycle-accurate simulation model. The two-phase simula-
tion approach that we propose in this paper is orthogonal to
the hierarchical design space exploration methodology pro-
posed by Mohanty et al. Indeed, the two-phase simula-
tion can be used for example in the second and third step of
Mohanty et al.’s methodology as a replacement for the ar-
chitectural cycle-accurate simulations. This could yield
significant simulation time reductions.

2.2. Automated design space exploration
In this paper we evaluate a number of design space ex-

ploration techniques that were previously proposed in
the context of electronic design, such as random de-
scent, steepest descent (hill climbing) [14], one-parameter-
at-a-time [4], genetic search for single-objective opti-
mizations [15] and multi-objective optimizations [12]
and tabu search [1]. In this paper we also evaluate ge-
netic local search which is, to the best of our knowledge,
not previously evaluated within the context of elec-
tronic design. Jaszkiewicz [7] proposed genetic local
search as a single-objective search algorithm. The ba-
sic idea is to do a locally optimized search of each design
point in a generation before recombination occurs dur-
ing a genetic/evolutionary search. Our results show that
genetic local search outperforms all the other search algo-
rithms in terms of accuracy.

3. Design space exploration
We explore both single- and multi-objective optimiza-

tions in this paper for exploring out-of-order microarchitec-
tures.

3.1. Single-objective optimization
We first discuss the six single-objective optimization al-

gorithms that we evaluate in this paper.
Random descent (RD) randomly picks a dimension at

each iteration of the search algorithm and randomly in-
creases or decreases the microarchitectural parameter along
that dimension. If the objective function improves, the new
design point is accepted; otherwise, another dimension is
chosen. The algorithm terminates whenever the objective
function no longer improves.

Steepest descent (SD), also refered to as hill climbing,
does not randomly select a dimension along which to opti-
mize, but chooses the dimension along which the objective
function improves the most. This is done by examining all
the neighboring design points. The dimension along which
the steepest slope is observed is then selected. The advan-
tage of steepest descent over random descent is that there

are fewer iterations in the search algorithm, however, per it-
eration there is more work to be done, i.e., all the neighbor-
ing design points need to be evaluated whereas random de-
scent randomly picks a dimension.

One parameter at a time (OP) follows a fixed ordering of
dimensions along which to optimize. When optimizing a di-
mension, all possible values along that dimension are evalu-
ated and the optimal design point is then retained. And this
is done for all dimensions in a fixed ordering. When this or-
dering is completely scanned, we start over again until the
objective function no longer improves. The ordering that we
use is the sensitivity-based ordering proposed by Fornaciari
et al. [4].

Tabu search (TS) resembles steepest descent, i.e., it ex-
amines all neighboring design points and goes in the direc-
tion with the optimal objection function. The important dif-
ference with steepest descent however is that tabu search al-
ways goes in that direction, irrespective of whether the ob-
jective function in that design point is better than in the cur-
rent design point. This is to avoid local minima. Tabu search
also keeps track of a tabu list which contains a number of
previously taken directions. In order not to circulate around
local minima, tabu search never goes in a direction that ap-
pears in the tabu list. There is however one exception, tabu
search can accept a direction that results in a design point
with a better objective function than all previously visited
design points.

Genetic search (GS) starts from a randomly chosen gen-
eration of design points. It then randomly walks those points
until all constraints are met—the objective function is not
optimized. From those design points, a new generation is
built. This is done by selecting the best performing design
points found so far, complemented with a number of other
design points probabilistically chosen from the remaining
design points using weights that are correlated to their re-
spective objective function values. On these selected design
points, mutation and crossover is applied which yields us a
new generation. From there on, the search algorithm is iter-
ated.

Genetic local search (GLS) is an optimized version of
the genetic search algorithm. The key difference is that for
each generation, genetic local search fully optimizes each
design point in a generation using a random descent algo-
rithm, i.e., the objective function is optimized while meet-
ing the constraints for each design point in the generation.
GLS can thus be viewed of as a genetic algorithm applied
on locally optimized solutions.

