
Power-Constrained Test Scheduling for Multi-Clock Domain SoCs

Tomokazu Yoneda†, Kimihiko Masuda‡ and Hideo Fujiwara†
†Graduate School of Information Science, Nara Institute of Science and Technology

Kansai Science City, 630-0192, Japan
{yoneda, fujiwara}@is.naist.jp
‡SHARP CORPORATION

Abstract
This paper presents a wrapper and test access mecha-

nism design for multi-clock domain SoCs that consists of
cores with different clock frequencies during test. We also
propose a test scheduling algorithm for multi-clock domain
SoCs to minimize test time under power constraint. In the
proposed method, we use virtual TAM to solve the frequency
gaps between cores and the ATE, and also to reduce power
consumption of a core during test while maintaining the test
time of the core. Experimental results show the effectiveness
of our method not only for multi-clock domain SoCs, but
also for single-clock domain SoCs with power constraints.
keywords: multi-clock domain SoC, test scheduling, test
access mechanism, power consumption

1 Introduction

The systems-on-chip (SoC) design strategies help us to
reduce the time-to-market and design cost for new prod-
ucts significantly. However, testing of SoC is a crucial
and time consuming problem due to the increasing de-
sign complexity[1]. Therefore, the goal is to develop tech-
niques for wrapper design, test access mechanism (TAM)
design and test schedule that minimizes test application
time under given constraints such as the number of test
pins and power consumption. A number of approaches
have addressed wrapper design [2, 3, 4] which are IEEE
1500 [5] compliant. Similarly, several TAM architectures
have been proposed such as TestBus [6, 7], TESTRAIL [8],
transparency based TAM [9, 10, 11]. Moreover, many ap-
proaches for test scheduling problem have been proposed
[12, 13, 14, 15, 16, 17].

However, these previous approaches are applicable only
to single-clock domain SoCs that consist of embedded cores
working at the same clock frequency during test. Today’s
SoC designs in telecommunications, networking and digital
signal processing applications consist of embedded cores
working with different clock frequencies. The clock fre-
quency of some embedded cores during test is limited by
its scan chain frequencies. On the other hand, other cores
may be testable at-speed in order to increase the coverage
of non-modeled and performance-related defects. The at-
speed testable cores might be non-scan designed sequential
circuits and require functional vectors or ordered test se-
quence at the rated clock frequency. Moreover, there also

exists a frequency gap between each embedded core and
ATE used to test the SoC. From these facts, we conclude
that the previous approaches have the following two prob-
lems: 1) in the case when test clock frequency of a core is
higher than that of ATE, the ATE cannot provide test se-
quences at the same speed of the test clock frequency of the
core, and 2) in the case when test clock frequency of a core
is lower than that of ATE, testing of the core by lowering the
frequency of ATE does not make use of ATE capability ef-
fectively. Therefore, it is necessary to develop a technique
that can solve the above problems for the multi-clock do-
main SoCs.

Recently, virtual TAM based on bandwidth matching
[18] has been proposed in [19] to increase ATE capability
when the clock frequency of a core is lower than that of
ATE. Xu et al. extended the virtual TAM technique to the
multi-frequency TAM design to reduce the test time for the
single-clock domain SoCs in [22]. Moreover, a wrapper de-
sign for cores with multiple clock domains was proposed in
[20, 21] to achieve at-speed testing of the cores by using vir-
tual TAM technique. However, the test scheduling problem
for the multi clock domain SoCs is not addressed in these
literatures.

To the best of our knowledge, this paper gives a first dis-
cussion and a formulation of the test scheduling problem
for multi-clock domain SoCs. We present a wrapper and
TAM design for multi-clock domain SoCs and propose a
test scheduling algorithm to minimize test time under power
constraint. In the proposed method, we use virtual TAM for
each core to solve a frequency gap between each core and
a given ATE while the approach in [22] uses a virtual TAM
for each test bus (i.e., all the cores assigned to the same test
bus must be tested at the same frequency). Therefore, the
proposed method in this paper has more flexibility for the
test scheduling. Moreover, we also use virtual TAM in order
to reduce the power consumption of the cores during test.
Therefore, the proposed method is effective for the power-
constrained test scheduling. Experimental results show the
effectiveness of our method not only for multi-clock domain
SoCs, but also for single-clock domain SoCs with power
constraints.

