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Abstract— In this paper, we present a test generation framework
for testing of quantum cellular automata (QCA) circuits. QCA is a
nanotechnology that has attracted significant recent attention and shows
immense promise as a viable future technology. This work is motivated
by the fact that the stuck-at fault test set of a circuit is not guaranteed to
detect all defects that can occur in its QCA implementation. We show how
to generate additional test vectors to supplement the stuck-at fault test
set to guarantee that all simulated defects in the QCA gates get detected.
Since nanotechnologies will be dominated by interconnects, we also target
bridging faults on QCA interconnects. The efficacy of our framework is
established through its application to QCA implementations of MCNC
benchmarks that use majority gates as primitives.

I. INTRODUCTION

For two decades, bulk complementary metal-oxide semiconductor
(CMOS) technology has consistently provided the required dimension
scaling for implementing high-density, high-speed, and low-power
very large scale integrated (VLSI) systems. However, such an ag-
gressive scaling is accompanied by many problems. These problems
are, to name a few, high leakage current, high power density levels,
and very high lithography costs. It is predicted that these issues will
result in the conclusion of the CMOS revolution within the next 10-
15 years [1]. The short time remaining exerts the need for active
research in novel nanoscale technologies to help determine viable
alternatives.

One possible replacement technology candidate that has been
proposed is quantum cellular automata (QCA) [2]–[5] in which
logic states, rather than being encoded as voltage levels, as in
conventional CMOS technology, are represented by the configuration
of an electron pair confined within a quantum-dot cell. QCA promises
small feature size and ultra-low power consumption. It is believed that
a QCA cell of a few nanometers can be fabricated through molecular
implementation by a self-assembly process [6]. If this does hold
true, then it is anticipated that QCA can achieve densities of 1012

devices/cm2 and operate at THz frequencies [7].
Since its initial proposal, QCA has attracted significant attention.

Consequently, various researchers have addressed different computer-
aided design (CAD) problems for QCA. In [8], the authors have
developed a majority logic synthesis tool for QCA called MALS. Ma-
jority logic synthesis has also been addressed in [9]. In the SQUARES
formalism [10], some basic QCA components are described that
can be connected arbitrarily. This allows a designer to lay out a
QCA circuit systematically with standardized components. Models
to minimize layout area and dead space are presented in [11]. These
address the main shortcomings of the SQUARES formalism. A tool
called QCADesigner for manual layout of QCA circuits has been
presented in [12]. This tool also offers various simulation engines,
each offering a trade-off between speed and accuracy, to simulate the
layout for functional correctness. The authors of [7], [13] characterize
in detail the types of defects that are most likely to occur in the
manufacturing of QCA circuits.

The main question facing the testing community is whether the
conventional CMOS test flow will have to be radically altered in
order to accommodate testing of nanotechnologies, such as QCA. In
testing of CMOS circuits, test generation is usually done using the
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single stuck-at fault (SSF) model. In this model, a line in a circuit
is assumed to be permanently stuck-at-one (SA1) or stuck-at-zero
(SA0). It has been observed that the SSF test set can detect a large
proportion (80-85%) of all manufacturing defects in CMOS even
though the SSF model does not fully capture the behavior of all such
defects [14]. For those defects that remain uncovered, additional test
generation is performed using other fault models. To test for defects
on the interconnect, the bridging fault model is commonly used in
which a pair of lines is assumed to be shorted. A similar approach
is also applicable to testing of QCA circuits, as we will see later.

This work addresses the problem of automatic test pattern gen-
eration (ATPG) for combinational QCA circuits. Even though fault
modeling has been addressed for QCA circuits before [7], [13], we
are unaware of any other work that has addressed the general ATPG
problem before. The main contributions of this work are as follows:

• This is the first comprehensive test generation methodology for
combinational QCA circuits.

• Based on the QCA defect characterization results in [7], [13],
we show how to supplement an SSF test set with additional
vectors so that we can guarantee that every testable defect in
modeled gates in a QCA circuit can actually be detected.

• Our test generation methodology also targets bridging faults on
QCA interconnects.

