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Abstract 

The ever increasing complexity and heterogeneity of 
modern System-on-Chip (SoC) architectures make an early 
and systematic exploration of alternative solutions 
mandatory. Efficient performance evaluation methods are 
of highest importance for a broad search in the solution 
space. In this paper we present an approach that captures 
the SoC functionality for each architecture resource as 
sequences of trace primitives. These primitives are 
translated at simulation runtime into transactions and 
superposed on the system architecture. The method uses 
SystemC as modeling language, requires low modeling 
effort and yet provides accurate results within reasonable 
turnaround times. A concluding application example 
demonstrates the effectiveness of our approach. 

 

1. Introduction 

In the design of System-on-Chip (SoC) solutions the 
definition of suitable architectures is a vital issue. Typical 
SoCs may consist of a broad range of IP modules like 
embedded processors, accelerator blocks, interface 
modules, a memory subsystem and specifically designed 
HW modules. All architectural resources are connected via 
a communication infrastructure that provides system-
internal connectivity for the exchange of data and 
synchronization. Choosing an appropriate system 
architecture and mapping the application’s subtasks to the 
resources are important tasks in the process of system level 
design ([1]).  

As the design space opens up a vast variety of solution 
alternatives, the specification of SoC architectures cannot 
base on intuitive decisions, which rely on a rough 
inspection and an intuitive estimation of design parameters, 
and their influence on the quality of the solution. In order 
to meet time-to-market as well as design goals concerning 
performance, area and power, thorough investigations have 
to be carried out. Therefore, a systematic exploration of 
design alternatives is necessary that makes up a strong 

basis for the final implementation steps, both for the 
hardware and software parts of the system. 

Starting with modeling and simulating such a system on 
RTL level using a hardware description language is not 
feasible because of the modeling effort, the simulation 
times and the inability to capture the behavior of mixed 
HW/SW systems. Therefore, the abstraction level has to be 
raised. Recently, new modeling languages have been 
developed in order to support designers in the early design 
stages on system level. Among others like SpecC or 
System Verilog, mainly SystemC ([2],[3]) has gained 
attraction for design exploration. SystemC allows modeling 
of SoCs on a high abstraction level and gradual refinement 
for design and verification purposes. 

The definition of the system architecture, i.e. the 
allocation of architectural resources and the mapping of 
tasks under given optimization criteria, is the major step in 
system level design. As exploration is an iterative process a 
great number of different potential solutions have to be 
evaluated regarding their compliance with the design 
requirements. This means that the complexity to generate 
suitable models for performance analysis as well as the 
effort for evaluation have to be strictly limited, in order to 
allow the comparison of as much alternatives as required. 
On the other hand it is necessary to capture enough 
information with high accuracy for making reasonable 
design decisions. 

For performance analysis a model is necessary that 
captures both the function and the characteristics of the 
architecture resources adequately. The intrinsic properties 
of the architecture as well as the execution behavior of the 
application’s subtasks including the memory architecture 
have to be taken into account. Moreover, the workload 
resulting from external stimuli has to be considered. 

In this paper we present a transaction level approach to 
evaluate system performance for SoC architectures using 
SystemC as modeling language. Traces are used to capture 
the behaviors of the application on a high abstraction level 
and their interaction on the architecture. This provides high 
simulation efficiency combined with easy reconfigurability 
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of the underlying model to different resource and mapping 
configurations. 

The remainder of the paper is organized as follows. In 
the following chapter we give an introductory overview of 
modeling approaches on system level. Section 3 contains a 
description of our method and describes its implementation 
in SystemC. In Section 4, we demonstrate the usage of our 
simulation approach for a generic network processor 
architecture. Section 5 concludes the paper and gives some 
outlook for further improvements of our system simulator. 

2. Related work 

Performance estimation on system level is a topic of 
intensive research. Many approaches have been proposed 
that rely on different concepts. A Network Calculus based 
approach is described in [4] that uses performance 
networks for modeling the interplay of processes on the 
system architecture. Event streams covering the workload 
and resource streams describing service of resources 
interact in performance components that are connected to a 
network. The resulting transformations enable the 
derivation of performance data like resource load values or 
end-to-end latencies. SymTA/S ([5]) uses formal 
scheduling analysis techniques and symbolic simulation for 
performance and timing analysis. One problem of exact 
methods is their limited ability to capture real workload 
scenarios. Therefore, in many cases simulation-based 
methodologies are used. 