The rest of this paper is organized as follows. We discuss
multi-clock domain SoCs in Section 2. Section 3 shows a
power-conscious virtual TAM technique. After formulating

3-9810801-0-6/DATE06 © 2006 EDAA

core 1 (c
1
)

scan-chain1

scan-chain2

wrapper

freq(c
1
)=25MHz

atspeed(c
1
)= no

core 3 (c
3
)

scan-chain1

scan-chain2

wrapper

scan-chain3

scan-chain4

freq(c
3
)=50MHz

atspeed(c
3
)= nocore 2 (c

2
)

wrapper

freq(c
2
)=500MHz

atspeed(c
2
)= yes

ATEtest source test sinkf
ATE

= 250MHz

MCDS

core 1 (c
1
)

scan-chain1

scan-chain2

wrapper

freq(c
1
)=25MHz

atspeed(c
1
)= no

core 3 (c
3
)

scan-chain1

scan-chain2

wrapper

scan-chain3

scan-chain4

freq(c
3
)=50MHz

atspeed(c
3
)= nocore 2 (c

2
)

wrapper

freq(c
2
)=500MHz

atspeed(c
2
)= yes

ATEtest source test sinkf
ATE

= 250MHz

MCDS

Figure 1. Multi-clock domain SoC.

a test scheduling problem for multi-clock domain SoCs in
Section 4, we present a power-constrained test scheduling
algorithm in Section 5. Experimental results are discussed
in Section 6. Finally, Section 7 concludes this paper.

2 Multi-Clock Domain SoCs
This section describes the formal notation we use to

model the multi-clock domain SoC under test. An ex-
ample of an SoC is shown in Figure 1 where each core
is wrapped to ease test access. Test pattern source and
test response sink are implemented off-chip as an ATE.
The SoC can be modeled as a multi-clock domain SoC,
MCDS = (C,R, Pmax), where:
C = {c1, c2, ..., cn} is a set of cores;
Each core ci is characterized by:

freq(ci): maximum test frequency of core ci ∈ C;
power(ci): power consumption of core ci ∈ C at test

frequency freq(ci);
atspeed: C → {yes, no}: at-speed test requirement

R = {R1, R2, ..., Rn} is a set of wrapper lists;
Each wrapper list Ri is characterized by:

Ri = {ri1, ri2, ..., rij} is a set of wrapper designs for
core ci;

Each wrapper design rij is characterized by:
pin(rij): number of pins to test core ci with j-

th wrapper design ;
cycle(rij): number of clock cycles to test core

ci with j-th wrapper design;
Pmax: maximum allowed power at any time;

We consider that an SoC consists of the maximum al-
lowed power consumption and cores working at different
test frequencies. However, we assume that each core has
been designed with single-clock domain during test. For
each core, a maximum test frequency and a power consump-
tion at the given maximum frequency are given. Each core
also has an information about the requirement of at-speed
testing. atspeed(ci) = yes means that ci must operate at
freq(ci) during test (i.e., we cannot change the test fre-
quency of ci for test scheduling). atspeed(ci) = no means
that ci can be tested at lower frequencies than freq(ci) (i.e.,
we can decrease the test frequency of ci for test schedul-
ing). Moreover, each core has a wrapper list that consists
of possible wrapper designs for the core. Each wrapper de-

bits

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
×n

)freq(c

f

i

ATE
bits n

(a) f
ATE

< freq(c
i
)

ATE core c
i

freq(c
i
)f

ATE

bits m
f

)freq(c

ATE

i

×⎥
⎥

⎤
⎢
⎢

⎡
bits m

TDM

(b) f
ATE

> freq(c
i
)

ATE core c
i

freq(c
i
)f

ATE

TDdeM

Figure 2. Test data multiplexing/de-multiplexing.

sign has a number of test pins and a number of clock cy-
cles required to test the core with the wrapper design. The
test time for ci working at freq(ci) can be calculated as
cycle(ci) / freq(ci).

