
Compositional, efficient caches for a chip multi-processor

A.M. Molnos
�������������

M.J.M. Heijligers
�������

S.D. Cotofana
�����

J.T.J. van Eijndhoven
�������

�����
Delft University of Technology

Mekelweg 4, Delft, The Netherlands
molnos@natlab.research.philips.com

�������
Philips Research Laboratories

HTC 5, 5656 AE
Eindhoven, The Netherlands

Abstract

In current multi-media systems major parts of the func-
tionality consist of software tasks executed on a set of con-
currently operating processors. Those tasks interfere with
each other when they share memory and other hardware
components. For instance when the tasks share caches and
no precautions are taken they potentially flush each other’s
data at random. In this case the control over the system
performance is lost. However, in media processing the per-
formance must be under tight control. In particular the per-
formance of each individual task must be preserved if the
tasks are executed concurrently in arbitrary combinations
or if additional tasks are added. A system satisfying this
property is addressed as being compositional.

This paper proposes a novel cache partitioning tech-
nique that enhances compostionality. We assume a cache
to be a rectangular array of memory elements arranged in
”sets” (rows) and ”ways” (columns). We perform two par-
titioning types. First, each task and each inter-task com-
mon data gets an exclusive part of the cache sets. Second,
inside the cache sets of common data each task accessing
it gets a number of ways. We apply the proposed method
on a homogeneous multiprocessor using two applications:
H.264 decoding and picture-in-picture-TV. Our experiments
indicate that, for both applications, under our partitioning
scheme the sum of misses of the individual tasks executed
separately and the number of misses of all tasks executed
concurrently differs at most by 4%. We conclude that com-
positionality is achieved within reasonable bounds. Addi-
tionally, our technique appears to improve the efficiency of
the cache operation.

1. Introduction

In order to guarantee sufficient performance, the pre-
dictability is the main required characteristic for state-of-
the-art media applications. The low power and low cost
demands of embedded domain make the use of general pur-

pose architectures with clock frequencies in the order of
several GHz inappropriate. Instead, in the embedded do-
main Chip Multi-Processor (CMP) architectures are pre-
ferred. Many media applications process large data resid-
ing off-chip. The availability of these data at the right mo-
ments in time is critical for the application performance. A
possible approach to cope with the problem of on-chip data
availability is to use shared cache memories [11]. How-
ever, when used in conjunction with a CMP architecture
and multi-tasking applications, shared caches make the miss
rate prediction (thus performance control) difficult. For in-
stance, when task �	� ’s data is loaded into the cache it may
flush task ��
 ’s data, eventually causing a future ��
 miss.
This kind of unpredictability constitutes a major problem
for real-time applications for which the completions of tasks
before their deadlines is of crucial importance. In particular,
the performance of each individual task must be preserved
if the tasks are executed concurrently in arbitrary combina-
tions or if additional tasks are added. A system satisfying
this property is addressed as having compositional perfor-
mance. Compositionality enables also reuse and easy in-
tegration of tasks into systems, which shortens the time to
market, another important aspect for the embedded domain.

Cache partitioning among tasks is the most used ap-
proach to mitigate the inter-tasks interference in cache [9],
[10], [12], [6]. The existing cache management schemes use
one of the two types of cache partitioning, as follows: (1) set
(row) based partitioning (exclusive cache sets are assigned
to tasks) or (2) associativity (column) based partitioning
(ways of every cache set are assigned to tasks). How-
ever, these existing methods cannot be straightforwardly ex-
tended for the case tasks share data and/or instructions.

In this paper we propose a novel cache partitioning tech-
nique that enhance performance compositionality and al-
lows cache sharing for common tasks data and/or instruc-
tions. As no principial difference between the two types of
sharing exist, for simplicity we use in the remainder of this
paper the term ”common regions” for both inter-task shared
data and instructions. Our method uses both set and asso-
ciativity types of cache partitioning. First, we ensure that
no task access may flush a common cache region or other

3-9810801-0-6/DATE06 © 2006 EDAA

task. This isolation is achieved by exclusively assigning a
number of cache sets to every task and to common regions,
via a set based partitioning process. Second, we propose a
strategy to guaranty those tasks don’t trash each other in-
side the cache sets allocated to a common region. Each task
that shares a common region has assigned a number of ways
in the sets allocated for that common region. This second
strategy is realized via associativity based partitioning.

