
Priority Scheduling in Digital Microfluidics-Based Biochips*

                                                                        
* This work was supported in part by NSF 0093085 and
NSF 0303981 grants

Andrew J. Ricketts, Kevin Irick, N. Vijaykrishnan, Mary Jane Irwin
The Pennsylvania State University, University Park, PA, 16802

{rickets,irick,vijay,mji}@cse.psu.edu

Abstract

Discrete droplet digital microfluidics-based biochips face
problems similar to that in other VLSI CAD systems, but
with new constraints and interrelations.  We focus on one
such problem of resource constrained scheduling for digital
microfluidic biochips.  Since the problem is NP-complete,
finding the optimal solution is a very time expensive task.
We propose a hybrid priority scheduling algorithm solution
directly applicable to digital microfluidics with the potential
to yield near optimal schedules in the general case in a very
short time.  Furthermore we propose the use of
configurable detectors that allow for even more improved
system performance.

1. Introduction

Microfluidics-based biochips, or lab-on-a-chip, provide
a platform that performs various chemical reactions on the
hundreds of nanoliter scale [1] saving reagent expenses and
the quantity of donor sample required to perform laboratory
examinations.  These devices dispense reagents and
samples, mix these together, and then detect the result of
the reaction.  In comparison to traditional laboratories these
can be fully automated and require small fractions of
reactants to complete analysis.  The International
Technology Semiconductor Roadmap for 2004 expects that
by 2010 that biological device integration will become a
challenge [2].

The two main architectural implementations of
microfluidics are digital and continuous flow microfluidics.
Digital microfluidics based biochips controls discrete
droplets through the entire process from dispensing to
moving and mixing to detecting and discarding, but
continuous flow systems use fixed channels to flow the
fluid.  Digital microfluidic systems provide a more scalable
architecture that is easier to fabricate when compared to
continuous flow systems [3, 4].  Furthermore, the
reconfigurable nature of digital microfluidic motion and

mixing offers other benefits since the path taken by a
droplet at any given time is determined by an external
microcontroller that can individually access any location in
the entire biochip offering the potential use of fault
detection and avoidance techniques to route around faults
[5].  The microcontroller can be reprogrammed later if a
better schedule is found or even update itself after detecting
a fault.  These capabilities do not exist in the fixed system
of continuous flow microfluidics.  Movement and reaction
between discrete droplets have been demonstrated in a digital
microfluidic biochip [1, 3, 6].  The term digital versus
continuous stems from the analogy between binary and
analog systems as in digital microfluidics the drops are
either present at a given location or not.  Figure 1 shows a
conceptual diagram of a digital microfluidic system.

An important use of these systems would be a low cost
detector for the most common metabolic disorder in the
world, diabetes [6].  Other metabolites detection have been
demonstrated [3, 6] that can be used for determining the
presence of certain physiological disorders.

Design tools in digital microfluidics initially focused
on device-level physical modeling of single components,
but to build large-scale systems top-down system level
design tools are required.  Although some work has been
done to fill this gap overall the number of tools is still
relatively small [7].  To extend the available sources of
such tools we propose a hybrid priority scheduling

Figure 1: Major components of a digital
microfluidic- based biochip Sx/Rx –
sample/reagent dispenser, Dx –
detector for reagent x, Wx – available
waste reservoir

S1 S2

R2R1

D1 D2

W 2W 1

Mixer 2Mixer 1

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



algorithm, HPA, to perform the scheduling allocation in a
resource-constrained digital microfluidic biochip that is
required to perform concurrent biomedical assays.  The tests
in [7] have shown that while direct application of a genetic
algorithm, GA, can provide results that approach the lower
bound solution, the time required for achieving this
solution is long.  The HPA solution proposed in this work
reduces the run times and also provides better solutions than
the GA by adding to the initial population solutions that
seek to minimize resource conflicts.

Section 2 discusses related work.  Section 3 reviews
the principle of digital microfluidics and formulates the
scheduling problem.  Section 4 explains the algorithmic
implementation.  Section 5 explains the improved detector
proposed and compares its scheduling results with
previously published results.  Finally, Section 6 draws
conclusions.

