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Abstract— We present a generalization of standard AC analysis to os-
cillators by exploiting least-squares solution techniques. This provides an
attractive alternative to the current practice of employing transient simu-
lation for small signal analysis of oscillators. Unlike phase condition based
oscillator analysis techniques, which suffer from numerical artifacts, the
least-squares approach of this paper results in a robust and efficient oscil-
lator AC technique. We validate our method on LC and ring oscillators,
obtaining speedups of 1-3 orders of magnitude over transient simulation,
and 4-6× over phase-condition-based techniques.

I. INTRODUCTION

Oscillators — such as voltage-controlled oscillators (VCOs), dig-
ital clocks, etc. — are important building blocks in most electronic
systems. Analysis of how oscillators respond to small perturbations is
crucial in oscillator design. The effects of perturbations on oscillators,
in the form of timing jitter (uncertainty of switching edges) or phase
noise, can seriously degrade the electronic system performance, hence
are major concerns in oscillator design.

The simulation of oscillators under small perturbations presents
unique challenges due to their fundamental property of neutral phase
stability. The key difficulty with oscillators is that small perturbations
lead to arbitrarily large output changes, making standard small signal
analysis (i.e., SPICE-like AC analysis) invalid. As a result, the only
alternative has been SPICE-like transient simulation [1, 2]. Transient
simulation, however, is not well-suited for small-signal analysis from
the standpoint of efficiency and accuracy. This is especially the case
for oscillators [3], where very small timesteps are required to achieve
reasonably accurate results because of accumulation of phase errors.

Over the past few decades, considerable effort has been devoted to-
wards analytical and numerical understanding of the effects of small
perturbations on oscillators (e.g., [3–6]). These approaches have
mostly focused on the predicting phase perturbations of oscillators,
typically by obtaining simplified equations for the phase component
alone. Applying Floquet theory (i.e., time-varying small-signal pertur-
bation analysis of periodic systems), Kärtner [4,5] derived a scalar, lin-
ear time-varying phase equation for oscillator perturbation. This was
generalized to a nonlinear differential equation for phase by Demir et
al [3, 6]. While these methods are useful for investigating phase be-
haviour, they do not provide an efficient means of considering the to-
tality of the oscillator’s responses, i.e., including both phase and ampli-
tude components. Approaches that do include amplitude components
(e.g., [7]) rely on identifying only a few important amplitude modes.
However, full Floquet decomposition is computationally expensive as
the system size increases.

In this paper, we present a generalization to oscillators of SPICE-
like AC analysis, that results in large speedups over transient simu-
lation. Only a single linear matrix solution is involved per frequency
point, just as with traditional AC analysis. An interesting feature of our
method is that this matrix solution is followed by a “postprocessing”
step, in the form of solving a nonlinear scalar differential equation, to
capture fully the effects of frequency and phase modulations.

Just as normal AC analysis requires a prior DC solution [1, 2], our
method requires a steady-state solution of the oscillator as a base for its
nonlinear, time-varying perturbation analysis. Typical oscillator steady
state methods, such as harmonic balance [8–10] and shooting (e.g.,
[8, 11]), rely on adding a “phase condition” equation to remove the
ambiguity in phase caused by an underdetermined equation system.
Similar disambiguation is also needed in our oscillator AC analysis;
however, the use of phase condition equations can cause various nu-
merical artifacts, as we describe later.

A key differentiator of this work is the use of least-squares (LS)
solution techniques to solve underdetermined systems without requir-
ing any phase conditions. This resolves the phase ambiguity issue by
choosing minimum norm solutions, first solving for a particular solu-
tion and then subtracting out null space components. The solutions
obtained in this way feature superior smoothness characteristics, re-
sulting in considerable additional robustness and accuracy. In addi-
tion, smoothness makes it possible to take large timesteps during the
solution of the scalar nonlinear differential equation in postprocess-
ing, which is the most expensive computation in the entire AC anal-
ysis, resulting in additional speedups over the phase-condition based
approaches.