We confirm the proposed method on a multiproces-
sor using two multi-tasking applications: H.264 decoding
and picture-in-picture-TV. Our experiments indicate that for
both examples, the difference between the sum of misses of
individual tasks in isolation and the number of misses of the
complete application is at maximum 4%, so we can con-
clude that compositionality is achieved. Additionally, for
typical cache sizes, our method has positive impact in the
overall performance.

The remainder of the paper is organized as follows. The
state of the art in the domain of cache partitioning is pre-
sented in Section 2. The proposed cache management is
introduces in Section 3 and issues related to its implemen-
tation are described in Section 4. Section 5 presents experi-
mental results and Section 6 concludes the paper.

2. Related work

Cache partitioning on itself is not new. In the litera-
ture different (set or associativity based) cache management
methods were proposed.

In [13] the authors use an on-line associativity based par-
titioning algorithm achieving interesting performance im-
provement. They estimate the miss characteristics of each
process and partition the cache dynamically in order to min-
imize the number of misses. However, this approach cannot
enable the performance compositionality mainly due to the
fact that the associativity based partitioning has a too low
granularity to be able to allocate exclusive cache parts to all
tasks and common data of the system such that composi-
tionality can be achieved.

The authors of [10] and [5] propose a compositional
data (respectively instructions) cache organization. A direct
mapped cache can be partitioned and configured at com-
pile time and controlled by specific cache instructions at run
time, considerably outperforming a conventional cache. For
our purposes, the main drawbacks of this approach are that
it is restricted to direct mapped caches and it is unclear if
inter-task sharing of data (image frames of a video applica-
tion for example) can be made compositional.

In [9] the cache is partitioned among tasks at compile
and link time. In [6] a method to divide a cache into parti-
tions for each real-time task and a larger partition called the
shared pool for the non-real-time tasks is described. In both

approaches the authors do not take into account tasks’ com-
mon region, so they are not applicable for our environment.

Liedtke et al. propose in [7] a cache partitioning method
controlled by the operating system. The major drawbacks of
this method are the limitation to physically indexed caches
and the basic partitioning unit assignable to a task of one
memory page.

In previous work [8] we tackled only the case of tasks
that do not have common instructions.

The present work differs from existing approaches in the
sense that we focus on achieving performance composition-
ality for application executed on multiprocessor platforms.
Compositionality is a desired property because it increases
the system predictability and it decreases the engineering
complexity. Efficient cache usage is a subsequent purpose
and should not disturb the compositionality.

3. Sharing data and instructions with enabling
compositionality

This section presents the proposed cache management
technique for achieving performance compositionality and
sharing the cache for common data and instructions among
tasks. The targeted system is a chip multiprocessor having
shared levels of cache. The applications executed on this ar-
chitecture consist of sets of tasks that communicate through
the memory hierarchy, thus through the shared cache. In the
next subsection we present the available cache partitioning
options.

3.1. Cache partitioning options

In the organization of conventional, set associative cache
the address splits in three parts: tag, index and offset [4].
The index directly addresses a cache set (row). Every set
has a number of
 ways (column). The tag part of the ad-
dress is compared against all the tag parts stored in a set to
determine if there is a hit in one of the set’s ways. The off-
set part of the address selects the desired word in the cache
block. With respect to conventional cache organization we
identify three possible types of partitioning:

- Associativity based, also called column caching [2]
(Figure 1, a). In this situation a task gets a number of ways
from every set of the cache. Allowing every task to search
all the cache ways for a hit (but in case of a miss to re-
place data only task’s own ways) easily ensures sharing of
common task regions. However, the number of cache ways
(cache organization) limits the granularity of the partition-
ing. We note here that in a large L2 cache, the state-of-the-
art number of ways is around 16. Hence, if we have more
than 16 tasks, some cache ways should be shared among
them, leading to the already presented inter-task flushing
(so compositionality) problem. Moreover, low partitioning

.

.

.

.

.

.

.

.

.