2. Related work

An ad-hoc priority based genetic algorithm, GA, was
proposed in [7] to schedule resource allocation in a resource-
constrained digital microfluidic biochip. It was shown to
provide better results than a modified list scheduling (M-
LS) algorithm that considered the urgency value of a node
in the topologically sorted graph based on dependency
constraints.  A weakness of the genetic algorithm in [7]
was that it took a comparatively long time to finish, as
long as five times longer, and its results were only slightly
better than the M-LS.

It can be noted that, in part, this longer running time
was due to the unnecessarily large search space given to the
GA.  For a system with Sm samples and Rn reagents the
genetic encoding used in [7] results in a search space that
has (4(Sm*Rn))! possible solutions.  The proposed HPA
reduces this search space to only Sm*Rn.  In addition to the
HPA we use a hybrid genetic algorithm, HGA, with
knowledge-augmented operators [8] to improve the
performance of the GA by initializing part of the first
population using a heuristic with clear priority rules
minimizing the resource conflicts.

3. Principles of digital microfluidics with
problem formulation

3.1 Dispensing:

The assay begins with droplet dispensing, which
introduces the droplet into the array.  Each droplet type is
given Nr ≥ 1 reservoirs which act as dispensers.  The time

for dispensing is mainly based on system parameters
independent of droplet properties [9].  This suggests equal
dispensing time which is assumed to be one time unit in
our experiments.  Each sample needs to be assayed with
each reagent requiring Rn*Sm samples to be dispensed.
Similarly each reagent needs to be present for each of these
samples requiring a total of Sm*Rn reagents to be
dispensed.

3.2 Mixing/storage:

Droplet mixing and storage are interrelated as each node
in the array may store a droplet at a particular instant and
then later be reused in conjunction with other nearby nodes
as part of a mixer, but it may only perform one of these
two functions at a time.  The maximum number of mixers,
Nmixer, is related to the number of available storage units,
Nmemory, by the ratio approximation, i.e.

Nmixer = ratio*Nmemory. (1)
In our experiments, this ratio is set to 0.25 such that each
mixer consumes four storage locations.  This causes a
constant tradeoff between storage space and available mixers
limiting the ability to store all droplets or mix all droplets
in parallel.

The time taken for each mixture, for a given type of
mixer, is dependent on the viscosities of the droplets.
Since the reagents are highly diluted by the same fluid
before dispensing, usually water, they have similar
viscosities [3] causing the mixing time to largely depend on
the viscosity of the sample.  Consequently, samples such
as saliva, plasma, and serum have mixing times
independent of the diluted reagents.  Based on experimental
results from [3], we assume the mixing time for plasma is
5, serum is 3, urine is 4, and saliva is 6 (dispensing time
units). The total number of mixing steps that need to be
completed is Sm*Rn, one for each sample/reagent pair.

3.3 Detection/disposal:

After a sample and the appropriate reagent have been
mixed the resulting drop may need to be stored or if the
appropriate detector is available then it may proceed to the
detection stage.  The detection units are initially considered
reagent specific requiring at least one detector per reagent,
Nd ≥ 1.  A total of Sm*Rn detections need to be performed,
one for each sample/reagent mixed product.  In our
experiments, the detection time for glucose, lactate,
pyruvate and glutamate are assumed to be 5, 4, 6 and 5 time
units respectively [3].  Finally, after detection it is assumed



that the drop is discarded into the waste reservoir.
Extending this base system to increase the possibilities of
parallelism and reconfigurability of the system we propose
a detector improvement in Section 5 comparing its effect
with the base system.

3.4 The complete sequencing graph model:

With droplet speeds of 20 cm/s [7] and electrode pitch
of 1.5 mm [3], the worst case conflict free movement time
in a 25 X 25 array will only be 0.36 seconds compared with
the 2 seconds for dispensing and 6 seconds for the slowest
mixing time.  Furthermore, the majority of droplet
movements are for much smaller distances as compared to
traversing the worst case paths in the array.  Consequently,
droplet movement time is considered negligible in our
simulations similar to that assumed in [7].

The complete sequencing graph summarizing the
various steps involved in a biochip assay is illustrated in
Figure 2.  A total of 2(Sm*Rn) samples and reagents are
dispensed.  The droplets are combined by performing a total
of Sm*Rn mixing operations and are followed by Sm*Rn
detections.  No-operations are placed at the beginning and
end of the sequence to operate as source and sink nodes.
Each node in the graph is assigned a weight corresponding
to the time required for the operation assigned to the node.
The edges are communication costs between nodes
representing droplet movement time and are given a weight
of zero.

