
Distributed Loop Controller Architecture for Multi-threading in Uni-threaded
VLIW Processors

Praveen Raghavan
���

, Andy Lambrechts
���

, Murali Jayapala
�
,

Francky Catthoor
���

and Diederik Verkest
�����

�
IMEC vzw, Kapeldreef 75, 3001 Leuven, Belgium�

KULeuven, Belgium
�

VUB, Belgium�
ragha, lambreca, jayapala � @imec.be

Abstract

Reduced energy consumption is one of the most impor-
tant design goals for embedded application domains like
wireless, multimedia and biomedical. Instruction memory
hierarchy has been proven to be one of the most power
hungry parts of the system. This paper introduces an ar-
chitectural enhancement for the instruction memory to re-
duce energy and improve performance. The proposed dis-
tributed instruction memory organization requires minimal
hardware overhead and allows execution of multiple loops
in parallel in a uni-processor system. This architecture en-
hancement can reduce the energy consumed in the instruc-
tion and data memory hierarchy by 70.01% and improve the
performance by 32.89% compared to enhanced SMT based
architectures.

1. Introduction
Modern embedded applications require sustained opera-

tion for long periods of time with no or minimal recharg-
ing of the battery. In some cases, like sensor-networks and
in-vivo biomedical implants, battery-less operation may be
preferred, where power is obtained by scavenging energy
sources. In order to achieve such low power constraints it is
crucial that the energy consumption is reduced in all parts
of the system.

Therefore, the designer has to look at the complete sys-
tem and tackle the power problem in each part. This pa-
per presents a novel architectural enhancement that reduces
the power consumed in the instruction memory hierarchy,
which is one of the highest power consuming parts of the
system [16]. The instruction memory energy bottleneck be-
comes more apparent after techniques like loop transforma-
tions, software controlled caches, data layout optimizations
in [3, 14] have been applied to other components of the sys-
tem.

State of the art architecture enhancements to reduce the
energy consumed in the instruction memory hierarchy for

VLIW processors include using loop buffers [13], NOP
compression [12], SILO cache [5], code-size reduction [12],
etc. In spite of these enhancements, the datapath and in-
struction memory organizations are centralized and have
low energy efficiency [13]. Hence there is a need for a dis-
tributed and scalable solution. The well known L0 buffer or
loop buffer is an extra level of memory hierarchy that is used
to store instructions corresponding to loops. It is a good can-
didate for a distributed solution as shown in [13]. But cur-
rent distributed loop buffers support only one thread of con-
trol.

To improve both performance as well as energy effi-
ciency it is crucial to boost the parallelism [8]. Since loops
form the most important part of a program, techniques like
loop fusion and other loop transformations are applied to
exploit the parallelism (boosting ILP) within loops on a sin-
gle threaded architecture. However not all loops can be ef-
ficiently exploited in this manner (explained in Section 2).
Therefore there is a need for a multi-threaded platform, that
can support execution of multiple loops, with minimal hard-
ware overhead.

This paper proposes a multi-threaded distributed instruc-
tion memory hierarchy that can support execution of mul-
tiple incompatible loops (see Figure 1) in parallel. In addi-
tion to regular loops, irregular loops with conditional con-
structs and nested loops can also be mapped. Sub-routines
and function calls within the loops must be selectively in-
lined or optimized using other loop transformations like
code hoisting or loop splitting, to fit in the loop buffers.
Alternatively, sub-routines could be executed from level-
1 cache if they do not fit in the loop buffers. A generic
schematic of the proposed architecture is shown in Figure
2(c). The loop buffers are clustered, each loop buffer has its
own local controller, and each local controller is responsi-
ble for indexing and regulating accesses to its loop buffer.
The novelties of the proposed architecture enhancement are
as follows:

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



Figure 1. Incompatible Loop Organizations: a
simple example

1. An energy-efficient and scalable, distributed controller
organization

2. Multi-threaded incompatible loop operation in uni-
threaded processors is enabled and

3. Overall energy savings are obtained along with en-
hancement in performance.

This paper is organized as follows: Section 2 presents a
survey of state of the art architectural features that reduce
the power consumption in a system and their disadvantages
and also motivates the need to solve this problem. Section
3 introduces the proposed architectural enhancements and
the corresponding techniques. Section 4 illustrates the soft-
ware/compiler support required for this architecture. Sec-
tion 5 presents the experimental setup for the proposed ar-
chitecture and the results. Finally, Section 6 concludes this
paper.