Transaction level models (TLM) have gained wide 
acceptance in the system level design community ([6]). 
Decoupling function from communication and defining 
interfaces that provide specific functions that can be used 
to model abstract communication enables stepwise 
refinement of TLMs. Nevertheless, TLMs are applied on 
different abstraction levels and for very different purposes 
([7]). The major abstraction level relevant for architecture 
exploration is the level of concurrent processes. However, 
in both variants, without and with timing information, the 
abstraction is too high to enable capturing the influence of 
the communication on system performance. In order to 
meet the goals of fast evaluation and high precision we 
concentrate in the following on models that are very 
abstract in respect to functionality and precise concerning 
architecture. 

Ptolemy ([8]) is a design framework that targets at 
modeling, simulation and design of embedded systems with 
special consideration of different models of computation, 
however, with the main focus on specification and code 
generation. The POLIS system ([9]) supports the designer 
in modeling and verification of applications represented as 
CFSMs and guides towards implementation. The 
commercial tool VCC was based on ideas of POLIS and 
included the support of multiprocessor systems, however 
with restricted support of application domains. Metropolis 

([9]) is a design environment for all phases of the design 
process from concept to implementation. It addresses also 
performance evaluation through simulation and formal 
methods using a metamodel that can represent different 
design aspects like function and architecture models as well 
as their mapping. 

SystemQ ([11]) applies transaction level modeling in 
SystemC and uses queuing networks to cover the behavior 
of system-level platforms. Click ([12]) is an approach for 
specifying packet processing functionalities in a very 
efficient way, however, without providing means for the 
evaluation of their performance on specific system 
architectures. StepNP ([13]) is a network processor 
evaluation platform that utilizes Click as input 
specification. The performance simulation part of StepNP 
uses a SystemC TLM, however, includes full functional 
models that are executed on ISSs. 

Trace driven simulation techniques have widely been 
used in the performance evaluation of computer systems in 
general ([14]) or in the area of multiprocessor systems 
([15]). In [16] and [17] traces recorded from the functional 
level are mapped to the architecture and are used in the 
refinement process of the architecture, especially of the 
communication infrastructure. These approaches mainly 
rely on traces related to a given architecture and use them 
in the refinement of the system. In our performance 
evaluation approach we use traces in a more general way 
for the specification of the functionality including the 
mapping of its subtasks to the architectural resources and 
description of SoC workloads. 

3. Trace-based system simulator 

3.1 Concept 

A modular approach is followed for the abstract SoC 
model that can be used to build network processor 
architectures consisting of a variable number of modules 
communicating via a shared SoC bus, as depicted in Figure 
1. The modules may be embedded RISC processors, HW 
accelerators for specific processing tasks and memory 
blocks, either on-chip SRAM or memory controllers for 
off-chip RAM. A buffer manager responsible for storing 
and retrieving variable sized packets in memory and a 
queue manager that administers output queues are attached 
to the bus as well.  

As the abstract SoC model, implemented as a SystemC 
TLM, is intended to be used for the investigation of our 
FlexPath NPU concept ([18]) it has to provide models for 
its pre- and post-processors as well the path dispatcher. 
Pre- and post-processor modules offload the RISC cores 
and are used in both the ingress and egress data path.  