3.2. Multi-objective optimization
In contrast to single-objective optimizations, multi-

objective optimizations strive at identifying a set of so
called pareto-optimal design points according to a num-
ber of objective functions. A pareto-optimal design point
is a design point for which there exist no other points in
the design space that achieve a better score for all objec-
tive functions. Once the set of pareto-optimal design points
is identified from a multi-objective design space explo-
ration, the system designer can then select a design point
that trades off the various objective functions.



The multi-objective search algorithm that we use in this
paper is called SPEA2 [17] which is an improved version
of the well-established Strength Pareto Evolutionary Algo-
rithm (SPEA) [18]. This algorithm is an elitist evolution-
ary algorithm that keeps track of the best solutions found so
far. Potentially new pareto-optimal design points are created
through recombination and mutation much like what is be-
ing done in the genetic search algorithms mentioned previ-
ously. The algorithm finalizes when a fixed number of itera-
tions have been performed. The end result of the SPEA2 al-
gorithm is a set of pareto-optimal design points. For a more
in-depth discussion on SPEA2, we refer to [17, 18].

4. Two-phase simulation
The motivation for going into two-phase simulation is

that detailed cycle-by-cycle simulations are infeasible, if
not impossible, for exploring huge design spaces. Since the
simulation of one single design point may take multiple
hours, exploring a large design space exhaustively is im-
possible. Even when using an efficient search algorithm,
the number of design points to be explored rapidly becomes
fairly large which makes detailed simulation throughout the
design space exploration infeasible.

The idea behind two-phase simulation is as follows. Dur-
ing a first phase of the design space exploration, we employ
a fast simulation technique to quickly explore the design
space. Compared to detailed simulation, the fast simulation
technique should be several orders of magnitude faster, yet
achieve good relative accuracy. The end result of the first
phase then is a region of interest that achieves near-optimal
performance. This region of interest then is to be explored
through more detailed (and slower) cycle-by-cycle simula-
tions. Because of the fact that this region is much smaller
than the original space, the overall simulation time is re-
duced substantially.

For the single-objective optimizations, two-phase simu-
lation works as follows. We first use a fast simulation tech-
nique to explore the design space using a design space
exploration algorithm. Once this search algorithm is ter-
minated, we then go into the second phase and explore
through detailed simulation a small region around the op-
timum found in the first phase. This small region is defined
as the region where the fast simulation technique observes
a deviation that is smaller than x% from the optimum’s ob-
jective function value. In order to clarify what the value of
x% should be, we first discuss the relation between abso-
lute and relative error rates. Absolute error for a metric M
in a design point A is defined as:

AE =
MF,A −MD,A

MD,A
,

with F and D standing for fast and detailed simulation, re-
spectively. The absolute error quantifies the prediction in
a single design point. Relative error between two design
points A and B on the other hand, is defined as:

RE = MF,B/MF,A −MD,B/MD,A.

The relative error thus quantifies the error when predicting
the performance increase or decrease between multiple de-
sign points. As mentioned above, the search space during
the second phase of the design space exploration is limited
by the relative error threshold x%. The exact value to be as-
signed to x depends on the relative accuracy of the fast sim-
ulation technique that is being used. It’s important to note
here that this threshold can be set fairly tight because the
relative accuracy of a fast simulation technique is usually
better than its absolute accuracy. This will limit the search
space during detailed simulation substantially. The assump-
tion being made here by setting the relative error threshold
x% is that a relative increase (or decrease) larger than x%
identified by the fast simulation technique is unlikely to cor-
respond to a decrease (or increase) when measured through
detailed simulation. For the fast simulation technique that
we use in this paper, namely statistical simulation, we use a
3% relative error threshold. Obviously, choosing an appro-
priate relative error threshold depends on the quality of the
fast simulation technique. The higher the relative accuracy
of a given fast simulation technique, the lower the thresh-
old can be set, and thus the smaller the overall simulation
time during design space exploration.