���

���

���
���

��
��

��

��.

b. Set−based cache partioning

SET N

SET 1
SET 0

WAY 0 WAY M

for Task 0

for Task 1

WAY 0 WAY M
SET 0
SET 1

SET N
for

Task 0
a. Associativity−based cache partioning

Task 1
for

Figure 1. Types of cache partitioning

granularity limits the options of improving performance by
tuning the partitioning ratio to the tasks requirements.

- Set based [6] (Figure 1, b). In this situation a task gets
a number of sets from the cache. This type of partitioning
requires translating the index such that it addresses another
part of the cache as it originally did. This translation makes
the set based partitioning more expensive, but due to the fact
that typically in a cache there are more sets than ways, this
methods can potentially induce compositionality.

- Mixed partitioning - is a combination of the first two.
Every task gets a limited number of ways from a part of the
cache sets.

3.2. Mixed cache partitioning

Three types of parallelism are possible in multimedia ap-
plications: functional parallelism (where task perform dif-
ferent operations on the same data input), data parallelism
(where task performs the same operation on different parts
of the input data), and a mix of the two previous ones. In
the case of data parallelism multiple tasks execute the same
instructions on different parts of the input data. Moreover,
independently of the parallelism type, multimedia task usu-
ally share variables (for example reference frames for video
codecs). Thus, in media applications tasks share code an
data, denoted in this paper with ”common regions”.

On one hand, a common method to achieve performance
compositionality is by allocating to each task its own ex-
clusive cache part. Therefore, multiple copies of a common
region reside in cache causing coherence problems and hav-
ing a negative impact on cache utilization. On the other
hand, if the system has a shared cache partition for every
common region, its compositionality cannot be achieved
due to the cache flushing among tasks in the common cache.

To solve the problem of compositionality we first ensure
that the instances of private tasks data and common regions
don’t trash each other in cache. Set based cache partitioning
among each task and each common region guarantees this
isolation. Subsequently, we create the premises such that
tasks don’t trash each other data in the cache sets of the
common regions. For the cache sets sharing problem we

�������������
�������������
�������������
�������������

���
���

��
��

���������������������������
���������������������������
���������������������������
���������������������������
.

Exclusive T1

Exclusive T0

Shared T0&T1

SET0
WAY0 WAY1 WAY2 WAY3

.

.

SET N

Figure 2. Mixed cache partitioning

present two possible solutions:
- The cache allocated to the common data is as large as

the data instance itself. In this case no misses occur, hence
no unpredictable trashing is present.

- Inside the cache sets of a common region tasks use the
data if it is already there (sharing) but on a miss they are not
allowed to flush other tasks data (don’t interfere).

The first solution depends on the application and on the
available cache, so it is not always applicable. For in-
stance, for the state of the art video definition reference
frame buffers typically do not fit in the cache. The sec-
ond solution is more general and can be applied regardless
of the relation between the sizes of available cache and the
common data. This general solution can be easily imple-
mented using associativity based partitioning for the shared
regions cache.

In conclusion, for achieving performance compositional-
ity we use mixed cache partitioning like depicted in Figure
2. The dark grey cache part is allocated to task �	 and the
light gray cache part is allocated to task �"! . In the shared �
and �#! cache region tasks can query all the four ways of the
corresponding cache set for a hit. However, if for example a
�#! access misses in cache, the replacement takes place only
in �#! ’s two ways.

When using associativity based partitioning the tasks
that access the common region should have each at least one
way of the shared cache sets, so cache associativity should
be greater or equal with the number of tasks sharing the
common region. We note however that the maximum num-
ber of tasks that share a common region is typically smaller
than the number of tasks forming an application.

4. Mixed cache partitioning implementation

The envisaged architecture is the CAKE platform [15].
This platform consists of a homogeneous network of com-
puting tiles (like the one in Figure 3) on a chip. Each tile
contains CPUs (Trimedia and/or MIPS cores), a router (for
out of tile communication), and memory banks. The pro-
cessors are connected to memory by a fast, high-bandwidth
interconnection network. The on-tile memory is actually
used as a unified L2 cache, shared between processors, fa-

. . .