An application that runs on a network processor usually 
comprises the processing of different types of packets that 
receive specific treatment according to their protocol stack 



and some packet individual properties. The basic principle 
of our performance evaluation approach is to abstract the 
involved functionalities by its processing latencies and to 
cover only the interaction of the associated sub-functions 
on the architecture, represented as inter-SoC-module 
transactions, without actually running the corresponding 
program code. This abstraction enables higher simulation 
speed than an annotated, fully-fledged functional model. 
Each sub-function is captured as a sequence of 
transactions, also referred to as trace in this paper. The 
binding decision for the sub-functions is considered by 
storing the corresponding trace in the respective 
architectural resource. A resource may contain several 
traces, one per each sub-function that is bound to it. The 
application is then simulated by forwarding packet 
references through the system and triggering the traces that 
are required for processing particular data packets in the 
respective SoC modules. 
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Figure 1: Architecture model 

Each trace is made up of a sequence of tasks that are 
interleaved with transactions, representing the 
communication with other traces of different resources. 
Transfer of data to/from memory or external interfaces is 
handled in the same way by calling the traces of these 
components. For the sake of high simulation performance, 
processing is denoted simply by its particular execution 
latency on the respective resources. On the other hand, 
superimposing the transactions on shared resources and 
gathering usage data allows a precise evaluation of the 
architecture performance. The complete list of trace 
primitives used in our approach is given in Table 1, taking 
into account the different types of SystemC sc_interface 
that are currently used in our simulation environment. 

Figure 2 shows a basic example for a CPU trace that 
performs some very basic packet processing. It begins with 
two read operations to fetch the packet reference and to 

read the required headers from memory. After a certain 
processing time - e.g. for checking the validity of the 
packet - a lookup is performed, represented by a write to a 
coprocessor and a read to return the result. Then packet 
processing is continued with an intermediate write 
operation and finally the modified parts of the packet are 
written back to the memory and the packet reference is sent 
e.g. to the queue manager. 
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Figure 2: Example of a CPU trace 

The transactions, in this case read and write, are 
annotated with the target module and the amount of data to 
be transferred and are issued on the CPU’s bus interface. 
The bus model, in turn, maps the data volume into the 
corresponding number of words and – if the model covers 
this detail – number of burst transfers, performs arbitration 
and administers the usage of the bus. If the bus is available, 
the CPU requests are forwarded as a sequence of 
transactions to the interface of the particular slave, e.g. the 
SRAM or SDRAM block. In the respective memory, the 
traces for read or write are triggered considering also 
whether it is a single or burst access. In Figure 3 it is 
shown how a single read operation from SRAM and a burst 
read from SDRAM is transformed into traces specifying 
their response behaviors. The start of a transaction is 
indicated by an upward and the end by a downward arrow. 
Write operations are covered correspondingly. 

 

SRAM

Adr

Data

Ax

D(Ax)

SDRAM

Adr

Data

Ax

D(Ax) D(Ax+1)

Burst

t

Latency

t

Latency

D(Ax+2)

Lat Lat

 
Figure 3: Abstraction of memory read operations 

As mentioned above, performing transactions via a bus 
especially requires the consideration of additional delays 
caused by its character as a shared medium. Figure 4 shows 
this for the initial two read accesses in the CPU trace of 
Figure 2, assuming a single read from SRAM and a burst 
read of 3 words from SDRAM. The bus access times 
shown in the timing diagram are dynamically determined 
and contain latencies caused by both the arbitration process 
and the load situation of the bus. 



t

R R

Proc

...

t

SRAM
Bus

Access Bus Access

Proc

SDRAM

 
Figure 4: Expansion of a trace into a sequence of 

transactions 

This short example shows how the influence of both the 
bus and properties of the involved architecture resources 
are considered during simulation. Interaction of 
architecture blocks via point-to-point links is also 
implemented as transaction, however, is handled straight 
forward without the overhead involved in bus based 
communication. 

The trace specification for the system architecture is 
currently a manual process. The timing behaviors of the 
different resources can either be retrieved from data sheets, 
e.g. for memory or specific accelerator blocks, or by 
recording the activity of embedded CPUs with a logic 
analyzer in combination with a disassembler, that allows to 
sequence the program execution. A simpler starting point 
for trace specification are packet processing benchmarks 
like [19] that give typical instruction profiles for specific 
network processing tasks. 

The complete processing of a packet in the system is 
thus defined by the sequence of traces. This sequence is 
predetermined by specifying an initial trace that is executed 
in the processor model and differentiates packets with 
particular protocol stacks. All further processing steps are 
then determined by this initial trace. Therefore, each 
incoming packet is annotated with the information about 
the entry point for the processing of the packet. Control 
dependencies as part of the processing are resolved in 
advance by assigning packets to different entry points. This 
procedure enables to consistently capture the processing of 
packets of the same type, i.e. of the same protocol stack 
(e.g. TCP over IP over Ethernet). 