For the multi-objective optimizations, two-phase simu-
lation works similarly. The fast simulation technique ex-
plores the design space in the first phase using for example
SPEA2. This yields a set of pareto-optimal design points ac-
cording to the fast simulation technique. The second phase
which uses detailed simulation then starts from those design
points. Since the fast simulation technique explored most of
the design space already, the number of iterations can now
be lowered in the second phase. This results in substantial
overall simulation time reductions.

5. Statistical simulation
The fast simulation technique that is used in the first

phase in two-phase simulation can be any fast simula-
tion technique of interest. In this paper, we propose the
use of statistical simulation which was previously shown
to be highly accurate for modeling out-of-order proces-
sors [3, 10, 11]. Absolute error rates are reported of 6% on
average. The relative error rate is lower, typically less than
3%. Other alternatives such as analytical models or sam-
pling are less appropriate for this application; accurate an-
alytical modeling is difficult to obtain for out-of-order pro-
cessors, and sampling requires more simulated instructions
than what is required for statistical simulation which would
limit the benefits of two-phase simulation.

Statistical simulation works in three steps. First, a pro-
gram execution is profiled by measuring a number of pro-
gram characteristics. In statistical profiling we make
a distinction between microarchitecture-independent
and microarchitecture-dependent characteristics. The
microarchitecture-independent characteristics are metrics
such as instruction mix, control flow transition probabili-
ties between basic blocks and inter-operation dependency
distributions. The microarchitecture-dependent character-
istics are metrics related to locality events, such as cache
miss rates and branch mispredict rates. The reason for mea-



benchmark description input insn cnt (M)
rawdaudio audio decoding S 16 44 11.1
unepic image decompression titanic3 11.7
djpeg image decompression monalisa 41.4
cjpeg image compression monalisa 149.2
texgen 3-D graphics tst 128.0
rasta speech recognition ex5 c1.wav 24.9

Table 1. The MediaBench benchmarks used
in this study along with their inputs and dy-
namic instruction count (in millions).

suring these statistics in a microarchitecture-dependent
way is that they are hard to predict in a microarchitecture-
independent way. This does not affect the applicability
of this methodology for efficient design space explo-
ration. Techniques exist for measuring these locality met-
rics efficiently by simulating multiple configurations in
parallel in a single profiling run [16]. Note that profil-
ing the application needs to be done only once through-
out the complete design space exploration. In the second
step, a synthetic trace is then produced from this statisti-
cal profile. The synthetic trace then resembles the original
program trace in a statistical sense. The important bene-
fit however is that the synthetic trace is extremely short in
comparison to the original trace; the synthetic traces that
we use in this paper for example only contain 500K instruc-
tions. In the third and final step, this synthetic trace is then
simulated on a statistical trace-driven simulator. This sta-
tistical simulator is very simple in nature since it does
not model branch predictors nor caches—these struc-
tures are modeled statistically. For example, when a mis-
predicted branch gets executed, the pipeline is flushed
and new instructions are fetched as if they come from
the correct control flow path. For a D-cache miss, the la-
tency for the next level in the memory hierarchy is
assigned. An I-cache miss stops the fetching of new in-
structions into the pipeline for a number of cycles.

6. Experimental setup
6.1. Simulation infrastructure

We use the sim-outorder simulator from the Sim-
pleScalar Tool Set v3.01 which is a detailed cycle-by-cycle
superscalar processor simulator. This simulator is aug-
mented with Wattch v.012 for obtaining energy consump-
tion numbers from architectural simulation runs. The
benchmarks used in this paper are taken from the Media-
Bench suite3, see Table 1.