2. Motivating Example and Related Work
The example code shown in Figure 1 shows two loops

with different loop organizations. In the context of embed-
ded systems with software controlled memory hierarchy,
the above code structure is realistic. Code 1 gives the loop
structure for the code that would be executed on the data
path of the processor. Code 2 gives the loop structure for the
code that is required for data management in the data mem-
ory hierarchy. This may represent the code that fetches data
from the external SDRAM and places them on the scratch-
pad memory or other memory transfer related code. Code 1
can be assumed to execute some operations on the data that
was obtained by Code 2. The above code example can be
mapped on different platforms. The advantages and disad-

vantages of mapping such a code on state of the art tech-
niques/systems are described below.

2.1. Architecture Issues

The L0 buffer or loop buffer architecture is a commonly
used technique to reduce instruction memory hierarchy en-
ergy [6, 13]. This technique proposes an extra level of in-
struction memory hierarchy which can be used to store
loops. Additionally, several compiler transformations are
proposed to improve loop buffering [19, 20]. Such state
of the art L0 organizations like the ones shown in Fig-
ure 2(b) allow only single-threaded operation. Although the
loop buffers are distributed, they contain a single loop con-
troller and therefore such an organization does not support
multi-threaded operation.

In uni-processor platforms (Figure 2(b)), loop fusion is
a commonly used technique to execute multiple threads in
parallel. Here, the candidate loops with different threads of
control are merged into a single loop, with single thread of
control. However these techniques cannot handle incompat-
ible loops like the one shown in Figure 1. Even if advanced
loop morphing [11] is applied the extra overhead due to if-
then-else constructs and other control statements required
can be very large, resulting in loss of both energy and per-
formance (see Section 5 for comparison).

Multi-threaded architectures and Simultaneous Multi-
Threaded (SMT) processors [10, 15, 21], can also execute
multiple loops in parallel. However, these architectures are
intended for larger granularity tasks than loops. Hence, the
overhead of context management and switching is large.
The data sharing in these architectures between two pro-
cesses/threads is done at the cache level, which requires
extra reads and writes from/to the memory and register
file. SMT processors (shown in Figure 2(a)) need multiple
fetch/decode units and complete program counter logic for
each of the threads, which requires extra hardware overhead
(explained in Section 5).

In the proposed architecture enhancement (refer Fig-
ure 2(c), detailed in Section 3), multiple loops can be ex-
ecuted in parallel, without the overhead/limitations men-
tioned above. Multiple synchronizable Loop Controllers
(LCs) enable the execution of multiple loops in parallel as
each loop has its own loop controller. However, the LC logic
is simplified and the hardware overhead is minimal as it has
to execute only loop code. Data sharing and synchroniza-
tion is done at the register file level and therefore context
switching and management costs are eliminated. (detailed
in Section 4)

2.2. Technological Issues

In addition to the motivation mentioned above, there ex-
ists a need for non-shared distributed resources. It is of-
ten the case in embedded systems, that the same processor



Figure 2. Different Processor Architectures supporting Multi-threading

Figure 3. L0 Controller for every Cluster

needs to run different processes with different characteris-
tics. Recently there has been a strong academic as well as
industrial trend towards application-specific units to reduce
the energy consumed for performing a specific task. Each
distributed instruction cluster of the VLIW can be consid-
ered as an application specific cluster. A distributed instruc-
tion cluster processor with its own loop buffer and mini-
mized resource sharing [9], reduces the extra energy cost
due to the routing and interconnect requirement consider-
ably as it can be placed physically closer to its cluster.