The remainder of this paper is organized as follows. In Section II,
we present background material. We explain, with a motivational
example, why a test generation methodology for QCA is needed in
Section III. Section IV describes our test generation methodology in
detail. We discuss experimental results in Section V and conclude
the paper in Section VI.

II. PRELIMINARIES

In this section, we provide some background material that will be
helpful in understanding the remainder of this paper.

A. A QCA cell
A QCA cell, shown in Fig. 1, contains four quantum dots posi-

tioned at the corner of a square, and two electrons that can move to
any quantum dot within the cell through electron tunneling [2]. Due
to Coulombic interactions, only two configurations of the electron
pair exist that are stable. Assigning a polarization, P , of −1 and
+1 to distinguish between these two configurations leads to a binary
logic system.

B. QCA Gates
The fundamental logic gate in QCA is the majority gate. A three-

input majority gate, M , is logic high if two or more of its inputs are
logic high. That is,

M(A, B, C) = AB + AC + BC. (1)

From this point onwards, a three-input majority gate will be simply
referred to as a majority gate.

Computation in a QCA majority gate, as shown in Fig. 2(a),
is performed by driving the device cell to its lowest energy state.
This is achieved when the device cell assumes the polarization of
the majority of the three input cells. The reason why the device
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Fig. 1. A QCA cell. The logic states are encoded in the electron pair
configuration.
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Fig. 2. A QCA (a) majority gate, (b) an inverter, (c) binary wire, and (d)
inverter chain.

cell always assumes a majority polarization is because it is in this
polarization state that the Coulombic repulsion between electrons in
the inputs cells is minimized [2]. The polarization of the device cell
is then transfered to the output cell.

The schematic diagrams of an inverter and interconnects are also
shown in Fig. 2. There are several other ways of obtaining the
inverting function in QCA. However, the inverter shown in Fig. 2(b)
is preferred as it is very robust. In the QCA binary wire shown
in Fig. 2(c), information propagates from left to right. An inverter
chain, shown in Fig. 2(d), can be constructed if the QCA cells are
rotated by 45◦. Furthermore, it is possible to implement two-input
AND and OR gates by permanently fixing the polarization of one of
the input cells of a majority gate to −1 (logic 0) and +1 (logic
1), respectively. Finally, the majority gate and inverter constitute
a functionally complete set (i.e., they can implement any arbitrary
Boolean function).

C. QCA Defects

The types of defect that are likely to occur in the manufacturing
of QCA devices have been investigated in [7], [13], [15] and are
illustrated in Fig. 3. They can be categorized as follows:

1) In a cell displacement defect, the defective cell is displaced
from its original position. For example, in Fig. 3(b) the cell
with input B is displaced to the north by ∆nm from its original
position.

2) In a cell misalignment defect, the direction of the defective cell
is not properly aligned. For example, in Fig. 3(c) the cell with
input B is misaligned to the east by ∆nm from its original
position.

3) In a cell omission defect, the defective cell is missing as
compared to the defect-free case. For example, in Fig. 3(d)
the cell with input B is not present.

For a QCA majority gate, all possible combinations of displace-
ment of cells with respect to the center cell under different distances
and misalignments in different directions were simulated [13] using
QCADesigner [12]. It was reported that these defects result in differ-
ent logic values in the fault-free (defect-free) and faulty (defective)
cases. In addition, it was mentioned that a particular SSF test set
could detect all of the simulated defects [7]. However, a majority
gate has nine possible minimal SSF test sets and the question as to
which of these tests sets can detect all of the simulated defects was
left unanswered. We will answer this question in this work when we
discuss our ATPG framework.