3 Virtual TAM for Power Minimization
The frequency gaps between ATE and cores can be

solved by using virtual TAM techniques based on band-
width matching. When freq(ci) (clock frequency of core ci

during test) is higher than fATE (clock frequency of ATE)
(Fig. 2(a)), we insert a TDM (test data multiplexing) cir-
cuit between ATE outputs and the core inputs, and mul-
tiplex �freq(ci)/fATE� · m TAM wires at fATE into m
virtual TAM wires at freq(ci). On the other hand, when
freq(ci) is lower than fATE (Fig. 2(b)), we insert a TD-
deM(test data de-multiplexing) circuit between ATE output
and the core inputs, and de-multiplex n TAM wires at fATE

into �n ·fATE/freq(ci)� virtual TAM wire at freq(ci). To
observe test responses, we need to insert TDM/TDdeM be-
tween the core output and ATE inputs in the similar fashion.

In this paper, we also utilize virtual TAM technique to
reduce power consumption of a core while maintaining the
same test time of the core. The dynamic power P (k) (which
is the dominant source of power consumption in CMOS cir-
cuits) consumed in the circuit on application of consecutive
two test vectors (Vk−1, Vk) is as follows [23].
P (k) = 1/2 · f · V 2

DD ·
∑

Ci · Si(k) (1)
Here, f is the clock frequency, VDD is the power supply
voltage, Ci is the output capacitance at node i and Si(k) is
the number of switchings provoked by Vk at node i. From
the equation(1), we observe that the power consumption of
a core during test can be reduced by lowering its test fre-
quency. However, this increases test time of the core pro-
portionally to the power reduction ratio. Here, we insert
TDdeM circuit between the ATE outputs and the core in-
puts. Then, more virtual TAM wires become available for
the core, and test time can be reduced. In the best case, we
can achieve the same test time with 50% reduction of power
consumption for a core by using the above power-conscious
virtual TAM technique. For example, we consider the wrap-

Table 1. Power-conscious virtual TAM for core7 in
d695.

frequency(MHz) # virtual TAM wires test time(µs) # cycles
50 10 264.86 13243
25 20 268.68 6717

per design for core7 in d695 from ITC’02 SoC benchmarks
[24]. Table 1 shows that we can achieve a 50% power re-
duction with an 1.4% test time overhead by decreasing the
frequency from 50MHz to 25MHz and increasing the num-
ber of virtual TAM wires from 10 to 20.

4 Problem Formulation
We formulate the power-constrained test scheduling

problem for multi-clock domain SoCs Pmcds that we ad-
dress in this paper as follows.
Definition 1 Pmcds: Given a multi-clock domain SoC
MCDS, the number of available test pins Wmax and the
clock frequency of ATE fATE , is there a test schedule for
MCDS that satisfies all the following conditions?

1. the total number of test pins used at any moment does
not exceed Wmax,

2. the total power consumption used at any moment does
not exceed Pmax,

3. each core satisfies at-speed test requirement (i.e., if
atspeed(ci) = yes, ci must be tested at freq(ci).
Otherwise, ci can be tested at frequencies lower than
freq(ci)),

4. the overall SoC test time is minimized
If there is such a test schedule, determine a wrapper design
and test frequency of each core for the test schedule.

5 Scheduling Algorithm
This section presents a heuristic algorithm for Pmcds that

consists of the following three stages: 1) testability analy-
sis, 2) test scheduling at time 0 for cores with large amount
of test data, and 3) test scheduling based on Best Fit De-
creasing (BFD) heuristic [25] for remaining cores. The ex-
ample of the generated test schedule is shown in Figure 3.
The shaded cores and the unshaded cores in Figure 3 are
scheduled in stage 2 and stage 3, respectively. The follow-
ing subsections describe the details of each stage.