6.2. Design space
The design space that we explore is huge. We vary 15 mi-

croarchitectural parameters in total; and each of them can be
varied over 2 to 5 parameter values. The parameters that we

1 http://www.simplescalar.com
2 http://www.eecs.harvard.edu/∼dbrooks/
3 http://www.icsl.ucla.edu/∼billms/

0

200

400

600

800

1000

1200

1400

1600

rawdaudio unepic rasta texgen cjpeg djpeg avg

n
u
m

b
e
r

o
f

s
im

u
la

ti
o
n
s

RD

OP

SD

TS

GS

GLS

Figure 1. The number of simulations during
design space exploration for single-objective
optimization.

vary are the processor width (2-issue up to 10-issue), the in-
struction window size (32-entry up to 128-entry), the num-
ber of functional units for each type (1 up to 8), the branch
predictor size (512 entries up to 4K entries), the cache sizes
(8KB up to 128KB for L1 caches; 256KB up to 4MB for
L2), etc. In total, the design space contains 1.6 billion pos-
sible design points to be explored. Obviously, we did not ex-
plore this huge design space through an exhaustive search.
By consequence, the optimal design point for the single-
objective optimization is also unknown. To get around this,
the optimal design point ever found by all of our search al-
gorithms is considered as our reference point. All errors re-
ported are relative to this reference point. This does not af-
fect the general conclusions from this paper however; the
errors are still useful for comparing the various search algo-
rithms.

6.3. Objective functions
For the single-objective optimization runs, we consider

the following objective function. We optimize the design for
minimal energy while guaranteeing a target level of perfor-
mance, i.e., for a given level of performance, we minimize
the energy consumption. For the multi-objective optimiza-
tions, we explore the design space by trading energy con-
sumption versus performance, i.e., we explore the pareto-
optimal design points as a function of performance and en-
ergy.

7. Evaluation
We now evaluate the automated design space exploration

techniques that we propose in this paper. Subsequently, we
will evaluate the simulation time speedups that are obtained
from two-phase simulation.

7.1. Automated design space exploration
Figures 1 shows the number of simulations that each of

the single-objective search algorithms require. We observe
that random descent and one-parameter-at-a-time are fast
search algorithms, i.e., the number of simulation is very lim-
ited (163 and 139 on average for RD and OP, respectively).
The other search algorithms require significantly more sim-
ulations before the search algorithm finds a stable solution.



0%

5%

10%

15%

20%

25%

rawdaudio unepic rasta texgen cjpeg djpeg avg

%
d
e
fi
c
ie

n
c
y

RD

OP

SD

TS

GS

GLS

Figure 2. The percentual deficiency of the op-
tima found by the various search algorithms.

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

0 200 400 600 800

number of simulations

%
d
e
fi
c
ie

n
c
y

TS/RD

TS/OP

TS/SD

TS/TS

OP/RD

OP/OP

OP/SD

OP/TS

SD/RD

SD/OP

SD/SD

SD/TS

GS/GS

GLS/GLS

Figure 3. Deficiency is plotted against to-
tal simulation time for the various two-phase
simulation approaches.

SD requires 617 simulations on average; TS, GS and GLS
require 892, 993 and 1004 simulations, respectively.

Figure 2 shows the accuracy of the various search algo-
rithms. The deficiencies reported in this graph are the rela-
tive deviation in energy consumption for the optima found
by the various search algorithms compared to the global op-
timum. (Recall that we refer to the global optimum as the
best solution found by all search algorithms.) We observe
that random descent, one-parameter-at-a-time, steepest de-
scent and tabu search can result in solutions that are signif-
icantly worse (up to 23% off) than the solutions found by
genetic search and genetic local search. We thus conclude
that genetic search and genetic local search are the most ac-
curate search algorithms; they seem to be able to avoid lo-
cal optima more efficiently. However, as mentioned above,
this comes at the cost of a relatively larger number of simu-
lations that need to be run during the search algorithm.

7.2. Two-phase simulation
The results shown so far assumed detailed simulation

throughout the entire design space exploration. We now
quantify the simulation time speedup when two-phase sim-
ulation is used instead of detailed simulation.

3.5

4

4.5

5

5.5

6

6.5

0.3 0.4 0.5 0.6 0.7

cycles per instruction (CPI)

e
n
e
rg

y
p
e
r

in
s
tr

u
c
ti
o
n

(E
P

I)

detailed simulation (50 iters)

detailed simulation (20 iters)

two-phase simulation (5 iters)

Figure 4. The pareto-optimal design points
found through detailed and two-phase simu-
lation for unepic.