For QCA interconnects, cell displacement and omission defects on
binary wires and inverter chains were also considered in [15]. These
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Fig. 3. (a) Defect-free majority gate, (b) displacement defect, (c) misalign-
ment defect, and (d) omission defect.
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Fig. 4. (a) Fault-free binary wire and (b)-(d) binary wire with a bridging
fault.

defects could be better modeled using a dominant fault model in
which the output of the dominated wire is determined by the logic
value on the dominant wire. There are many possible scenarios that
could occur in the presence of a bridging fault and are illustrated
in Fig. 4. In the first scenario shown in Fig. 4(b), the second cell is
displaced to the north from its original position by ∆nm. In this case,
the dominated wire O2 will have a logic value equal to that of the
dominant wire O1. However, if the fourth cell is displaced, as shown
in Fig. 4(c), then O2 will have a logic value equal to the complement
of the logic value on O1 (i.e., O2 = O′

1). Finally, if multiple cells
are displaced, as shown in Fig. 4(d), then O2 will also equal O′

1.
It was also shown that binary wires are more defect-tolerant

than inverter chains. Inverter chains are typically used to implement
coplanar wire crossings. In such a wire crossing, a wire running along
the horizontal or vertical direction is a binary wire, while the second
wire is an inverter chain running in the perpendicular direction.
However, it has been shown that circuits containing coplanar wire
crossings are very likely to fail [16]. A multi-layer wire crossover
scheme has been proposed to remedy this problem.

D. Test Generation Basics

Fault activation and fault effect propagation are the key elements of
test generation. Fault activation is the process of creating a fault effect
at the output of the faulty circuit element. Fault effect propagation
is the process of assigning values to circuit lines such that the fault
effect propagates from the output of the faulty circuit element to a
primary output of the circuit [14].

Given a test vector T , the process of fault simulation of a circuit
C derives all the faults in C detected by T . Two faults fi and fj in a
circuit C are said to be equivalent if the corresponding faulty versions
of the circuit, Cfi and Cfj , respectively, have identical input-output
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Fig. 5. (a) Example majority circuit, (b) minimal SSF test set, (c) input
vectors received by each majority gate, and (d) QCA layout of the circuit
with a bridging fault between inputs C and D.

logic behavior. Consequently, one of the two faults can be dropped
from the fault list. Fault fi is said to dominate fj if the set of vectors
that detects fi is a superset of the set of vectors that detects fj .
Consequently, fi can be dropped from the fault list [14].

E. SAT-based Test Generation
Boolean satisfiability (SAT) based formulations are commonly used

for test generation [14]. In SAT, a satisfying assignment on the
variables of a Boolean function, g(x1, x2, . . . , xn), is sought such
that g evaluates to 1. If no such assignment can be found, then g
is said to be unsatisfiable. Typically, g is represented in conjunctive
normal form (CNF) which is a conjunction of disjunctive clauses. A
disjunctive clause is a disjunction of one or more literals where a
literal is a variable or its complement.

SAT-based test generation [17] is performed by constructing the
CNF of the fault-free and faulty circuits. If a SAT solver can find
a satisfying assignment on the variables of the CNF formed by
concatenating the CNF of the fault-free and faulty circuits, the values
assigned to the inputs of the circuit form a test vector for that
particular fault. If an assignment cannot be found, the fault is proved
to be redundant and is untestable.

III. MOTIVATIONAL EXAMPLE

In this section, we present an example to motivate the need for our
testing methodology for QCA circuits.

Consider the majority circuit shown in Fig. 5(a) which contains
three majority gates (M1-M3), seven primary inputs (A-G), and one
primary output (O). Since there are ten lines in this circuit, there
are 20 SSFs. However, we only need to target SA0/SA1 faults at the
primary inputs in this circuit to guarantee detection of all 20 SSFs, as
we will see in Section IV. Since there are seven primary inputs, there
are 14 SSFs that need to be targeted during test generation. Fig. 5(b)
shows a minimal SSF test set for the circuit. FSIM [18] was extended
to perform fault simulation on the majority circuit using the generated
test set. For each test vector in Fig. 5(b), all the SSFs detected by it
are also shown.

Given the test set in Fig. 5(b), Fig. 5(c) shows the input vectors that
the individual majority gates of the circuit receive in the fault-free
case. For example, it can be seen that M2 receives input vectors 001,
011, 100, and 101. Now, consider fault I SA0 which is detected by
three test vectors, namely 1100110, 0110110, and 0001011. Given
the application of vectors 1100110 and 0110110, M3 will receive

input vector 110 in the fault-free case. If vector 0001011 is applied,
M3 will receive input vector 011. In all these cases, the expected
fault-free logical value at output O is logic 1. However, in the
presence of I SA0, output O become logic 0, thus detecting the
fault.