5.1 Testability Analysis (Stage 1)
If MCDS cannot satisfy the following two conditions

for the given parameters: fATE and Wmax, then there is no
solution for Pmcds.
For each ci ∈ C such that atspeed(ci) = yes,
[power limitation]
Pmax ≥ power(ci) (2)

[pin limitation]
Wmax ≥ min

j
(pin(rij)) · �freq(ci)/fATE� (3)

For a core ci such that atspeed(ci) = yes, we cannot
change the test frequency freq(ci) and power consump-
tion power(ci) during test. Therefore, the core that can-

#pin

0

core 3

core 2

core 4

core 6

core 9

W
max

core 1

core

5

core 7
test time

core

10

c
o
r
e

8

cores : scheduled in Stage 2
cores : scheduled in Stage 3

#pin

0

core 3

core 2

core 4

core 6

core 9

W
max

core 1

core

5

core 7
test time

core

10

c
o
r
e

8

cores : scheduled in Stage 2
cores : scheduled in Stage 3

Figure 3. A test schedule example.

not satisfy equation(2) exceeds a given power limitation
even if it is tested alone. Moreover, as explained before,
TDM/TDdeM circuits can be uniquely determined when
fATE , a wrapper design rij and a test frequency for ci are
given. Therefore, the core that doesn’t satisfy equation(3)
cannot be assigned enough wrapper pins to achieve at-speed
test at freq(ci).

5.2 Test scheduling at time 0 with minimum test
frequency (Stage 2)

This stage consists of the following three steps.

Step 1: determine a wrapper design and test frequency for
each core

Main idea in this step is to increase test concurrency for
power-constrained test scheduling by lowering the test fre-
quencies of cores which do not require at-speed test. For
each core ci, we determine a wrapper design rtest

i and a
multiplicity mci

such that
1. TLB ≥ cycle(rtest

i)/(freq(ci)/mci
),

2. pin(rtest
i) ≤ Wmax · fATE/(freq(ci)/mci

),
3. pin(rtest

i) is maximized, and
4. mci

is maximized.
Here, lower bound TLB on the SoC test time is defined as
follows.
TLB = max{max

i
(T ci

LB), T otalData/(Wmax · fATE)} (4)

Lower bound T ci

LB on the core test time and TotalDate are
defined as follows.
T ci

LB = cycle(rij)/freq(ci) s.t.
1. pin(rij) is maximized, and
2. pin(rij) ≤ Wmax · fATE/freq(ci). (5)

TotalData =
∑

i

pin(rij) · cycle(rij) s.t.

pin(rij) is minimized. (6)
Then, we determine test frequency f test

ci
for ci as fol-

lows.

f test
ci

=
{

freq(ci)/mci
if atspeed(ci) = no

freq(ci) if atspeed(ci) = yes
(7)

Step 2: determine cores which start their tests at time 0
First, we sort cores in the descending order based on its

T ci

LB . Then, we schedule a core ci in the above order at time
0 with wrapper rtest

i and test frequency f test
ci

. This process
repeats until 1) the power consumption at time 0 (P0) does
not exceed Pmax, 2) the pin usage at time 0 (W0) does not

#pin

test time0

W
max

(b) pin vs test time

power

test time0
core 3

core 2
core 4

core 6

core 9

P
max

(a) power vs test time

core 3

core 2
core 4

core 6

core 9

T
LB

T
LB

#pin

test time0

W
max

(b) pin vs test time

power

test time0
core 3

core 2
core 4

core 6

core 9

P
max

(a) power vs test time

core 3

core 2
core 4

core 6

core 9

T
LB

T
LB

Figure 4. Test schedule after Step 2.

power

test time0
core 3

core 2

core 4

core 6

core 9

P
max

(a) power vs test time

after re-calculating test frequencies

test time0
core 3

core 2

core 4

core 6

core 9

#pin

W
max

(b) pin vs test time

after re-design wrappers

T
LB

T
LB

power

test time0
core 3

core 2

core 4

core 6

core 9

P
max

(a) power vs test time

after re-calculating test frequencies

test time0
core 3

core 2

core 4

core 6

core 9

#pin

W
max

(b) pin vs test time

after re-design wrappers

T
LB

T
LB

Figure 5. Test schedule after Step 3.

exceed Wmax, and 3) T ci

LB is less than TLB/|C|. Here, |C|
denotes the number of cores in the SoC. The third condition
can prevent us from scheduling cores with small amount of
test data to time 0. Instead of scheduling such small cores
at time 0, Step 3 re-designs wrappers and re-calculates test
frequencies for the cores scheduled in this step to reduce the
overall test time of the SoC.

