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Abstract

It is anticipated that self assembled ultra-dense
nanomemories will be more susceptible to manufacturing
defects and transient faults than conventional CMOS-based
memories, thus the need exists for fault-tolerant mem-
ory architectures. The development of such architectures
will require intense analysis in terms of achievable perfor-
mance measures– power dissipation, area, delay and reli-
ability. In this paper, we propose and develop a hybrid au-
tomation framework, called HMAN, that aids the design
and analysis of fault-tolerant architectures for nanomem-
ories. Our framework can analyze memory architectures
at two different levels of the design abstraction, namely
the system and circuit levels. To the best of our knowl-
edge, this is the first such attempt at analyzing memory
systems at different levels of abstraction and then correlat-
ing the different performance measures. We also illustrate
the application of our framework to self-assembled cross-
bar architectures by analyzing a hierarchical fault-tolerant
crossbar-based memory architecture that we have devel-
oped.

1. Our Automation Methodology
Hybrid Memory Analyzer (HMAN) is composed of fault

and circuit models that are specific to nanoscale memories.
The toolset is designed such that it scales well for the anal-
ysis of ultra-dense nanosystems. HMAN is capable of eval-
uating the reliability and area overheads of fault-tolerant
memories at the system level and can also measure the de-
lay penalties at the circuit level. Figure 1 shows our design
flow which is outlined below:

1. The system designer designs a fault-tolerant memory.
For example, the fault-tolerance technique may be sparing,
banking, or our multi-junction hierarchical crossbar-based
architecture [2].

2. Configuration parameters are given as inputs to HMAN.
These include the specific fault-tolerant technique being
used in the memory design, the memory size, the desired re-
liability thresholds, redundancy levels at the different gran-

Figure 1. HMAN Framework

ularity levels [3], RH , RLO, interconnect network capaci-
tance, and failure distributions of the junctions and periph-
eral interconnects.

3. HMAN consists of two basic analyzers. These two an-
alyzers work at different levels of design abstraction and
evaluate different performance measures. These mea-
sures are correlated to determine meaningful design Pareto
points.

3a. PMAN (Probabilistic Memory Analyzer) is a proba-
bilistic model-checking based tool that works on top of the
PRISM [4] engine. Parameterized MDP models are used to
represent the probabilistic behavior of fault-tolerant mem-
ory architectures, so that different memory configurations
can be analyzed with ease. PMAN’s fault models can be de-
fined with simple scripts. The fault model used in this work
does not support pattern specific fault occurrences. All junc-
tions have an equal likelihood of failing and this probabil-
ity value is specified by the designer. Also, failure distri-
butions of the peripheral interconnects model the transient
faults that may affect the system.

3b. SPICEMAN (SPICE based Memory Analyzer) is a tool
based on HSPICE that analyzes memory architectures at the
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circuit level. The HSPICE model is defined using PERL.
MATLAB is used to compute the appropriate load resis-
tance RL necessary to achieve the desired ON/OFF ratio
(logic thresholds) for a specific architectural configuration
and then provided to PERL. The PERL script is parameter-
ized and takes as input the memory size and the amount of
redundancy being inserted. In this work, SPICEMAN uses
the circuit model in [1] to compute the worst case read-out
time for a single bit. This gives a lower bound on the per-
formance of different crossbar-based nanomemories.

4. Since it is easier to observe and compare differ-
ent trade-off points visually, we have developed a MAT-
LAB script that plots these interacting trade-off points.
This step in our design flow is important, since trade-
offs such as reliability-redundancy from PMAN and
redundancy-delay from SPICEMAN can be visually corre-
lated.

2. Experimental Results
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Figure 2. Reliability vs. Redundancy vs. De-
lay trade-offs for 256× 256 Memory

Reliability vs. Redundancy vs. Delay: We use HMAN to
compute reliability-redundancy-delay trade-offs for differ-
ent memory configurations of our fault-tolerant scheme [2].
Figure 2 shows the plots for a 256 × 256 memory configu-
ration. We plot the trade-off points for small junction fail-
ure probabilities ranging from [0.001, 0.01]. It can be ob-
served from Figure 2 that as the redundancy (value of k)
increases, the reliability indicated by the probability of sig-
nal output correctness increases. This observation is inde-
pendent of the junction failure probability value. Also, the
value of RP increases when the redundancy in each cell k
increases, implying an intuitive increase in the signal de-
lay leading to performance degradation of the memory.
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Figure 3. Reliability vs. Redundancy vs. Area
trade-offs for 1024× 1024 Memory

Reliability vs. Redundancy vs. Area: Figure 3 shows the
reliability-redundancy-area trade-offs for the 1024 × 1024
memory configuration. These design points pertain to the
our multi-junction architecture and are computed for large
junction failure probabilities ranging from [0.01, 0.1]. A few
of the major and counter-intuitive observations from Fig-
ure 3 are: for a redundancy factor of k = 8, the reliability
of the system degrades for junction failure probabilities be-
tween [0.01, 0.45] relative to the system with k = 4. It is
also observed that beyond a junction failure probability of
0.45, a redundancy factor of 2 is better than 8. This counter-
intuitive observation is due to the redundancy factors reach-
ing the point of diminishing returns in terms of system re-
liability gains. It is also worth mentioning that when this
memory configuration with a redundancy factor of 8 was
analyzed by SPICEMAN at the circuit level, the signal de-
lay computed was very high. This is due to the high cumula-
tive junction resistance induced by the redundancy factor of
each cell. Such concurrence of the conclusions drawn from
analysis of the same system at different levels of the design
abstraction is a major highlight of this work.
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