It can be seen from Fig. 5(c) that M1 receives input vectors 000,
001, 011, 100 and 110. Even though these vectors form a complete
SSF test set for a majority gate, they are not a complete test set
for detecting all simulated defects that were presented in [7], [13],
[15]. QCADesigner [12] was used to perform defect simulation and
confirm this assertion. In fact, five defects (three misalignments and
two displacements on the QCA cells in M1) cannot be detected by
these input vectors. If we add vector 0100110 to our original test
set, then M1 will also receive input vector 010. Note that the effect
of the last four of the above five vectors is also propagated from the
output of M1 to output O. This is a now a complete test set for all
simulated defects in M1. Gates M2 and M3 already receive input
vectors which form a complete defect test set and hence, require no
additional test vectors (the effect of these vectors is also propagated
to output O).

Fig. 5(d) shows a possible QCA layout for the circuit in Fig. 5(a)
(different shades in QCA cells indicate different phases of a four-
phase clock that is typically used for QCA circuits [6]). Consider
the QCA cell displaced from the binary wire of input D so that
there exists a bridging fault between inputs C and D. In this case,
C dominates D. Furthermore, it is unknown whether the bridging
fault will result in D = C or D = C′. To be able to detect this
defect, we need vectors to test for two of four possible conditions.
Condition D SA0 with C = 0 or D SA1 with C = 1 must be
tested and condition D SA1 with C = 0 or D SA0 with C = 1
must be tested. We will explain how we obtained these conditions
in the next section. The first and second conditions can be tested
by vectors 0001011 and 0010011 that are already present in our
test set. However, we currently have no vector that can test either
of the latter two conditions. Therefore, additional test generation is
required and vectors 0000011 and 0011011 are derived as tests for
the third and fourth conditions, respectively. Adding either of these
two vectors is sufficient as we only need to satisfy either the third
or fourth condition for fault detection. The bridging fault between
C and D, when C is dominant and D is dominated, can now be
completely tested for all simulated defects.

The above example illustrates that the SSF test set of a circuit
cannot guarantee the detection of all simulated defects in the QCA
majority gates. Therefore, test generation will be required to cover the
defects not covered by the SSF test set. In addition, test generation
will also be needed to cover bridging faults on QCA interconnects.

IV. ATPG FOR QCA CIRCUITS

In this section, we present our ATPG methodology for combina-
tional QCA circuits.

A. Fault Collapsing for Majority Gates

In general, there are no fault equivalence relationships between
the inputs and outputs of a majority gate. However, an output SA0
(SA1) fault dominates an input SA0 (SA1) fault. Consider the first
case. A vector is a test for an input SA0 fault in a majority gate if
and only if the fault-free and faulty values at the output are 1 and 0,
respectively. This is because when testing for an input SA0, the other
two inputs must have values 0 and 1, respectively, or vice versa in
order to enable the propagation of the fault through the gate. This is
evident from the definition of a majority gate given in Equation (1).
Thus, any vector that detects an input SA0 fault will also detect an
output SA0 fault. A similar situation holds for an input SA1 fault.

The above observation leads to the following theorems for testing
of irredundant majority circuits.

Theorem 1: In an irredundant, fanout-free combinational majority
circuit, C, any test set, V , that detects all SSFs on the primary inputs
detects all SSFs in C.
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Fig. 6. A high-level overview of our ATPG approach for combinational QCA
circuits.

Proof: The proof is based on fault dominance and has been
omitted due to space limitations.

Theorem 2: In an irredundant combinational majority circuit, C,
any test set, V , that detects all SSFs on the primary inputs and fanout
branches detects all SSFs in C.

Proof: This proof is also based on fault dominance and has
been omitted due to space limitations.