It has been shown in [7] that local interconnect is one of
the growing problems for energy-aware design. It is there-
fore crucial that the instruction memories for different clus-
ters of the VLIW are closer to their execution units. A dis-
tributed L0 loop buffer configuration for each VLIW clus-
ter with separate loop controllers as shown in Figure 2(c),
can significantly reduce the energy consumed in the local
wiring.

3. Proposed Architecture Enhancement
This section presents the details of the proposed archi-

tectural enhancement that saves energy consumption and
improves performance by enabling a synchronized multi-
threaded operation in a uni-processor platform.

3.1. Extending a Uni-processor to Support Execu-
tion of Multiple Threads

We propose to extend a uni-processor model to support
two modes of loop buffer operation: Single-threaded and
Multi-threaded. The extension to multi-threaded mode is

Figure 4. A state diagram illustrating the
switching between single and multi-threaded
mode of operation

done with special concern to support L0 buffer operation.
A VLIW instruction is divided into bundles, where each
bundle corresponds to an L0 cluster. An L0 controller (il-
lustrated in Figure 3) along with a counter (e.g. 5 bits)
is responsible for indexing and regulating accesses to the
L0 buffer. Unlike conventional Program Counters (PCs),
the controller logic is much smaller and consumes lower
energy, with the loss in flexibility that only loops can be
executed from the loop buffers. The LB USE signal indi-
cates execution of an instruction inside the L0 buffer. The
NEW PC signal is used to index into the L0 buffer.

The L0 controllers can be operated in single/multi-
threaded mode. The state diagram of the L0 Buffer opera-
tion is shown in Figure 4. The single threaded loop buffer
operation is initiated on encountering the LBON � addr �
� offset � instruction. Here � addr � denotes the start ad-
dress of the loop’s first instruction and � offset � denotes the
number of instructions to be fetched to the loop buffer start-
ing from address � addr � . In the single threaded mode, the
loop counter of each cluster is incremented in lock-step ev-
ery cycle. This mode of operation is similar to the L0
buffer operation presented in [13], but in the proposed ap-
proach an entire cluster can be made inactive for a given
loop nest to save energy.

In the multi-threaded mode, the loop counters are still in
lock-step, but not necessarily at every cycle. Instead they



synchronize at loop boundaries or explicit synchronization
points identified by the compiler (explained in Section 4).
To spawn execution of multiple loops that have to be ex-
ecuted in parallel, each L0 cluster is provided with a sep-
arate instruction (LDLCi � addr �	� offset � ) to explicitly
load different loops into the corresponding L0 clusters. Here
i denotes the cluster number. For instance, in the following
example two instructions LDLC1 � addr1 �
� offset1 � and
LDLC2 � addr2 �
� offset2 � are inserted in the code to in-
dicate that the loop at addr1 is to be executed in cluster 1
and the loop at the addr2 is to be executed in cluster 2.

—
LDLC1 � addr1 ��� offset1 �
LDLC2 � addr2 ��� offset2 �

addr1: for (...) �
Loop Body 

addr2: for (...) �
Loop Body 

—

Once the instruction LDLCi is encountered, the proces-
sor operates in the multi-threading mode. During the initial-
ization phase all the active loop buffers are loaded with the
code that they will be running. For example, the i ��� loop
buffer will be loaded with offseti number of instructions
starting from address addri specified in instruction LDLCi.
Meanwhile, each cluster’s loop controller copies the needed
instructions from the instruction memory into the corre-
sponding loop buffer. If not all the clusters are used for exe-
cuting multiple loops, then explicit instructions are inserted
by the compiler to disable them.

When a cluster has completed fetching a set of instruc-
tions from its corresponding address, the loop buffer enters
the execution stage of the Multi-threaded execution opera-
tion. During the execution stage, each loop execution is in-
dependent of the others. Although the loop counters are not
in lock-step, the different loop buffers are synchronized at
specific synchronization points (where dependencies were
not met) that are identified by the compiler. Additionally,
the compiler or the programmer must ensure the data con-
sistency or the necessary data transfers across the data clus-
ters.