In order to capture the part of the behavior of real 
applications, which is directly related to specific properties 
of an individual packet (e.g. its size, the resulting priority 
and output port), a reference to a packet info containing 
these values, is forwarded through the simulator. At 
simulation time it is then possible to access this data and 
take it into account when translating the trace specification 
into the correct sequence of transactions. A good example 
for this issue is the packet size that is required in the buffer 
manager to store/retrieve the variable sized packets in/from 
memory. The external traffic workload is specified in a 
trace-like notation. It contains for each arriving packet the 
interarrival time from the preceding packet and all 
information that is needed on its path through the system 
architecture. In this way either artificial traffic or real 

network traffic downloadable in pcap format from the 
internet and transformed to the required trace format can be 
used for stimulation. 

3.2 Implementation 

The simulation model is modular and can easily be 
adapted to different architecture variants. On startup, a 
configuration file is loaded that specifies the properties of 
the SoC architecture to be simulated, especially the number 
and type of the resources as shown in Figure 1, and the data 
to be measured, e.g. load values of resources including the 
bus, queue fill levels or latencies of packets. Moreover, for 
each resource a file is loaded describing the traces, 
corresponding to the sub-functions that are mapped onto 
that resource. 

Interaction between resources may occur mainly on two 
different parts of the communication architecture: either on 
the central SoC bus or on several point-to-point links - 
including interrupt lines - that connect the modules 
directly. For this purpose the following interfaces have 
been defined: 
• bus_master_if: implements read / write on the bus 
• bus_slave_if: implements arbitration (read_request / 

write_request) and read / write in the slave 
• direct_comm_if: implements point-to-point read / write 

and interrupt on any resource type (where required) 
For modeling the bus communication, a concept has 

been chosen that allows the usage of bus models on 
different levels of abstraction. In addition to an abstract, 
timed model, a cycle-accurate model has been developed 
that can be used for a more detailed investigation of 
bottlenecks in the system. For this purpose specific 
wrappers are available that adapt the high level models of 
bus masters and slaves to the detailed bus. Both bus models 
capture the behavior of a CoreConnect PLB bus including a 
priority based arbitration scheme, pipelined address phases, 
split transactions and concurrent transfers on the parallel 
read and write busses. Bus locks are not supported in both 
models, while timeouts are covered only in the cycle 
accurate version. Common transaction level models are 
located on a higher level of abstraction where these effects 
are frequently disregarded, leading to lower precision of 
simulation results. 

Table 1 contains an overview of all trace primitives that 
are used to specify sub-functions in the different resource 
types of the simulator. Not all primitives are allowed in 
each resource type. This depends for example on the 
attachment to the communication architecture or the role as 
bus master or slave. 

Each primitive is annotated with a certain number of 
parameters, like a latency value representing the duration 
of a packet processing subtask or a specific data amount for 
read and write operations (blocking or non-blocking). The 
variable size variants get the data amount via a packet 



reference, as described before. Currently, a processing 
latency is a fixed value representing the required number of 
clock cycles. Variable processing latencies, e.g. for 
covering data dependencies, could easily be implemented 
in the same way as variable size data transfers. Function 
primitives that are translated to transactions with a different 
module of the architecture specify the target module and 
the trace number that has to be executed in the called 
module. Interrupts can be used in accelerators and on some 
of the modules in the ingress data path to cause CPUs to 
execute a specific trace as interrupt service routine, e.g. for 
reading back data or fetching packets for processing. The 
semaphore primitive is of special use to model data 
dependencies when performing parallel tasks. If a CPU has 
called an accelerator and continues its processing, a 
semaphore can be used to indicate a step in a trace where 
the result of the accelerator has to be read back at the latest, 
before processing can be continued. 