Single-objective optimization. We first evaluate the
benefit of two-phase simulation for single-objective op-
timization. Figure 3 shows the various two-phase search
algorithms as a function of deficiency on the Y axis ver-
sus simulation time on the X axis. These numbers are av-
erage numbers over all the benchmarks. Obviously, the
closer to the origin, the better. The simulation time plot-
ted here is measured in units of full length simulations; we
include the simulation time required for the statistical sim-
ulation runs into the total simulation time. We considered
various combinations of search algorithms to be used in the
first phase and the second phase in order to explore the pos-
sibilities and the interactions between the first and second
phase. Note that for the genetic algorithms (GS and GLS),
we cannot combine them with the other approaches be-
cause a generation is required at each step in the search
algorithm which is not provided by the non-genetic al-
gorithms. We observe that under two-phase simulation,
genetic local search remains the most accurate search al-
gorithm. Comparing GLS under detailed simulation (Fig-
ure 1) vs. GLS under two-phase simulation (GLS/GLS
in Figure 3), we conclude that two-phase simulation im-
proves the overall simulation speed by a factor 2.2X. In
addition, the deficiency under two-phase simulation is sim-
ilar to the deficiency under detailed simulation. Another
search algorithm that performs very well in terms of accu-
racy versus simulation time is steepest descent. Compar-
ing SD under detailed simulation vs. SD/SD we observe
a simulation speedup of a factor 7.3X for the same ac-
curacy. The reason why steepest descent benefits more
from two-phase simulation than the other search algo-
rithms is that steepest descent optimizes the objective
function through a local search whereas the other al-
gorithms perform a broader search. Once steepest de-
scent gets close to the optimum, it finds the optimum very
quickly.

Multi-objective optimization. Two-phase simu-
lation can also be used for multi-objective optimiza-
tion. Figure 4 shows the pareto-optimal design points



benchmark HVR (20 iters) HVR (2-phase/5 iters)
unepic 0.910 0.985
djpeg 0.876 0.909
texgen 0.943 0.944
rasta 0.895 0.902

Table 2. HVR values compared to 50 detailed
simulation iterations for multi-objective opti-
mization using (i) 20 detailed simulation iter-
ations and (ii) two-phase simulation with only
5 detailed simulation iterations.

(EPI vs. CPI) for the unepic benchmark and the follow-
ing three scenarios. In the first scenario we use 50 itera-
tions using detailed simulation. The second scenario uses
20 iterations under detailed simulation. The third sce-
nario uses two-phase simulations in which there are
only 5 iterations done under detailed simulation. We ob-
serve that two-phase simulation allows for finding similar
pareto-optimal design points as through detailed simula-
tion. Note that two-phase simulation yields a better pareto
curve than 20 detailed simulations scenario. This graph im-
plies that two-phase simulation achieves approximately the
same accuracy as the 50 iterations using detailed simula-
tion while requiring 10 times less detailed simulations—the
statistical simulation runs are done very quickly and ac-
count for a very small fraction of the total simulation
time. We also compare these pareto curves more rigor-
ously using the hypervolume ratio (HVR) metric discussed
in [2]. The hypervolume metric takes into account close-
ness and diversity of the pareto curves compared to a
reference pareto curve; our reference curve is the 50 de-
tailed simulation iterations. Table 2 shows the HVR
metrics for the various benchmarks under two-phase sim-
ulation. The closer the HVR values are to one, the bet-
ter. We clearly observe that high HVR values are obtained
for two-phase simulation and they are higher than the 20 it-
erations under detailed simulation. We thus conclude
that two-phase simulation can yield substantial simula-
tion time speedups with only a very small loss in accu-
racy.