4. Solution to the scheduling problem

We based our solution on a GA formulation to search
the possible scheduling solutions. The operation of a GA is
based on the natural process of survival of the fittest and
genetic evolution. A GA encodes the problem using a
chromosome and evaluates the fitness of each chromosome
based on the desired objective function. A large number of
randomly generated chromosomes form the initial
population. New generations are created by selecting the
fittest chromosomes from prior generations and from those
created by genetic modifications of chromosomes from the
prior generation.  We refer the reader to [8] for more details

on genetic algorithms and focus on the specific problem
implemented as a GA.

Encoding: Each chromosome has a total of 4(Sm*Rn)
entries as shown in Figure 3.  Each entry within these four
groups of Sm*Rn genes is assigned a number 0 ≤ p <
Sm*Rn representing the priority of that operation with
respect to competing operations in the same group. A
competing operation is one that requires the same resource.
For example, only Nr (number of reservoirs for a given
droplet type) droplets of sample Si can be dispensed at a
given time step so every dispensing operation of sample Si
competes with each other directly.  By extension dispensing
operations also compete with other samples and reagent
dispensing as the mixer/storage limitations must be
fulfilled before a dispensing operation is allowed to proceed.
As such a reagent dispensing operation with a higher
priority than a sample dispensing operation may block the
dispensing of the sample due to storage limitations.

Previously [7] assigned random number priorities in
the range 1 ≤ p ≤ 4*Sm*Rn to each operation. Our
improvement is based on realizing that some of the
operations do not directly conflict with each other and
encoding the priorities for the sample dispensing, reagent
dispensing, mixing, and detection is performed
independently. For example, sample and reagent dispensing
do not directly compete with detection priorities and can be
assigned priorities independent of each other requiring only

Figure 3: The encoded chromosome

Figure 2: The complete sequencing
graph model of a multiplexed
biomedical assay (Adapted from [7])

Input of
samples
and
reagents

Mixing of
samples and
reagents

Detecting
of mixed
drops

 

S1 Sm 

…. R1 R2  ...  Rn 

S1 Sm S1 Sm S1 Sm 

Sample dispensing 
priority 

Reagent dispensing 
priority 

Mixing priority for 
Si/Rj pair 

Detecting priority 
for Si/Rj pair 

R1 R2….   Rn 
 S1  S1  …  S1 R1 R2  …  Rn R1 R2  ...  Rn R1 R2….   Rn …. …. …. 

…. …. …. …. 
R1 R2  …  Rn 
Sm Sm  ...  Sm 
R1 R2  …  Rn 
Sm Sm  ...  Sm 

R1 R2….   Rn 
 S1  S1  …  S1 

R1 R2  …  Rn 
Sm Sm  ...  Sm 

 

… … … 
… 

… 
… 

… 
… 

… 
… 

… 
… 

… 
… 

… 
… 

… 
… 

… 
… 

… 
… 

NOP 

… 

NOP 

… 

IS1 

… 
IS1 ISm ISm IR1 IRn IR1 IRn 

M1 

… 
M1 

… 
MSm 

… 
MSm 

… 

D1 

… 
DRn 

… 
D1 DRn 



Sm*Rm priorities, one for each possible relative priority
within each group.  The major drawback of the 4*Sm*Rm
priority scale is the existence of a large number of encoded
chromosomes that will yield the same solution with no
improvement.  Consider an encoding with priorities as
follows: 1,2,3,…q,k,4*Sm*Rm. This allows all values of
k in the range q+1≤ k <4*Sm*Rm to yield the same
solution wasting significant cycles without any
improvement in the actual solution.

Holding resources without making use of them while
preventing others that could use these resources from
gaining access have a detrimental effect on the overall
scheduling time.  We allocate the same priorities to all
operations that are directly interdependent to remove the
possibility of hold and wait due to unfulfilled incoming
edge requirements.  Consider the two sets of highlighted
operations in Figure 2, each of the operations in group i are
given the same priority.  Similarly, those in group j are

also assigned the same priority, but a different one to that
of group i.  This unique priority assignment removes any
resource conflicts as resources are always reserved for the
highest priority operation with its incoming edges satisfied.