We demonstrate our LS-based oscillator small signal analysis in de-
tail on LC and ring oscillators. As noted above, results obtained from
our method show superior smoothness characteristic compared to those
from carefully chosen, “good” phase conditions (which are not easy
to find and not uniformly applicable to all cases). All results are in
good agreement with full transient simulation results, but the LS-based
oscillator AC method provides speedups of 1–3 orders of magnitude.
Furthermore, modest speedups of 4-6× are also obtained over phase-
condition based oscillator AC.

The remainder of the paper is organized as follows. In Section II, we
discuss oscillator AC analysis with the use of phase conditions, based
on the generalized multitime partial differential equation (GeMPDE)
formulation. In Section III, we demonstrate the smoothness problems
that arise with phase condition based oscillator AC analysis. In Sec-
tion IV, we present the least squares based oscillator AC approach. In
Section V, we present validations of the new technique on LC and ring
oscillators.

II. BACKGROUND: GEMPDE BASED OSCILLATOR AC ANALYSIS

Oscillator circuits under perturbation can be described by the DAE
system

dq(x)

dt
+ f(x) = Au(t), (1)

where u(t) is a small perturbation signal, x(t) is a vector of circuit
unknowns (node voltages and branch currents), and A is an incidence
matrix that captures the connection of the perturbation to the circuit. It
has been shown [3] that small perturbations applied to orbitally-stable
oscillators can lead to dramatic changes in output, thus invalidating
fundamental assumptions of small-signal analysis. Numerically, this
lack of validity leads to rank deficiency in the frequency-domain con-
version matrix of oscillators, resulting in a complete breakdown of
“normal” AC analysis. It can be proved that the WaMPDE formulation
[12], originally proposed to address efficiency problems when encoun-
tering strong frequency modulation (FM) in oscillators, succeeds in
correcting the problem at DC but fails to do so at all other harmonics.
A more generalized form of MPDE (GeMPDE) can solve the problem
completely, at all frequencies. In the interests of space, the reader is
requested to refer to [12, the Appendix], for details.

The special case of the GeMPDE that is useful for oscillator AC
analysis is:

»
∂

∂t1
+ ω̂(t1, t2)

∂

∂t2

–
q(x̂) + f(x̂) = b(t) = Au(t1). (2)

Linearization of the above GeMPDE formulation around the steady
state solution (x∗(t2), ω0) (ω0 is oscillator’s free-running frequency),
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followed by Laplace transform on t1 and Fourier expansion on t2, pro-
duces a frequency-domain discretized system:

»„
FD
Ω(s)TC(t2) + TG(t2)

«
, Tq̇∗(t2)

–
| {z }

HB
J Ge(s)
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@FD

V∆X(s)
FD
V∆ω(s)

1
A

=
FD
VAU(s).

(3)

where
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HB
JGe(s) is a rectangular matrix of size nN × (n + 1)N , where n

is the number of circuit unknowns and N is the number of terms in

truncated Fourier series. It can be proved that
HB
JGe(s) is full rank at

any frequency.
To solve (3), N more equations, termed phase conditions, can be

added to the system. The phase condition rows that augment
HB
JGe(s)

need to satisfy two conditions:
1) must be full rank themselves,
2) in addition to making the entire augmented Jacobian matrix full

rank.
The transfer function is then calculated after augmentation with these
phase conditions.

Once the transfer function is available, the quantities
FD
V∆X(s) and

FD
V∆ω(s) at different frequencies can be obtained. Multitime wave-
forms of ∆x and ∆ω at a given frequency can then be further obtained
via the inverse discrete Fourier transform. Finally, time-domain phase
variations can be recovered by the phase-frequency relation [12]:

d∆φ(t)

dt
= ∆̂ω(t, ω0t + ∆φ(t)). (4)

The one-time form of amplitude variation ∆x(t) can also be recov-
ered using:

∆x(t) = ∆̂x(t, φ(t)), (5)

where φ(t) = ω0t + ∆φ(t). The overall solution of the oscillator is
given by

x(t) = x∗(φ(t)) + ∆̂x(t, φ(t)), (6)

where x∗ is the steady state oscillatory solution.