Figure 4 shows a current test schedule generated after
Step 2. In Figure 4(a), the horizontal axis denotes the test
time, and the vertical axis denotes the power consumption
used in each test time. In Figure 4(b), the horizontal axis de-
notes the test time, and the vertical axis denotes the number
of test pin used in each test time.

Step 3: re-calculate test frequencies and re-design wrap-
pers for cores scheduled at time 0

There exists a case where P0 (power consumption at time
0) does not reach Pmax after Step 2 (Fig. 4(a)) since Step 2
stops the above three conditions. In this case, we find a core
ci that satisfies all the following conditions.

1. cycle(rtest
i)/f test

ci
is maximized (8)

2. mci
> 1 (9)

3. Pmax ≥ P0−power(ci){1/mci
+1/(mci

−1)}(10)
4. Pmax/2 ≥ power(ci)/(mci

− 1) (11)
If there exists such a core ci, we update mci

to mci
− 1,

and reduce the test time of ci by increasing f test
ci

accord-
ing to equation (7). The fourth condition (equation(11)) can
prevent one core from dominating power consumption, and
help us to increase the test concurrency at time 0. This pro-
cess repeats until 1) P0 does not exceed Pmax and 2) there
exists a core that satisfies the above conditions. Figure 5(a)
shows a result where we apply this process to the current
schedule generated after Step 2 corresponds to Figure 4. In
this figure, frequencies for core 2, 3, 4 and 6 are increased.
Consequently, the test time for these cores are reduced.

test time0

core 3

core 2

core 4

core 6

core 9

#pin

W
max

s1

s2

s3

s4

s5

t5,1

t5,4

t5,3

t5,2

t5,5

core 5

schedule based on BFDr5,4

test

test time0

core 3

core 2

core 4

core 6

core 9

#pin

W
max

s1

s2

s3

s4

s5

t5,1

t5,4

t5,3

t5,2

t5,5

core 5

schedule based on BFDr5,4

test
r5,4

test

Figure 6. An example of test scheduling for core 5.

Similarly, there exists a case where W0 (pin usage at time
0) does not reach Wmax after Step 2. In this case, we find
a core ci with maximum test time, then assign 1 test pin to
ci. This process repeats until W0 does not exceed Wmax.
Figure 5(b) shows a result where we apply this process to
the current schedule corresponding to Figure 5(a).

5.3 Test scheduling for remaining cores based on
BFD (Stage 3)

In this stage, we determine a test schedule for the remain-
ing cores based on BFD heuristic. First, we pick a core ci in
the descending order based on T ci

LB . Then, we find the best
start time, wrapper design and test frequency for ci such that
the total test time of the given SoC is minimized as follows.

1. Let S be a set of start time candidates that consists of
the end time of scheduled cores in the current sched-
ule. For each candidate s ∈ S, we calculate available
power consumption Ps and available test pin Ws from
the current schedule.

2. For each candidate s ∈ S,
(a) Determine a maximum test frequency f test

ci,s such
that power(ci) · f test

ci,s /freq(ci) does not exceed
Ps.

(b) Determine a wrapper design rtest
i,s such that 1)

pin(rtest
i,s) does not exceed Ws · fATE/f test

ci,s and
2) pin(rtest

i,s) is maximized.
(c) Calculate the end time ti,s when ci starts its test

at time s with wrapper rtest
i,s at frequency f test

ci,s .
3. Schedule ci at time s with wrapper rtest

i,s at frequency
f test

ci,s such that 1) ti,s is minimized and 2) the test of ci

does not overlap the tests of cores already scheduled in
the current schedule.

Figure 6 shows an example of the test scheduling for core
5. Here, a set of start time candidates S consists of five
elements: s1, s2, s3, s4, s5. For each candidate s ∈ S, we
calculate a end time t5,s by determining a test frequency
f test

c5,s and a wrapper design rtest
5,s shown as a rectangle in

Figure 6. In this example, core 5 is scheduled to start its test
at time s4 with a wrapper rtest

5,4 at frequency f test
c5,4 since the

end time t5,4 has a minimum value.
This process repeats until all the remaining cores are

scheduled in the descending order based on T ci

LB . Through
the above processes, we can generate a final test schedule.