. . . L2
cache

CPU CPUCPU

L1 cache L1 cache L1 cache

memory
bank

memory
bankbank

memory

interconnection network

ON CHIP

DRAM MEMORY

Figure 3. Multiprocessor target architecture

cilitating a fast access to the main memory which is outside
the chip. In this paper we use one tile of the multiproces-
sor. On such a tile, the CAKE platform implements a cache
coherence protocol among the different L1’s and L2.

We apply the mixed partitioning on the L2 shared cache,
because it is the most affected by the inter-task run-time
conflicts. For the present work we assumes the followings:
(1) the communication resources (busses, networks, etc.)
are large enough (so the resource contention there is low)
or they are also managed for performance compositionality,
(2) since the levels of cache private to each processor are
usually small and task switching rate in multimedia applica-
tion is typically low enough, the L1 cache can be considered
private to each task. In the following we present the imple-
mentation issues first for set based partitioning and then for
associativity based partitioning.

As already mentioned, in a conventional set associative
cache organization the address splits into three parts: tag,
index and offset. The set based cache partitioning is done
by translating the old index of an address into a new index
before cache lookup (Figure 4). To avoid expensive mod-
ulo operations, the partition sizes are limited to power of
two number or sets. A table provides the MASK and BASE
values for every task and common region. To clarify the
mechanism, let us assume that an access to data $ has the
index %'&)(+* if the cache would have been conventional. We
denote by ,.- the size of partition for $ and by ,./ the size of
the total cache (both size values are considered in number
of sets). The
0$2143�* actually selects the 5 least represen-
tative bits of %'&)(+* (instead of doing modulo with the cache
size ,)/ we do only modulo with the partition size ,6-). The7 $2198:* fills the rest of the ;=<>5 index bits such that dif-
ferent tasks accesses are routed in disjoint parts of cache.
After index translation, two addresses that didn’t have the
same old index might end up having the same new index.
Therefore, the old tag and old index bits form the new tag
used for correct cache lookup. Hence, every tag has 10-12
extra bits (depending on cache size), representing less that
1% of the total L2 area, so the penalty implied is negligible.
The execution of the coherence protocol takes few cycles;

Figure 4. Set based cache partitioning

therefore, in parallel with it, the index translation for L2
accesses can be performed. This parallel execution results
in no additional delay penalty involved for the extra index
translation.

The set based cache partitioning is done per task or com-
mon region instance so each memory access should be la-
beled with a task id or comm reg id. The task id for every
processor is stored in a register and updated at every task
switch, therefore it can be used directly. Common regions
consist of data or code. In the following we present the op-
tions to obtain a common region id first for data and then
for code.

There are several ways to obtain an id for the common
task data. A comm reg id register could be used, so the
compiler should keep that register up to date. Alternatively,
a part of the address could be used to encode the comm reg
id. This approach requires a cache aware memory allocator,
reduces the usable address space (fragmentation), and also
requires adapting the compiler for handling shared static
data structures. Nevertheless, for dynamic memory alloca-
tion the partitioning can be implemented relatively straight-
forward by providing a dedicated malloc for shared buffers.
A third approach is to keep a table with intervals of shared
memory and for every access the cache can lookup if the
address has an associated comm reg id. This third approach
is more expensive in terms of area and power. For our ex-
periments we choose the third alternative because we are
mainly interested in the system level aspects (e.g., inducing
the compositionality, implication in miss rate). The third
approach is more generic than the others because any ad-
dress range can be placed in any place in the cache. This
easily allows for other experiments, like for example sepa-
rating tasks’ instructions and static variables in the cache or
sharing some cache partitions.

Using the same method as for shared data we can ob-
tain a comm reg id for the common code. However, this
approach requires extra analysis to determine the address
ranges of the common regions of code. Another option is
to distinguish between code and data accesses by labelling

the L2 accesses coming from the L1 instruction cache as
code. At compile time it is known which tasks are instan-
tiated multiple times so the code accesses of those tasks go
into the same cache partition.

The associativity based partitioning is implemented by
changing the cache replacement policy in case of a miss
[13]. Depending on the task id only a restricted number
of ways of one set are used for victimizing old data and
bringing in missed data. The associativity based partition-
ing requires small additional logic and the penalty can be
neglected. Given that we provided the mechanisms to sup-
port both set and associativity cache partitioning and the
fact that their combination does not require additional steps,
mixed partition is also supported.