III. PROBLEM WITH PHASE CONDITION BASED OSCILLATOR AC
ANALYSIS

Theoretically, there is considerable apparent freedom in choosing
phase conditions, as long as they satisfy two conditions mentioned in
Section II. Unfortunately, many such phase conditions are not efficient
or not capable of generating useful information from the standpoint of
small-signal analysis.

The key to understanding this problem is that the unique solu-
tion (∆x, ∆ω) obtained by adding constraints (i.e., the phase condi-
tions) are essentially an arbitrary choice, leading to unphysical arti-
facts such as significant non-smoothness. While it is possible to find
“good” phase conditions that avoid these problems, good conditions is
very problem specific and their discovery is difficult, hence of limited
general value for enabling a robust, general-purpose algorithm. The
smoothness of the bivariate frequency solution is especially important
for calculating phase variations (4), the very first step in recovering
overall solutions, and the most computationally expensive step. More
specifically, if the bivariate form of frequency variation (∆ω ) obtained
from transfer function is not smooth, i.e., there are lots of undulations
in the multi-time waveform, very small time steps must be taken in
order to generate useful phase variations using (4). In some cases, the
change on one time scale, or both time scales, is so rapid that no useful
information can be obtained even when very small time steps are used.
Recall that (4) is the only ODE that needs to be solved in oscillator
AC analysis, i.e., it is the main computation (other computations only
involve linear matrix solution and interpolation). The step size taken in
solving (4) essentially determines the speed of the entire AC analysis.

Furthermore, other calculations, such as amplitude variations and
overall solutions ((5), (6)) depend on the results of phase variations.
Oscillator AC analysis becomes impractical if the phase variation cal-
culated is not useful.

To demonstrate this in detail, we use the phase condition equations:

∂

∂t1
x̂l + ω(t1, t2)

∂

∂t2
x̂l =

∂xls(t2)

∂t2
, (7)

where l is a fixed integer. x̂l denotes the lth element of x̂, while xls is
the lth element of the steady state solution xs(t2).

By linearizing around (x∗
l , ω0) and expanding the t2 dependence in

Fourier series, we obtain:

h
FD
Ω(s)TeT

l
, Tẋ∗

l
(t2)

i
| {z }

P
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1
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The transfer function is calculated using
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0
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FD
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!
.

(9)

where z = [0, ..., 0]T (size N).
These phase conditions above satisfy the conditions mentioned in

Section II, as demonstrated in Figure 1. For illustration, we use a sim-
ple LC oscillator with a negative resistor. The circuit is perturbed by a
current source in parallel with the inductor.

Figure 2(a) shows the bivariate form of frequency variations under a
perturbation of 4 × 10−5sin(1.03w0t), using the above phase condi-
tions. As can be seen, it has many undulations in the t2 time scale. In
this case, the rate of variation is so rapid that no useful phase condition
can be solved for, as shown in Figure 2(b). If we continue to solve for
amplitude and overall solutions, we obtain the results shown in Fig-
ure 3 and 4. Note that bivariate amplitude variation also shows rapid
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Fig. 1. Condition numbers: original Jacobian matrix (solid line), augmented
Jacobian from WaMPDE (*), and augmented Jacobian from GeMPDE (o). The
frequency of LC oscillator is 1GHz. We use 61 harmonics.
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Fig. 2. Frequency and phase variations when the perturbation current is 4 ×
10−5sin(1.03w0t). The figure shows the results for 100 cycles.
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Fig. 3. Amplitude variations.
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(b) Transient simulation result

Fig. 4. Comparison of the result from AC analysis and transient simulation.

changes along the t2 time scale. For comparison, the full simulation
result is also shown in Figure 4. It is clear that this particular phase
condition based GeMPDE AC analysis generates invalid results.