6 Experimental Results
In Section 6.1, we show experimental results for a multi-

clock domain SoC with power constraint. Section 6.2
presents experimental results for single-clock domain SoCs
with power constraint (“d695” and “h953” from ITC’02
SoC benchmarks [24]) in order to show the effectiveness of
our approach compared to previous works. All the experi-
mental results can be obtained within 0.1 sec. on a SunBlade
2000 workstation (1.05 GHz with 8GB RAM).

6.1 Results for a multi-clock domain SoC
Since there exists no approach that has tackled the test

scheduling problem for multi-clock domain SoCs, it is dif-
ficult to compare with previous works. We have decided
to analyze the trade-offs of the proposed method in terms
of the number of available test pin, the clock frequency of
ATE, maximum allowed power consumption and test time
for a hypothetical multi-clock domain SoC. Table 2 shows
the multi-clock domain SoC MCDS1 used in this exper-
iment. This SoC consists of 14 cores. First 10 cores are
from “d695” in ITC’02 SoC benchmarks. “flexible(≥ 2)”
in column “wrapper list” denotes that we can design any
wrapper (wrapper with any number of test pins) by the pro-
cedure proposed in [2, 3]. We use the same power con-
sumption shown in [15], and assume that freq(ci) = 50
MHz and atspeed(ci) = no for these 10 cores. The wrap-
pers for core 11 and core 12 are already designed (i.e.,
64 pins, 32 pins, respectively). We assume that these two
cores are tested at higher frequencies than other cores, and
atspeed(ci) = yes. Core 13 and core 14 are copies of core
7 and core 5, respectively. However, we assume that these
two cores are tested at lower frequencies than other cores.

For this SoC, Table 3 shows test time results when fATE

= 200MHz, 100MHz and 50MHz. In this table, the test
time results are shown as “µsec.”, and “untestable” denotes
that there exists no solution for the given parameters. In
this SoC, since core 11 should be tested at 100MHz with 64
pins, we observe that there exists no solution for three cases:
1) fATE = 100MHz and Wmax = 32, 2)fATE = 50MHz and
Wmax = 32, and 3) fATE = 50MHz and Wmax = 64. We
also observe that test time depends on the product of fATE

and Wmax. Therefore, when we use a high speed ATE,
we can test SoCs with small number of test pins. On the
other hand, even when we use a low speed ATE, we can
achieve the same test time by using more test pins. From
this results, the designer can decide the number of test pins
and the speed of the test pin considering the total cost for
them.

6.2 Comparison with other approaches
The proposed test data de-multiplexing technique is also

effective for the power-constrained test scheduling of the
single-clock domain SoCs as well as for that of the multi-
clock domain SoCs. In order to show the effectiveness of

Table 2. An multi-clock domain SoC MCDS1.
core at-speed wrapper list test freq. power

requirement (pins) (MHz) (unit)
1 no flexible(≥ 2) 50 660
2 no flexible(≥ 2) 50 602
3 no flexible(≥ 2) 50 823
4 no flexible(≥ 2) 50 275
5 no flexible(≥ 2) 50 690
6 no flexible(≥ 2) 50 354
7 no flexible(≥ 2) 50 530
8 no flexible(≥ 2) 50 753
9 no flexible(≥ 2) 50 641

10 no flexible(≥ 2) 50 1144
11 yes fixed (64) 100 480
12 yes fixed (32) 200 940
13 no flexible(≥ 2) 20 212
14 no flexible(≥ 2) 25 345

our approach compared to previous works, we present ex-
perimental results for the single-clock domain SoCs with
power constraint. We use “d695” and “h953” from ITC’02
SoC benchmarks [24] as the single-clock domain SoCs by
assuming that fATE = 50 MHz, and freq(ci) = 50 MHz
and atspeed(ci) = no for all core ci ∈ C. This is be-
cause only these two SoCs have power information in the
benchmarks (for “d695”, we use the same power consump-
tion shown in [15]). Table 4 shows the test time results of
the proposed method and the previous power-constrained
approaches [15, 16] which are applicable only to the single-
clock domain SoCs. In this table, test time results are shown
as the number of clock cycles. “NA” denotes that the ap-
proach is not applicable for the constraint. “-” denotes that
no result is shown for the constraint in the approach. For
d695, we observe that the proposed approach can achieve
a 6.9% reduction in average test time compared to [15].
Moreover, for h953, we observe that the proposed approach
can achieve the lower bound (119357) on the SoC test time
[14] under all power constraints. From these results, we
conclude that the proposed power-conscious virtual TAM
technique and test scheduling algorithm are also effective
for single-clock domain SoCs.