B. High-level Overview
Fig. 6 gives a high-level overview of our approach. The input to our

methodology is a logic-level circuit description consisting of majority
gates and inverters only and the output is a test set which can detect all
simulated defects in the gates and interconnects in the corresponding
circuit. Initially, we perform SAT-based test generation for the logic-
level circuit by targeting all SSFs on the primary inputs and fanout
branches of the circuit. The targeted faults are derived based on the
fault collapsing theorems for majority logic presented in the previous
section. SAT-based test generation requires the CNF of a majority
gate which is given below (A, B, and C are its inputs and F its
output):

MCNF = (Ā + B̄ + F )(Ā + C̄ + F )(B̄ + C̄ + F )

(A + B + F̄ )(A + C + F̄ )(B + C + F̄ ). (2)

Next, fault simulation on the logic-level circuit is performed using
the generated test set. The fault simulator keeps track of all the input
vectors that are received by every majority gate in the circuit. If
there exists a majority gate(s) which does not receive a 100% defect
test set, additional test generation is performed by using SAT-based
ATPG to justify and propagate the effects of the extra vectors. Once
all the defects have been covered, a test set containing the SSF test
set and additional QCA vectors is obtained. This new test set and a
bridging fault list is given to the fault simulator to determine whether

all bridging faults are covered or not. The fault simulator generates
a list of those defects that remain uncovered. We supply this QCA
bridging fault list for further test generation to the SAT-based ATPG
engine. If the designer has the QCA layout information available,
the bridging fault list can be constructed based on adjacent wires
in the layout. If the QCA layout information is not available, the
designer can supply all possible wire pairs assuming the worst-case
scenario. Once all bridging faults have been covered, the final test
set is provided as output.

C. Targeting QCA Defects in a Majority Gate
For a majority gate, there are nine minimal SSF test sets that

contain four test vectors each. The minimal test sets were applied
to a QCA majority gate and all defects described in [7], [13], [15]
were simulated using QCADesigner [12]. Fig. 7 shows our results for
this experiment. Of the nine minimal test sets, three test sets were
unable to detect all the simulated defects.

Consider the majority gate M in Fig. 8 that is embedded in a
larger network. Suppose that after SSF test generation for the entire
circuit, it is determined that M receives input vectors 010, 011, 100
and 101. According to Fig. 7, this is not a complete defect test set as
three defects remain uncovered. We can make it complete by ensuring
that M also receives either 001 or 110 as its input vector. Thus, the
condition given to the SAT-based ATPG would be:

F SA1 with A=0 B=0 C=1

or

F SA0 with A=1 B=1 C=0.

Given the above conditions, the CNF of the faulty gate would be:

MCNFF = (Ā + B̄ + F )(Ā + C̄ + F )(B̄ + C̄ + F )

(A + B + F̄ )(A + C + F̄ )(B + C + F̄ )

(F̄ )(Ā)(B̄)(C). (3)

or

MCNFF = (Ā + B̄ + F )(Ā + C̄ + F )(B̄ + C̄ + F )

(A + B + F̄ )(A + C + F̄ )(B + C + F̄ )

(F )(A)(B)(C̄). (4)

If a test vector can be generated for either fault, then M would be
completely testable for all simulated defects.

D. Targeting QCA Defects on Interconnects
It is very important to test for defects on QCA interconnects

because it is predicted that interconnects will consume the bulk of
chip area in future nanotechnologies [19]. As shown in Figs. 4(b)-
4(d), a displacement of the QCA cells on a wire will result in a
bridging fault between the two wires. Using QCADesigner [12], it
was verified that such defects can be modeled using the dominant
bridging fault model [7]. However, depending upon the displacement
distance, the lower wire will assume either the upper wire’s logic
value or its complement.