However, the slightly different phase conditions

ω(t1, t2)
∂

∂t2
x̂l =

∂xls(t2)

∂t2
(10)

provide valid solutions that are in good agreement with full simulation
results, as shown in Section V-A. The results from these ”good” phase
conditions, however, are not as good as those from the MLS method
proposed in the next section of this paper, in that the corresponding bi-
variate frequency is not as smooth as that from MLS, as will be shown
in Section V. In summary, the practical utility of oscillator AC anal-
ysis depends heavily on the phase conditions added. In some cases,
“good” phase conditions for certain examples may generate invalid re-
sults for other examples. It is difficult if not impossible to find generi-
cally “good” phase conditions that work well for all examples.

IV. SOLVING FOR TRANSFER FUNCTION BY LEAST SQUARES

There is more than one solution of (3) since
HB
JGe(s) is rectangular

but full rank, with N with more columns than rows. To obtain a unique
solution, we choose the solution with minimum norm that satisfies (3),
defined as the Minimum Least Square (MLS) solution. This MLS so-
lution can be obtained1 by first finding a particular solution of (3) and
then subtracting the projection of this particular solution on the null
space (projection onto the null space is the same as that on the solution
space, since the solution space is just a constant shift of the null space).
Figure 5 shows that such a solution is a vector that is orthogonal to the
solution space, i.e., it is of minimum norm.

solution space

Projection

MSL solution
A particular solution

Fig. 5. Illustration of minimum least squares solution.
More specifically, the MLS solution can be found as follows:
1) Find a particular solution of (3), denoted as xpar . This can be

done by setting all free variables to 0s and solving (3). (Free

variables are defined as the variables without pivots in
HB
JGe(s)

when Gaussian elimination is performed.)
2) Obtain the null space of (3), i.e., find linearly independent vec-

tors that span the null space. These vectors can be obtained by
setting one of free variables to 1 and the rest of them to 0s, and
then solving (3). Then the general solution of (3) is a constant
shift, the particular solution, of the null space.

3) Obtain an orthonormal basis of the null space. The stan-
dard Gram-Schmidt is used to convert the basis found above
to an orthonormal basis. The orthonormal basis is denoted as
{n1, n2, ..., nN}.

4) Subtract the projection of the particular solution on the null
space. This can be done by subtracting all components of the

1Any MLS solver, such as ones based on computing the singular value de-

composition of
HB
JGe(s) or projecting the solution space into a smaller dimen-

sion, may be used for this step; however, these do not, in general, exploit the
structure of the matrix, hence have cubic solution complexity in the size of the
matrix. The procedure outlined here, in constrast, exploits the small dimension
of the null space to reduce the complexity of MLS solution to almost linear.

3



particular solution on the null space basis from the particular so-
lution, i.e.,

xMLS = xpar −
NX

i=1

(xpar, n
i)ni. (11)

Here (., .) denotes the dot or inner product.

V. APPLICATIONS AND VALIDATION

In this section, we apply the MLS-base GeMPDE small signal anal-
ysis to several oscillators. Comparisons with phase condition based
AC analysis confirm that our method generates ”better” or smoother
solutions, resulting in further speedups since large time step can be
taken. All simulation were performed using MATLAB on an 2.4GHz,
Athlon XP-based PC running Linux.

A. 1GHz negative-resistance LC Oscillator

A simple 1GHz LC oscillator with a negative resistor is shown in
figure 6. At the steady state, the amplitude of the inductor current is
1.2mA and the capacitor voltage is about 0.585V.

−

b(t)

i=
f(

v)

Fig. 6. A simple 1GHz LC oscillator with a negative resistor
The circuit is perturbed by a current source in parallel with the in-

ductor. Figure 7 shows the multi-time form of the local frequency,
under a perturbation of 4 × 10−5sin(1.03w0t), solved by MLS and
by adding ”good” phase conditions, respectively. It can be seen that the
MLS solution is much smoother than the solution obtained by adding
phase conditions, resulting in a much smoother phase variation recov-
ered from the bivariate form of frequency (using (4)), as shown in Fig-
ure 8. As a result, by using MLS, it becomes possible to use much
larger time steps to solve the nonlinear scalar equation (4), which ac-
counts for the main computational cost of oscillator AC analysis.
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Fig. 7. Bivariate form of frequency variation when the perturbation current is
4 × 10−5sin(1.03w0t).