4. Software/Compiler Support
The code generation for the proposed architecture is sim-

ilar to the code generated for a conventional VLIW proces-
sor, except for the parts of the code that need to be exe-
cuted in multi-threaded mode. As mentioned in the previ-
ous section, additional instructions are inserted to initiate
the multi-threaded mode of operation.

Figure 5 shows the assembly code for the two incom-
patible loops presented in Figure 1. Code 1 is loaded to
L0 Cluster 1 and Code 2 is loaded to L0 Cluster 2. If, for

Figure 5. Assembly code for the code shown
in Figure 1 (extra synchronization bits are
shown in brackets)

two iterations of loop i, only one iteration of loop i’ has
to be executed, then there is a need to identify this depen-
dency and need to insert necessary synchronization points
to respect this dependency. The compiler needs to extract
and analyze data dependencies between these two loops.
For this purpose, the two loops shown in Figure 1 are first
represented in a polyhedral model [18]. Once the different
codes are represented in a common iteration domain [18],
a data dependency analysis can be done [11]. On analyzing
the data dependencies between different codes, the synchro-
nization points can be derived. The synchronization points
are then annotated back on the original code shown in Fig-
ure 5 within brackets.

Synchronization between the two clusters is achieved by
adding an extra bit to every instruction. These extra bits are
shown in Figure 5. A ‘0’ means that the instruction can be
executed independently of the other cluster and a ‘1’ means
that the instruction can only be executed if the other cluster
issues a ‘1’ as well. The handshaking/instruction level syn-
chronization can be implemented in multiple ways. For ex-
ample, instruction ld c1, 0 of both the clusters would be is-
sued simultaneously. The number of bits required for syn-
chronization is one less than the number of clusters. If nec-
essary extra nop instructions may be inserted to obtain cor-
rect synchronization. This instruction level synchronization
reduces the number of accesses to the instruction memory
and hence is energy-efficient. Due to limited space, instruc-
tion level synchronization is not discussed here. Further de-
tails of the analysis performed by the compiler are beyond
the scope of this paper.



It can be seen from the assembly code in Figure 5, that
using the synchronization bits the data sharing can be done
at the register level instead of the cache level like in the case
of SMT processors. This reduces the number of reads and
writes to the memory and register file and further saving en-
ergy.

5. Results
Section 5.1 presents the experimental setup that was used

to demonstrate this work. Section 5.2 presents the energy
savings that were obtained on the proposed architecture and
the reasons for the gains.

5.1. Experimental Platform Setup
The experiments were performed on the CRISP [17] sim-

ulator which is built on the Trimaran [2] VLIW frame-work.
The simulator was annotated with power models for differ-
ent parts of the system. The power models for the different
parts of the processor where obtained using Synopsys Phys-
ical Compiler and DesignWare components, UMC130nm
technology, 1.2V Vdd. The power was computed after com-
plete layout was performed and were back-annotated with
activity reported by simulation using ModelSim. The com-
plete system was clocked at 500MHz (roughly the clock fre-
quency of most embedded systems). The extra energy con-
sumed due to the synchronization hardware was also esti-
mated using Physical Compiler after layout, capacitance ex-
traction and back-annotation. The memory models were ob-
tained from [4].

Special instructions were inserted to enable multi-
threaded operation on the VLIW. The experiments were
performed on a VLIW with four slots. All slots were con-
sidered to be homogeneous and form one data clus-
ter i.e. all four slots share the same global register file.
Two slots are grouped into one L0 instruction clus-
ter. Hence the VLIW processor has one common data
cluster and two L0 instruction clusters.