 In the first chromosome genes dependent on SiRj are
given the priority:

1*)1(1 −+−= RjSiSipSiRj (2),

and in the kth chromosome, with k ≤ Sm*Rn, the priority
is:

))*))%(1(((1 RnSmkpp SiRjSiRj
k −+= (3).

Simply stated these cycles through all the priorities giving
each interdependent operation group an opportunity to be all
the available priorities.  While all the Sm*Rn!
combinations are not tried our experiments have shown that
this is sufficient to achieve near optimal solutions
especially as the problem sizes grows.  An example of the
chromosomes that would result from these priority
assignments is shown in Table 1.

Fitness Function: The finishing time of the schedule
determined from the priorities assigned in the chromosome
is used as the fitness function.  We also consider the storage
requirements along with the priorities in determining the

Initialization: Generate initial population P(0) with the first
SmRn following equations (2) & (3)
min fitness = ∞
while(min fitness is too large)

for each chromosome of P(t)
for each cycle

for all detectors
if detection is finished

empty detector
if detector is empty and appropriate mixed drop is ready

assign highest priority mixed drop to detector
if mixed drop is ready for an empty appropriate detector

assign highest priority mixed drop to detector
else if appropriate detector is not available

for all completed mixed drops
store mixed drop

if mixer is available
dispense next highest priority sample and reagent

fitness = time to complete latest finishing task
if fitness < min fitness

min fitness = fitness
min schedule = schedule

P(t+1) = Reproduction(P(t))
P(t+1) = Crossover(P(t))
P(t+1) = Mutation(P(t))
P(t) = P(t+1)

Print min schedule
Print min fitness

Figure 5: Pseudo code for scheduling
algorithm

Figure 6: Rearranging operations to shorten
schedule for a two sample, two reagent
system that can support up to three
concurrent mixers and one detector for each
reagent type



glass

Teflon
AF

parylene

Filler Fluid

Indium tin oxide

H

L

White

LED

droplet

photodiode

glass

Figure 7: Cross section of a
reconfigurable digital microfluidic-based
biochip detector (Adapted from [6])

Figure 8: An example of the expected
input/output light wavelengths intensity
from the reconfigurable detector

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

300 400 500 600 700 800

Wavelength (nm)

R
e

la
ti

v
e

 I
n

te
n

s
it

y
 (

R
I)

RI Input RI Output1 RI Output2

finishing time.  For example, if no vacancy exists in the
mixer, then a droplet dispensing may be delayed beyond that
determined by its priority in the encoding.

Additionally we use a HGA formulation that uses
domain specific knowledge in the initializing of the
chromosomes of the first generation instead of random
initializing.  Our HGA utilizes the heuristic that if all
resources required for a specific operation between Ri and Sj
incur no stalls then the overall completion time can be
reduced.  Hence, our HGA solution initializes the priorities
within the four different types of operations in the
chromosome to provide the same relative priority for all
operations involving the same reagent/sample pair.  For
example, if S1 and R2 need to be mixed, dispensing,
mixing, and detection of S1 and R2 are assigned the same
priority.  All pairs are assigned unique priorities for that
chromosome.  We use a sliding approach to assign
priorities based on our heuristic to initialize SmRn
chromosomes in the initial population.  The termination
condition was to meet a specified bound, usually within
10% of the lower bound, for the schedule completion time.
Figure 5 contains the pseudo code of the HGA
implementation.  Figure 6 shows the rearranging of
scheduled operations that, due to limiting over allocation of
detection resources, lowers the finial completion time.

5. Influence of tunable detectors

As was stated earlier the detectors are reagent specific.
The detectors are tuned to observe change specific for each
analyte.  As such previous works have suggested the use of
light wave specific light sources near the peak absorption

wavelengths [6].  The requirement for specific mixed drops
to be observed under a particular detector imposes a
sequential bottleneck.  As such we propose the use of white
light sources, LEDs, in conjunction with reconfigurable
detectors.  A wavelength detector placed on the opposite end
as shown in Figure 7 following a similar design to that of



[6], but offers the potential to be more flexible as a white
light source will contain all the wavelengths in the visible
spectrum.  The expected input and output light spectrum
when the system is prototyped is shown in Figure 8.  In
this work the tunable detector design is only considered
conceptually to demonstrate its utility in reducing schedule
length.  There are various issues in the design of the
detector such as system calibration, effects of environmental
conditions on the system, repeatability and accuracy of the
measurements that still need to be demonstrated.  In this
work the measurement is expected to be performed by
selectively observing only the wavelengths under interest.