Both multi-time and recovered one-time forms (using MLS meth-
ods) of amplitude variation of the capacitor voltage are shown in Figure
9. The capacitor voltage waveform recovered from phase and ampli-
tude variations from MLS is compared with full transient simulation
in Figure 10 to confirm the validity of our method. As can be seen,
the results from our method match full simulation perfectly. A further
speedup of 4-5 over phase condition based method is obtained, result-
ing in a total speedup of about 90 over full simulation.

B. 3 Stage Ring Oscillator

A 3 stage oscillator with identical stages is shown in Figure 11. The
oscillator has a natural frequency of 1.53 × 105Hz. The amplitude of
steady state load current is about 1.2mA. The circuit is perturbed by a
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Fig. 8. Phase variations. The simulation length is 100 cycles (of the oscillator’s
free-running period).
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Fig. 9. Amplitude variation solved by MLS.
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Fig. 10. Comparison of results from small signal analysis and full transient
simulation.

Fig. 11. A 3 stage oscillator with identical stages
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current source, which is connected in parallel with the load capacitor
at node 1 and has much smaller current compared to the steady state
load current.

Figure 12 shows frequency sweeps akin to standard AC analysis
for both the capacitor voltage and the local frequency. Figures 13-
14 show the frequency and the resulting phase variations, using MLS
and phase condition based approaches, respectively. It is clear from
detailed comparison that MLS provides better and smoother solution.
The corresponding amplitude variation at node 1 is shown in Figure
15(a). The total waveform at node 1 is compared with full transient
simulation in Figure 15(b). Again, we see perfect agreement between
results from MLS and SPICE-like simulation, with a speedup of about
100 in this case. Compared to a speedup of 20 obtained by phase
condition based method, our MLS based technique gains an additional
speedup of about 5× for this example also.
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Fig. 12. Harmonic transfer functions: the frequency sweeps from DC to 2 ×
105Hz
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Fig. 13. Bivariate form of frequency variations when the perturbation current
is 5 × 10−5sin(1.04w0t).

C. 4GHz Colpitts LC Oscillator

A Colpitts LC oscillator is shown in Figure 16. The free-running
frequency of the oscillator is approximately 4GHz.

We perturb the oscillator with a small sinusoidal voltage source
(2× 10−3sin(1.02w0t)) in series with L1. Figure 17 show frequency
sweeps for both the current through L1 and the local frequency. Fig-
ure 18 shows the local frequency and phase variation from the MLS.
Comparisons of phase variations recovered from bivariate frequency
variations using different methods are shown in Figure 19. It is clear
that results from MLS are much smoother than those from the phase
condition based approach.

The amplitude variation of the current through L1 obtained from
MLS is shown in Figure 20(a). The total waveform of the current
through L1 is shown in Figure 20(b) (The comparison with transient
simulation is omitted due to the space limit). We obtain a speedup of
around 6 over the phase condition based method, resulting in a total
speedup of about 600 over transient simulation.

VI. CONCLUSIONS

We have presented a least-squares based approach for perform-
ing AC analysis of oscillators. Unlike previous approaches to small-
perturbation analysis of oscillators, our methods captures all amplitude
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based method
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Fig. 14. Phase variations. The figure shows simulation result for 100 cycles.
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Fig. 15. Results from LS-base AC analysis and transient simulation.
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Fig. 16. A 4GHz Colpitts LC oscillator
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Fig. 17. Harmonic transfer functions: the frequency sweeps from DC to 5 ×
109Hz
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Fig. 18. Frequency variation and phase variation from MLS when the pertur-
bation current is 2 × 10−3sin(1.02w0t).
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Fig. 19. Comparison of phase variations.
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Fig. 20. Result from MLS small signal analysis. The figure shows simulation
results for 100 cycles.

and phase components of the oscillator’s response correctly, while be-
ing 1–3 orders of magnitude faster than transient simulation, the only
realistic alternative. Our technique also constitutes a significant im-
provement, in terms of accuracy, speed and robustness, over a closely
related alternative that uses phase conditions.
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