5.2. Energy and Performance Analysis
For the benchmarks [1] used, which is a representa-

tive set for embedded systems domain. The output of the
first benchmark was assumed to be the input to the sec-
ond benchmark. This was done to create an artificial de-
pendency between the two threads. Figure 6 and 7 respec-
tively, show the energy savings and performance gains that
can be obtained when multiple kernels are run on differ-
ent L0 instruction clusters of the VLIW processor with the
multi-threading extension presented in Section 3.1. The en-
ergy savings are considered for the memories (instruction
and data) of the processor as they are the dominant part of
any SoC [16].

In the Sequential case (Baseline case), two different
codes were executed on the VLIW one after the other. The
VLIW has a centralized loop buffer organization. In the

0

0.5

1

1.5

2

2.5

Fir+Wave

Fir+Wsum

Wave+WSum

NRSqrt+WSum

NRSqrt+Wave

Fir+NRSqrt

IIR+Wsum

IIR+Wave

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

pt
io

n

Sequential Loop Merged SMT SMT+L0 Proposed MT

Figure 6. Energy Savings normalized to Se-
quential Execution

loop merged case, a variant loop fusion technique proposed
in [11] was applied and executed on the VLIW with a cen-
tralized loop buffer organization and with a central loop
controller. For the SMT case, a complete program counter
and instruction memory of 32KB was used. The SMT was
also enhanced with an energy efficient loop buffer as well.
Although, SMT and Loop buffer technique are orthogonal,
for our comparison to be fair we apply the loop buffer-
ing technique to the SMT architecture (SMT+L0). The pro-
posed multi-threading (MT) architecture has a 5-bit loop
counter for each cluster and some basic logic (as shown in
Figure 3), whereas in case of SMT, the PC logic involved
is more complex and would therefore consume more en-
ergy. All the results were normalized with respect to the se-
quential execution. Also compiler optimizations like soft-
ware pipelining, loop unrolling etc. were applied in all the
different cases.

The Loop-Merged(Morphed) technique saves over the
Sequential technique since extra memory accesses are not
required and data sharing is performed at register file level.
This also explains the gains in performance compared to
the sequential case. For instance, in case of the FIR+WSum
benchmark, the number of accesses to the data memory (en-
ergy savings of 55.55 %) and the number of cycles spent
(performance gain of 25.00 %) in accessing the level 1 data
memories were avoided.

The SMT+L0 technique reduces the energy further since
both the tasks are performed simultaneously but the data
sharing is still at the cache-level. In case of the FIR+WSum
benchmark run on the SMT processor, the number of ac-
cesses to the loop buffer reduces (energy gain of 18.85 %),
but the accesses to the data memory DL1 still remain. This
may be avoided by using a cache-coherency protocol. How-
ever such techniques require hardware overhead, which also
consumes extra energy. Since the tasks can be done in par-
allel, there are gains in peroformance as well. The energy
savings is lower in case of the last 5 benchmarks (contain-



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fir+Wave

Fir+Wsum

Wave+WSum

NRSqrt+WSum

NRSqrt+Wave

Fir+NRSqrt

IIR+Wsum

IIR+Wave

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

Sequential Loop Merged SMT SMT+L0 Proposed MT

Figure 7. Performance Comparison normal-
ized to Sequential Execution

ing NRSqrt and IIR) because, as these kernels are large, the
number of instructions for the loop is large as well, there-
fore leading to a larger energy consumption.

In case of the proposed MT, the tasks are performed si-
multaneously like in the case of SMT, but the data sharing is
at the register-level. For example, in the FIR+WSum bench-
mark, the accesses to the LB have been reduced and the
extra memory accesses have also been eliminated (energy
gain of 74.08 %). This explains the energy as well as per-
formance gains over the SMT+L0 technique. Further gains
are obtained due to the reduced logic requirement for the
loop controllers and the distributed loop buffers. Therefore,
the proposed technique has the advantages of both loop-
merging as well as SMT and avoids the pit-falls of both
these techniques. The results show that the proposed multi-
threading (MT) has an energy savings of 74.76 % over se-
quential, 49.82 % over advanced loop merged and 70.01 %
over the enchanced SMT (SMT+L0) technique.
6. Conclusion and Future Work

This paper presented an architectural enhancement to re-
duce the energy consumed in the instruction memory hi-
erarchy. The proposed architecture enables multi-threaded
operation of loops in a uni-threaded processor platform.
The hardware overhead required was shown to be minimal.
An average energy saving of 70.01% was demonstrated in
the instruction memory hierarchy over state of the art SMT
techniques along with a performance gain of 32.89%.