7 Conclusions
This paper has presented a power-conscious wrapper and

TAM design for multi-clock domain SoCs, and proposed a
test scheduling algorithm to minimize test time under power
constraint. To the best of our knowledge, a test scheduling
problem for multi-clock domain SoCs has been addressed
and formulated for the first time in this paper. Moreover,
we have presented a technique to reduce power consump-
tion of a core during test while maintaining the test time by
utilizing virtual TAM technique which is applicable to both
single and multi clock domain SoCs.

Acknowledgments
This work was supported in part by Japan Society for the

Promotion of Science (JSPS) under Grants-in-Aid for Sci-
entific Research B(2)(No. 15300018). The authors would
like to thank Prof. Kewal K. Saluja, Michiko Inoue, Dr.

Table 3. Test time results [µs] for multi-clock domain SoC MCDS1.
fAT E = 200MHz fAT E = 100MHz fAT E = 50MHz

Pmax Wmax Wmax Wmax

32 pin 64 pin 128 pin 32 pin 64 pin 128 pin 32 pin 64 pin 128 pin
1500 431.05 351.22 351.22 untestable 431.05 351.22 untestable untestable 431.05
2000 325.29 278.55 278.55 untestable 325.29 278.55 untestable untestable 325.29
2500 324.05 234.24 221.70 untestable 324.05 234.34 untestable untestable 324.05

Table 4. Test time results (# cycles) for single-clock domain SoCs.
Wmax

SoC Pmax 32 pin 64 pin 128 pin
3D[15] EA[16] proposed 3D[15] EA[16] proposed 3D[15] EA[16] proposed

d695 1000 NA NA 44528 NA NA 27482 NA NA 24707
1500 45560 - 42981 27573 - 22690 16841 - 16239
2000 43221 - 42632 24171 - 21838 14128 - 12753
2500 43221 - 42564 23721 - 21616 12993 - 11180

h953 5 × 109 NA NA 119357 NA NA 119357 NA NA 119357
6 × 109 122636 122636 119357 122636 122636 119357 122636 122636 119357
7 × 109 119357 119357 119357 119357 119357 119357 119357 119357 119357

Satoshi Ohtake and members of Fujiwara Laboratory (Nara
Institute of Science and Technology) for their valuable com-
ments.

References

[1] Y. Zorian, E. J. Marinissen and S. Dey,“Testing embedded-core based
system chips,” Proc. 1998 Int. Test Conf., pp. 130–143, Oct. 1998.

[2] V. Iyengar, K. Chakrabarty and E. J. Marinissen, “Test Wrapper and
test access mechanism co-optimization for system-on-chip,” Journal
of Electronic Testing: Theory and Applications, pp. 213–230, Apr.
2002.

[3] W.Zou,S.R.Reddy,I.Pomeranz and Y.Huang,“SOC Test Scheduling
Using Simulated Annealing,” Proc. 21th VLSI Test Symp.,pp.325–
329,May 2003.

[4] E. J. Marinissen, S. K. Goel, and M. Lousberg, “Wrapper Design
for Embedded Core Test,” Proc. IEEE International Test Conference
(ITC), pp. 911–920, Oct. 2000.

[5] E.J. Marinissen, R. Kapur, M. Lousberg, T. McLaurin, M. Ric-
chetti and Y. Zorian, “On IEEE P1500’s Standard for Embedded
Core Test,” Journal of Electronic Testing: Theory and Applications,
pp.365–383, Aug. 2002.

[6] T. Ono, K. Wakui, H. Hikima, Y. Nakamura and M. Yoshida, “Inte-
grated and automated design-for-testability implementation for cell-
based ICs,” Proc. 6th Asian Test Symp., pp. 122–125, Nov. 1997.

[7] P. Varma and S. Bhatia, “A structured test re-use methodology for
core-based system chips,” Proc. 1996 Int. Test Conf., pp. 294–302,
Oct. 1998.