8. Conclusion
This paper discussed design space exploration tech-

niques for the efficient and automated design of out-of-order
microarchitectures for high performance embedded proces-
sors. We proposed and evaluated various search algorithms
for exploring the microarchitectural design space and con-
cluded that the newly proposed genetic local search
algorithm outperforms the other algorithms in terms of ac-
curacy. In addition, we presented two-phase simulation
which explores the design space first using statistical sim-
ulation in order to identify a small region of interest. This
region is then further explored through detailed simula-
tion. This yields substantial simulation time speedups in
the order of 2.2X to 7.3X. We showed that two-phase sim-
ulation is applicable to both single- and multi-objective
optimizations.

Acknowledgements
Stijn Eyerman and Lieven Eeckhout are supported

by the Fund for Scientific Research—Flanders (Bel-
gium) (FWO—Vlaanderen). This research is also sup-
ported by Ghent University, IWT and HiPEAC.

References
[1] J. Axelsson. Architecture synthesis and partitioning of real-

time systems: A comparison of three heuristic search strate-
gies. In CODES, pages 161–166, Mar. 1997.

[2] K. Deb. Multi-Objective Optimization using Evolutionary
Algorithms. Wiley, 2001.

[3] L. Eeckhout, R. H. Bell Jr., B. Stougie, K. De Bosschere, and
L. K. John. Control flow modeling in statistical simulation
for accurate and efficient processor design studies. In ISCA,
pages 350–361, June 2004.

[4] W. Fornaciari, D. Sciuto, C. Silvano, and V. Zaccaria. A de-
sign framework to efficiently explore energy-delay tradeofss.
In CODES, pages 260–265, Apr. 2001.

[5] M. Gries. Methods for evaluating and covering the design
space during early design development. Integration, the VLSI
Journal, 38(2):131–183, 2004.

[6] G. J. Hekstra, P. B. G. D. La Hei, and F. W. Sijstermans. Tri-
Media CPU64 design space exploration. In ICCD, Oct. 2001.

[7] A. Jaszkiewicz. Multiple Objective Metaheuristic Algo-
rithms for Combinatorial Optimization. PhD thesis, Poznan
University of Technology, Poland, 2001.

[8] V. Kathail, S. Aditya, R. Schreiber, B. R. Rau, D. Cronquist,
and M. Sivaraman. PICO: Automatically designing custom
computers. IEEE Computer, 35(9):39–47, 2002.

[9] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis. Rapid
design space exploration for heterogeneous embedded sys-
tems using symbolic search and multi-granular simulation.
In LCTES-SCOPES, pages 18–27, June 2002.

[10] S. Nussbaum and J. E. Smith. Modeling superscalar proces-
sors via statistical simulation. In PACT, pages 15–24, Sept.
2001.

[11] M. Oskin, F. T. Chong, and M. Farrens. HLS: Combining
statistical and symbolic simulation to guide microprocessor
design. In ISCA, pages 71–82, June 2000.

[12] M. Palesi and T. Givargis. Multi-objective design space ex-
ploration using genetic algorithms. In CODES, pages 67–72,
May 2002.

[13] T. Sherwood, M. Oskin, and B. Calder. Balancing design op-
tions with Sherpa. In CASES, Oct. 2004.

[14] G. Snider. Spacewalker: Automated design space exploration
for embedded computer systems. Tech Report HPL-2001-
220, HP Laboratories Palo Alto, Sept. 2001.

[15] V. Srinivasan, S. Radhakrishnan, and R. Vemuri. Hardware
software partitioning with integrated hardware design space
exploration. In DATE, pages 812–817, Feb. 1998.

[16] R. A. Sugumar and S. G. Abraham. Efficient simulation of
caches under optimal replacement with applications to miss
characterization. In SIGMETRICS’93, pages 24–35, 1993.

[17] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improv-
ing the strength pareto evolutionary algorithm. Tech Report
TIK-Report 103, ETH Zurich, May 2001.

[18] E. Zitzler and L. Thiele. Multiobjective evolutionary algo-
rithms: A comparative case study and the strength pareto ap-
proach. IEEE Transactions on Evolutionary Computation,
3(4):257–271, Nov. 1999.


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