The loading of the loop buffers from the IL1 cache is
currently done sequentially which is not energy efficient.
We are currently developing a scheme to load multiple loop
buffers in a parallel and energy-efficient way. We are also
currently studying the influence of the number of L0 clus-
ters on the results.

References

[1] TI DSP Benchmark Suite.

http://focus.ti.com/docs/toolsw/folders/print/sprc092.html.
[2] Trimaran: An Infrastructure for Research in Instruction-

Level Parallelism. http://www.trimaran.org, 1999.
[3] R. Banakar et al. Scratchpad memory: A design alternative

for cache on-chip memory in embedded systems. In Proc of
CODES, May 2002.

[4] L. Benini et al. A power modeling and estimation frame-
work for vliw-based embedded system. ST Journal of Sys-
tem Research, 3(1):110–118, April 2002. (Also presented in
PATMOS 2001).

[5] T. M. Conte et al. Instruction fetch mechanisms for VLIW ar-
chitectures with compressed encodings. In Proc of MICRO,
December 1996.

[6] S. Cotterell et al. Synthesis of customized loop caches for
core-based embedded systems. In Proc of ICCAD, Novem-
ber 2002.

[7] W. Dally. Low power architectures. In ISSCC, Panel Talk on
“When Processors Hit the Power Wall”, February 2005.

[8] H. De Man. Ambient intelligence: Giga-scale dreams and
nano-scale realities. In Proc of ISSCC, Keynote Speech,
February 2005.

[9] A. El-Moursy et al. Partitioning multi-threaded processors
with a large number of threads. In Proc of ISPASS , March
2005.

[10] E.Ozer et al. Weld: A multithreading technique towards
latency-tolerant vliw processors. In Proc of HiPC, 2001.

[11] J. I. Gómez et al. Optimizing the memory bandwidth with
loop morphing. In Proc of ASAP, pages 213–223, 2004.

[12] A. Halambi et al. An efficient compiler technique for code
size reduction using reduced bit-width ISAs. In Proc of DAC,
March 2002.

[13] M. Jayapala et al. Clustered loop buffer organization for low
energy VLIW embedded processors. IEEE Trans on Com-
puters, 54(6):672–683, June 2005.

[14] M. Kandemir et al. Compiler-directed scratch pad memory
optimization for embedded multiprocessors. In IEEE Trans
on VLSI, pages 281–287, March 2004.

[15] S. Kaxiras et al. Comparing power consumption of an smt
and a cmp dsp for mobile phone workloads. In CASES, pages
211–220, November 2001.

[16] A. Lambrechts et al. Power breakdown analysis for a hetero-
geneous NoC platform running a video application. In Proc
of ASAP, pages 179–184, July 2005.

[17] P. Op De Beeck et al. CRISP: A template for reconfigurable
instruction set processors. In Proc of FPL, August 2001.

[18] F. Quillere et al. Generation of efficient nested loops from
polyhedra. In Intl. Journal on Parallel Programming, 2000.

[19] J. W. Sias et al. Enhancing loop buffering of media and
telecommunications applications using low-overhead pred-
ication. In Proc of MICRO, December 2001.

[20] S. Steinke et al. Assigning program and data objects to
scratchpad for energy reduction. In Proc of DATE, March
2002.

[21] D. M. Tullsen et al. Simultaneous multithreading: Maximiz-
ing on-chip parallelism. In Proc of ISCA, pages 392–403,
June 1995.


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