[8] E. Marinissen, R. Arendsen, G. Bos, H. Dingemanse, M. Lousberg
and C. Wouters, “A structured and scalable mechanism for test access
to embedded reusable cores,” Proc. 1998 Int. Test Conf., pp. 284–
293, Oct. 1998.

[9] M. Nourani and C. A. Papachristou, “Structural fault testing of em-
bedded cores using pipelining,” Journal of Electronic Testing:Theory
and Applications 15(1-2), pp. 129–144, Aug.–Oct. 1999.

[10] S. Ravi, G. Lakshminarayana, and N. K. Jha, “ Testing of core-based
systems-on-a-chip,” IEEE Trans. on CAD, Vol. 20, No. 3, pp. 426–
439, Mar. 2001.

[11] T. Yoneda, T. Uchiyama and H. Fujiwara, “Area and time co-
optimization for system-on-a-chip based on consecutive testability,”
Proc. 2003 Int. Test Conf., pp. 415–422, Sep. 2003.

[12] Y.Huang et al.,“Resource allocation and test scheduling for con-
current test of core-based SOC design,”Proc. Asian Test Sympo-
sium(ATS), pp265-270, 2001.

[13] V. Iyengar, K. Chakrabarty and E. J. Marinissen, “On using rectangle
packing for SOC wrapper/TAM co-optimization,” Proc. 20th VLSI
Test Symp., pp. 253–258, Apr. 2002.

[14] S. K. Goel and E. J. Marinissen,“Effective and Efficient Test Ar-
chitecture Design for SOCs,”Proc. IEEE International Test Confer-
ence(ITC), pp529-538, 2002.

[15] Y. Huang, N. Mukherjee, S. Reddy, C. Tsai, W. Cheng, O. Samman,
P. Reuter and Y. Zaidan, “Optimal core wrapper width selection and
SOC test scheduling based on 3-dimensional bin packing algorithm,”
Proc. 2002 Int. Test Conf., pp. 74–82, Oct. 2002.

[16] Y. Xia, M. C. Jeske, B. Wang and M. Jeske, “Using Distributed Rect-
angle Bin-Packing Approach for Core-based SoC Test Scheduling
with Power Constraints, ” ICCAD’03, pp.100–105, Nov. 2003.

[17] E. Larsson, K. Arvidsson, H. Fujiwara and Z. Peng,,“Efficient Test
Solutions for Core-based Designs,”IEEE Trans. on CAD, Vol. 23, No.
5, pp. 758–775, May 2004.

[18] A.Khoche,“Test resource partitioning for scan architectures using
bandwidth matching,”Digest of Int. Workshop on Test Resource
Partitioning,pp.1.4-1–1.4-8, 2001.

[19] A.Sehgal,V. Iyengar,M.D.Krasniewski and K. Chakrabarty, “Test
Cost Reduction for SOCs Using Virtual TAMs and Lagrange Multi-
pliers,” In Proc.IEEE/ACM Design Automation Conference,pp.738–
743,Jun.2003.

[20] Q.Xu and N.Nicolici, “Wrapper Design for Testing IP Cores
with Multiple Clock Domains,” In Proceedings of the 2004 De-
sign,Automation and Test in Europe(DATE),pp.416–421,Feb.2004.

[21] Q. Xu, N. Nicolici and K. Chakrabarty, “Multi-frequency wrapper
design and optimization for embedded cores under average power
constraints”, Proc. IEEE/ACM Design Automation Conference, pp.
123-128, 2005.

[22] Q.Xu and N.Nicolici, “Multi-frequency Test Access Mechanism De-
sign for Modular SOC Testing,”Proc. of IEEE the 13th Asian Test
Symposium, pp.2–7, Nov. 2004.

[23] P. Girard, “Survey of low-power testing of VLSI circuits,” IEEE De-
sign & Test of Computers, Vol. 19, No. 3, pp. 82–92, May–June 2002.

[24] E. J. Marinissen, V. Iyengar and K. Chakrabarty, “A Set of Bench-
marks for Modular Testing of SOCs,” Proc. IEEE International Test
Conference (ITC), pp. 519–528, Oct. 2002.

[25] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, San Francisco, CA: W. H.
Freeman and Co., 1979.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