The availability of this system was assumed and added
into the priority scheduler changing the appropriate detector
references to simply be any detector.  It was assumed that
detection under this system would take similar times as
previously published results based on reagent specific
detectors.  Table 2 shows the comparison of schedule finish
times obtained using our HGA with the normal detection
system (HGA) and with the improved detector system
(HGA2).  The real CPU time for HGA2 is included in the
last column of the table.  The implementation details of
HGA2 and HGA are virtually identical so their running
times are roughly equal.  These were compared with the
lower bound (LB), GA, and M-LS from [7].  The results for
M-LS and GA were available only for the first five tests.
The second five were attempted to explore that the system
was able to quickly reach near optimal solutions for even
larger problem sizes.  We find that both HGA and HGA2
works well compared to the LB, specifically for larger
problem sizes. They outperform M-LS for all cases and the
GA for the three largest problems.  Of particular interest is
the ability of HGA2 to surpass the previous LB as there is
an increased opportunity for parallelism in the detection
stage.  The LB is calculated using the worse case of all
detections occurring sequentially.  By allowing longer
detections to proceed in parallel using the proposed tunable
detector offers the possibility to overcome this sequential
bottleneck.  These simulations were run on a Sun Blade
1000 750MHz UltraSPARC-III CPU.  The longest running
schedule for the first five examples took under 4 seconds
real CPU time to complete for HGA and HGA2 compared
with 5 minutes for M-LS and 25 minutes for GA from [7].

6. Conclusion

We presented a hybrid genetic algorithm for scheduling
operations for bio-assays in a microfluidic bio-chip based
on priority scheduling. We have demonstrated that the
domain specific heuristic that is used to initialize the GA
population and our new encoding scheme that reduces the
effective search space help to provide schedules with shorter
completion times and shorten the algorithm runtimes in
finding the solutions as compared to prior work.  We have
determined a scalable algorithm that can determine near
optimal digital microfluidic operation schedules.
Furthermore, we proposed an improved detector which could
allow the system to exceed its previous lower bound.  This
detector system seems best able to outperform the normal
detector system mainly when some detection times are
significantly longer than mixing times.  Consequently, our
future work will focus on the implementation issues of the
tunable detector in detail.

References
1. M.G. Pollack, R.B. Fair, and A.D. Shenderov,
“Electrowetting-based actuation of liquid droplets for
microfluidic applications”, Applied Physics Letters, vol. 77,
pp. 1725-1726, 2000.
2. International Technology Roadmap for Semiconductors
(ITRS),
http://www.itrs.net/Common/2004Update/2004_10_AP.pdf
3. V. Srinivasan, V.K. Pamula, M.G. Pollack and R.B. Fair,
“Clinical diagnostics on human whole blood, plasma, serum,
urine, saliva, sweat, and tears on a digital microfluidic
platform”, Proc. µTAS, pp. 1287-1290, 2003

4. M.G. Pollack, A. D. Shenderov and R. B. Fair,
“Electrowetting-based actuation of droplets for integrated
microfluidics”, Lab on a Chip, vol. 2, pp 96-101, 2002.
5. F. Su and K. Chakrabarty, "Defect tolerance for gracefully-
degradable microfluidics-based biochips", in press.
6. V. Srinivasan, V.K. Pamula, M.G. Pollack and R.B. Fair, “A
digital microfluidic biosensor for multianalyte detection”,
Proc. IEEE Conf. MEMS, pp. 327-330, 2003.
7. F. Su and K. Chakrabarty, "Architectural-Level Synthesis of
Digital Microfluidics-Based Biochips", Proc. IEEE
International Conference on CAD, pp. 223-228, 2004.
8. D. E. Goldberg, Genetic Algorithms in Search Optimization,
and Machine Learning (1989), Addison-Wesley,
Massachusetts.
9. H. Ren and R. B. Fair, “Micro/Nano Liter Droplet Formation
and Dispensing by Capacitance Metering and Electorwetting
Actuation”, Technical Digest IEEE-NANO, pp. 36-38, 2002


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