Fig. 9 shows the possible scenarios that can result if a bridging fault
is present between two wires. The scenario that will occur depends
upon the displacement distance ∆ of the defective cell and/or the
number of cells that get displaced. It also shows the conditions that
must be satisfied in order to detect the particular scenario. In the first
scenario in Fig. 9(a), the lower wire’s logic value is equal to that
of the upper wire while in Fig. 9(b), the lower wire’s logic value is
equal to the complement of that of the upper wire. If the first scenario
occurs, then a vector is required to test for one of the two conditions
shown in Fig. 9(a). Similarly, if the second scenario occurs, a vector is
required to test for either of the two conditions shown in Fig. 9(b). In
reality, it will not be known which scenario occurred in the presence
of the defect because ∆ will not be known beforehand. Consequently,
we need to have vectors that test for both scenarios to be able to have
a test that can completely detect this bridging fault.
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As an example, consider once again the majority gate in Fig. 8.
Assume there is a bridging fault between inputs A and B and it is not
known whether the defective cell is on wire A or wire B. In addition,
∆ is unknown. In order to test for this fault, four conditions need to
be satisfied (the first two result from A dominating B, while the last
two result from B dominating A). The conditions are as follows:

B SA0 with A=0 or B SA1 with A=1
B SA1 with A=0 or B SA0 with A=1
A SA0 with B=0 or A SA1 with B=1
A SA1 with B=0 or A SA0 with B=1.

The CNFs for the above conditions are,

(CNFB)(B)(Ā) or (CNFB)(B̄)(A)
(CNFB)(B̄)(Ā) or (CNFB)(B)(A)
(CNFA)(A)(B̄) or (CNFA)(Ā)(B)
(CNFA)(Ā)(B̄) or (CNFA)(A)(B),

where CNFA and CNFB are the CNFs of the gates with output A
and B, respectively. If the test set contains vectors that can satisfy the
above conditions, then this bridging fault can be detected. Otherwise,
the fault is not completely testable.

Given a QCA circuit with n lines, there are at most n(n − 1)
possible bridging faults involving two wires. This is based on the
assumption that layout information is not available. Consequently,
2n(n − 1) conditions will need to be satisfied in order to obtain a
test set for all bridging faults. However, it should be noted that at
least n(n−1) (i.e., 50%) of these conditions will already be satisfied,
given any complete SSF test set. This is because, given a pair of wires,
when testing for a SA0/SA1 fault on one wire the other line must
have a value of 0 or 1. In this work, we assume that the QCA layout
of the circuit is available and the designer knows a priori which pairs
of wires to test for bridging faults.

V. EXPERIMENTAL RESULTS

In this section, we present our experimental results on benchmarks
from the MCNC benchmark suite [20]. Our methodology was im-
plemented by extending the fault simulator FSIM [18] as a QCA
defect and bridging fault simulator. The modifications amounted to
approximately 1, 000 lines of C code. All of the benchmarks were
first synthesized into multi-level majority networks using the logic

TABLE I
DEFECTS ON QCA MAJORITY GATES

Benchmark No. of No. of No. of majority SSF test Additional Time
PI PO gates set size QCA vectors (s)

9symml 9 1 214 129 0 1.4

alu2 10 6 356 165 0 7.5

apex6 135 99 701 161 108 49.9

b9 41 21 137 55 24 2.2

cht 47 36 120 17 7 1.8

cm150a 21 1 46 35 0 0.1

cm151a 12 2 42 18 0 0.1

cm152a 11 1 21 18 0 0.1

cm162a 14 5 46 22 0 0.2

cm163a 16 5 42 24 0 0.2

cm82a 5 3 16 12 0 < 0.1

cm85a 11 3 34 26 0 0.1

cmb 16 4 44 39 0 0.2

count 35 16 144 46 30 2.1

cu 14 11 46 31 0 0.2

example2 85 66 259 86 41 7.5

frg1 28 3 111 90 68 0.8

i2 201 1 209 213 204 3.5

i5 133 66 132 26 6 2.5

i6 138 67 381 29 10 17.1

i7 199 67 506 36 12 27.9

i8 133 81 913 104 74 72.4

i9 88 63 559 49 25 22.6

mux 21 1 46 38 0 0.1

pcle 19 9 67 23 0 0.5

pcler8 27 17 90 41 25 0.9

ttt2 24 21 154 43 0 1.9

unreg 36 16 84 19 5 0.9

x2 10 7 42 23 0 0.2

x3 135 99 701 16 103 49.5

z4ml 7 4 27 14 1 < 0.1

synthesis tool MALS [8]. All experiments were conducted on a Dell
PowerEdge 600SC server featuring a Pentium IV 1.6GHz processor,
512KB cache, 1GB RAM, and running Fedora Core 4.