In the existing light-weighted operating system respon-
sible with task scheduling we added primitives for loading
and modifying the necessary tables and registering address
ranges of common regions.

5. Experimental results

For our experiments we used a CAKE multiprocessor
platform [15] with 4 Trimedia processor cores running at
300 MHz and 4 ways associative L2 shared cache. The ac-
cess times the different memory levels are as follows: to
the L1 cache 3 cycles, to the L2 cache 12 cycles, to the
off-chip memory 110 cycles. The experimental workload
consists of two multi-tasking applications: a H.264 decoder
and a picture-in-picture-TV (PiPTV) decoder. Both appli-
cations exhibit mixed data and functional parallelism and
are separately simulated on the CAKE platform. Neverthe-
less, our technique is not restricted to these applications.
For instance, every data parallel multimedia application can
benefit from instruction cache sharing in a compositional
manner.

The H.264 decoder consists of several tasks [14]. First an
entropy decoder task processes the input stream and passes
the data via a scheduler to a set of transform decoders and
loop filters tasks doing inverse quantization, transformation,
prediction respectively deblocking on different parts of the
image. The transform decoders and loop filters are data
parallelized. They share the instructions and the reference
frames.

The PiPTV consists of multiple tasks: two mpeg2 de-
coders, two video scalers, video multiplexing and demulti-
plexing. The application is described in YAPI and it is based
on the work in [3].

Our experiments investigate two issues: (1) composi-
tionality and (2) cache partitioning implications in system
performance. The used partitioning ratio is chosen such that
the overall application number of misses is minimized [8].
The process of finding this optimized ratio has first an infor-
mation gathering phase during which every task is individu-

ally simulated having different amounts of cache. Then the
optimized partitioning ratio is computed by minimizing the
sum of all task misses, under the constraint that all allocated
cache is not larger than the available cache.

We study the compositionality using the variation be-
tween the sum of misses of individual tasks in isolation
and the number of misses of the complete application. The
misses of every individual task in isolation are obtained dur-
ing the gathering phase. The number of misses of the com-
plete application is obtained by simulating all the tasks to-
gether, using the optimized partitioning ratio. To investigate
the compositionality induced by cache partitioning we esti-
mate the misses’ variation in the same external conditions,
so we used the same set of input data. For both application
the misses’ variation are smaller than 4%, so we can con-
clude that compositionality is achieved within reasonable
bounds. The 4% difference is due to the neglected effects
like L1 presence, task switching and migration.

The performance implications of mixed partitioning are
studied by comparing the L2 number of misses and execu-
tion time for two cache configurations: (1) the cache fully
shared, and (2) the cache partitioned as proposed in this pa-
per, with the partitioning ratio optimized for overall least
number of misses. We execute the applications with stan-
dard definition test sequences having different degree of de-
tail and movement [1]. In Figures 5, respectively 6, the aver-
age miss rate and completion time for the two studied cache
configurations are presented for the PiPTV and H.264 ap-
plications.

For the considered L2 sizes, the partitioned cache gen-
erally outperforms the shared cache. The relative miss rate
reduction is, on average over the experimented cache sizes,
23% for the H.264 application and 25% for the PiPTV ap-
plication. The typical L2 sizes for the CAKE platform are
around 1-2 MBytes [15]. For this size the reductions in ab-
solute miss rate are as follows: 3% for H.264 and 2% for
PiPTV. This miss rate reductions results in a off-chip traf-
fic reduction of 15% on average over the two applications,
and in an execution time improvement of 5% for the H.264,
respectively 3% for the PiPTV.

Two phenomenons determine the number of misses’ dif-
ference between a shared and a partitioned cache. If the
cache is partitioned, the inter-task cache flushing is elim-
inated (which means less misses) but every task can use
less cache space than in the shared case (which means more
misses). The variation of execution time with the number of
misses is not linear because by minimizing the overall num-
ber of misses the sum of tasks execution times is minimized.
However, because the tasks are executed in parallel the criti-
cal path in the application gives the overall completion time,
which is not the sum of tasks execution times. This can be
observed in the case of the H.264 decoder running with 512
KBytes of L2 cache or in the case of the PiPTV applica-

Figure 5. PiPTV: shared vs. partitioned cache

Figure 6. H.264: shared vs. partitioned cache

tion running with 1MByte of L2. Compared to the shared
cache, the partition cache had a 3% lower miss rate but the
execution time increased with 4%.