 
Trace Primitive Parameters 

Bus Read specific size Data amount, target, sub-funct 
Bus Read variable size Reference to packet info 
Dcomm Read specific size Data amount, sub-funct 
Dcomm Read variable size Reference to packet info 
Bus Write specific size Data amount, target, sub-funct 
Bus Write variable size Reference to packet info 
Dcomm Write specific size Data amount, sub-funct 
Dcomm Write variable size Reference to packet info 
Processing Latency 
Issue Interrupt CPU number, int. service routine 
Semaphore Slave number 
End of trace - 

Table 1: List of trace primitives 
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Figure 5: Class hierarchy of architecture modules 

The different resource types as depicted in the 
architecture in Figure 1 are derived in a class hierarchy that 
adds increasingly more details specific to the respective 
type, as shown in Figure 5. 

The implementations of the interface functions in the 
particular resource type allow controlling the interaction 
between resources and the bus, respectively, and triggering 
the execution of the required traces, realized as concurrent 
processes. 

4. Experimental results 

The trace based performance evaluation approach 
described above is now applied to investigate the 
architecture of a very simple network processor (NPU) 
with a single CPU for packet processing, as shown in 
Figure 6. The packets arriving from four independent MAC 
ports are segmented and stored in SDRAM by the buffer 
manager, the administration data for linking the segments 
belonging to a packet is held in SRAM. The CPU first 
fetches packet descriptors from the buffer manager and 
then the packet header from memory. After processing, 
data is written back and packet descriptors are sent to the 
queue manager, which determines when packets have to be 
retrieved from memory and sent out to the target network 
interface. 
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In this case a very basic processing scenario for IP 
forwarding ([19]) is modeled consuming 400 instructions 
per packet on the CPU, which needs 1.4 clock cycles per 
instruction. Input traffic consists of 64 byte packets. The 
following diagram shows the packet throughput (in million 
packets per second) of the system depending on the offered 
load with the processor clock speed as parameter. 

The results of the evaluation in Figure 7 show that with 
increasing ingress load the NPU first gets into saturation 
due to overload of the CPU. Raising the clock rate of the 
CPU moves the saturation packet rate to a higher value, as 
expected. However, further increase of the load (beyond 
1.5 Mpps) leads to a steep reduction of performance for all 
CPU speeds. An additional simulation with two CPUs 
running at 300 MHz shows a corresponding behavior. An 
analysis of further measurement data that are recorded 
during simulation shows that the increase of input traffic 



leads to a bottleneck at the SDRAM interface. The buffer 
manger autonomously stores more packets than the CPU 
can process and thus reduces the memory bandwidth that is 
available for packet processing, throttling in turn the CPU. 
This example with initially unexpected results shows that it 
is very important to have a system architecture where the 
available resources are balanced and cooperate in an 
efficient manner. Exploration tools that help in finding 
such architectures are therefore of high importance. 
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Figure 7: Simple NPU performance results 

In order to adjust the model either concerning CPU 
speed or number of CPUs only a simple change of 
parameters in a configuration file was necessary. The 
runtime for all simulations contained in the diagram was 
about 10 min. on a 3.2 GHz Pentium 4 with 1 GB memory 
under Linux using SystemC 2.0.1. For generating the 
curves, a total of 270,000 packets have been simulated. 

The experiment shows that our approach is very useful 
for investigating alternative architectural choices with very 
short turnaround times and for an interactive search in the 
solution space. In the experiment we have done this only 
for the processor complex. However, our simulation 
environment provides means to modify other parameters 
(e.g. number of resources, mapping of sub-functions to 
resources or queue sizes) in a similarly efficient way. 

5. Conclusions and outlook 

In this paper we have presented an efficient approach 
for performance evaluation as part of the architecture 
exploration process. The method is based on trace driven 
simulation using transaction level SystemC modeling 
technique with a very abstract specification of the 
functionality and yet very detailed coverage of the behavior 
of the architecture. This allows for a very fast and 
nevertheless precise investigation of SoC architectures. 

Future work will be the support of more heterogeneous 
communication architectures with several buses or NoCs 
and the realization of a GUI that further eases configuration 
and measurement evaluation. The approach is generic in a 
way that it can also be applied in different application areas 
other than packet processing. One major extension will be 

the support of SoC architectures that are adaptable at run-
time. 
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