Table I shows the number of primary inputs and outputs, circuit
gate count, size of the SSF test set, number of additional vectors
needed to cover all defects in majority gates, and CPU time for
test generation. Note that the additional vectors cover all defects
in majority gates only. They do not include vectors that may be
needed to cover bridging faults between interconnects. The SSF test
set was generated using the SAT-based ATPG engine in SIS [21]. In
most of the smaller benchmarks, it can be seen that no additional
vectors are required. This is probably because of the presence of
fewer reconvergent fanouts, making it easier to satisfy the additional
conditions. However, for larger benchmarks the opposite seems to be
true, as they require additional vectors. For example, for the apex6
benchmark, an additional 108 vectors were generated.

Rather than giving a table of results for test generation for
QCA bridging faults, we present results for an example which was
manually laid out. The QCA layout for the cm82a benchmark is
shown in Fig. 10. The layout uses two layers in which the crossover
wires run on different layers. The wire crossover scheme is described
in [16]. The layout was implemented using QCADesigner [12] and
the circuit was simulated for functional correctness. The circuit has
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Possible wire pairs to test for bridging faults:
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Fig. 10. QCA layout of the cm82a benchmark and wire pairs that need to
be tested for possible bridging faults.

5 inputs, 3 outputs, 5 inverters, and 16 majority gates. Note that
two-input AND and OR gates are implemented by fixing one of the
inputs of a majority gate to logic 0 and logic 1, respectively. Based
on the layout information, Fig. 10 also shows the wire pairs that
need to be targeted for bridging fault detection. Given the bridging
fault list and the SSF test set for this benchmark from Table I,
we fault-simulated this circuit and determined that additional test
generation was necessary to cover some undetected bridging faults.
The conditions that needed to be satisfied were:

2 SA1 with 1=0 or 2 SA0 with 1=1
4 SA1 with 3=0 or 4 SA0 with 3=1
6 SA1 with 5=0 or 6 SA0 with 5=1
8 SA1 with 7=0 or 8 SA0 with 7=1
10 SA1 with 9=0 or 10 SA0 with 9=1.

It turns out that all of the above conditions were unsatisfiable. This
can be explained by looking at Fig. 10. It can be seen that wire
2 carries complement values to wire 1, wire 4 carries complement
values to wire 3, and so on. Thus, testing for a SA1 (SA0) fault on
a line with the condition that the other line have a value of 0 (1) is
not possible. Hence, for this particular example, the SSF test set will
detect all the detectable bridging faults. For larger circuits, however,
one can expect the need for additional test vectors to cover defects
on QCA interconnects.

VI. CONCLUSIONS

In this paper, we presented the first comprehensive testing method-
ology for combinational QCA circuits. First, we developed some
fault collapsing theorems for majority circuits. Based on the fault
list derived from our fault collapsing theorems, we generated an SSF
test set using a SAT-based solver. With an example, we showed
that although an SSF test set detects every SSF in the circuit,
it is not guaranteed to detect all the simulated QCA defects in

the majority gates. Consequently, further test generation is required
and we showed how to generate additional test vectors that would
guarantee that all defects in the majority gates are covered.

Interconnects are likely to consume the bulk of chip area in
nanotechnologies such as QCA. Therefore, we also analyzed bridging
faults in QCA circuits. Based upon fault modeling results presented
previously, we showed the necessary conditions that must be satisfied
to detect a bridging fault between a pair of QCA wires. For a pair
of wires, only two of the four conditions (one from each scenario)
need to be satisfied. Multiple bridging faults are very likely to occur
between interconnects, and it would be interesting to extend this work
to consider them. However, it would be interesting to see if the test
set derived using our methodology can detect a large proportion, if
not all, of the multiple bridging faults in a given circuit. In order
to implement the above methodology, a Boolean SSF simulator was
modified to handle QCA defect and interconnect simulation.
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