6. Conclusions

This paper proposed a method that contributes to the use
of a multiprocessor with shared caches in real-time sys-
tems. We developed a set and associativity based cache
partitioning technique that ensure performance compostion-
ality within reasonable bounds and allows cache sharing for
common tasks data and/or instructions. Apart from allow-
ing the designer to predict the overall performance out of the
performance the parts, compositionality enables also reuse
and easy integration of tasks into systems, which decreases
engineering efforts, therefore shortens the time to market.

Our method removed the inter-task cache interference by
using two cache partitioning types. First, each task and each
inter-task common data had allocated an exclusive part of
the cache sets. Second, inside the cache sets of common
data each task accessing it had allocated a number of ways.
The proposed method was applied to the shared L2 cache
of a CAKE multiprocessor. Two multi-tasking applications
were used for the experiments: H.264 decoding and picture-
in-picture-TV. Our experiments indicate that, for both appli-
cations, using our partitioning scheme the sum of misses

of the individual tasks executed separately and the num-
ber of misses of all tasks executed concurrently differs at
most by 4%, so we can conclude that compositionality was
achieved within reasonable bounds. Additionally, for typ-
ical L2 sizes, the partitioned cache outperformed the fully
shared cache leading on average to 15% reduction in the
amount of off-chip traffic. Future work includes dynamic
repartitioning strategies.

References

[1] ftp://ftp.ldv.e-technik.tu-muenchen.de/pub/test sequences/.
[2] D. T. Chiou. Extending the reach of microprocessors: Column

and curious caching. PhD thesis Department of EECS, MIT,
Cambridge, MA, 1999.

[3] E. A. de Kock and all. Yapi: application modeling for signal
processing systems. Proceedings, 37th conference on Design
Automation, pages 402 – 405, 2000.

[4] J. L. Hennesy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers, San
Fransisco, CA, 2003.

[5] J. Irwin, D. May, H. Muller, and D. Page. Predictable instruc-
tion caching for media processors. 13th International Confer-
ence on Application-specific Systems, Architectures and Pro-
cessors (ASAP), pages 141–150, 2002.

[6] D. B. Kirk. Smart (strategic memory allocation for real-time)
cache design. IEEE symposium on Real Time Systems, pages
229–237, 1989.

[7] J. Liedtke, H. Härtig, and M. Hohmuth. Os-controlled cache
predictability for real-time systems. 3rd IEEE Real-Time Tech-
nology and Applications Symposium, June 1997.

[8] A. Molnos, M. Heijligers, S. Cotofana, and J. van Eijndhoven.
Compositional memory systems for multimedia communicat-
ing tasks. Proceedings, DATE, 2005.

[9] F. Mueller. Compiler support for software-based cache parti-
tioning. ACM SIGPLAN Notices, 30(11), 1995.

[10] H. Muller, D. Page, J. Irwin, and D. May. Caches with com-
positional performance. Proceedings, Embedded Processor
Design Challenges, pages 242–259, 2002.

[11] B. A. Nayfeh and K. Olukotun. Exploring the design space
for a shared-cache multiprocessor. pages 166–175, 1994.

[12] F. Sebek. The state of the art in cache memories and real-
time systems. (01/37), Oct. 2 2001.

[13] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partition-
ing of shared cache memory. The Journal of Supercomputing,
28(1):7–26, 2004.

[14] E. B. van der Tol, E. G. Jaspers, and R. H. Gelderblom. Map-
ping of H.264 decoding on a multiprocessor architecture. In
Image and Video Communications and Processing 2003, pages
707–718, May 2003.

[15] J. T. van Eijndhoven, J. Hoogerbrugge, M. Jayram,
P. Stravers, and A. Terechko. Chapter: Cache-Coherent Het-
erogeneous Multiprocessing as Basis for Streaming Applica-
tions, in Dynamic and robust streaming between connected
CE-devices. Kluwer Academic Publishers, 2005.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

