
Performance Evaluation for System-on-Chip Architectures
using Trace-based Transaction Level Simulation

T. Wild, A. Herkersdorf, R. Ohlendorf

Technical University of Munich
Institute for Integrated Systems

Munich, Germany
http://www.lis.ei.tum.de

Abstract

The ever increasing complexity and heterogeneity of
modern System-on-Chip (SoC) architectures make an early
and systematic exploration of alternative solutions
mandatory. Efficient performance evaluation methods are
of highest importance for a broad search in the solution
space. In this paper we present an approach that captures
the SoC functionality for each architecture resource as
sequences of trace primitives. These primitives are
translated at simulation runtime into transactions and
superposed on the system architecture. The method uses
SystemC as modeling language, requires low modeling
effort and yet provides accurate results within reasonable
turnaround times. A concluding application example
demonstrates the effectiveness of our approach.

1. Introduction

In the design of System-on-Chip (SoC) solutions the
definition of suitable architectures is a vital issue. Typical
SoCs may consist of a broad range of IP modules like
embedded processors, accelerator blocks, interface
modules, a memory subsystem and specifically designed
HW modules. All architectural resources are connected via
a communication infrastructure that provides system-
internal connectivity for the exchange of data and
synchronization. Choosing an appropriate system
architecture and mapping the application’s subtasks to the
resources are important tasks in the process of system level
design ([1]).

As the design space opens up a vast variety of solution
alternatives, the specification of SoC architectures cannot
base on intuitive decisions, which rely on a rough
inspection and an intuitive estimation of design parameters,
and their influence on the quality of the solution. In order
to meet time-to-market as well as design goals concerning
performance, area and power, thorough investigations have
to be carried out. Therefore, a systematic exploration of
design alternatives is necessary that makes up a strong

basis for the final implementation steps, both for the
hardware and software parts of the system.

Starting with modeling and simulating such a system on
RTL level using a hardware description language is not
feasible because of the modeling effort, the simulation
times and the inability to capture the behavior of mixed
HW/SW systems. Therefore, the abstraction level has to be
raised. Recently, new modeling languages have been
developed in order to support designers in the early design
stages on system level. Among others like SpecC or
System Verilog, mainly SystemC ([2],[3]) has gained
attraction for design exploration. SystemC allows modeling
of SoCs on a high abstraction level and gradual refinement
for design and verification purposes.

The definition of the system architecture, i.e. the
allocation of architectural resources and the mapping of
tasks under given optimization criteria, is the major step in
system level design. As exploration is an iterative process a
great number of different potential solutions have to be
evaluated regarding their compliance with the design
requirements. This means that the complexity to generate
suitable models for performance analysis as well as the
effort for evaluation have to be strictly limited, in order to
allow the comparison of as much alternatives as required.
On the other hand it is necessary to capture enough
information with high accuracy for making reasonable
design decisions.

For performance analysis a model is necessary that
captures both the function and the characteristics of the
architecture resources adequately. The intrinsic properties
of the architecture as well as the execution behavior of the
application’s subtasks including the memory architecture
have to be taken into account. Moreover, the workload
resulting from external stimuli has to be considered.

In this paper we present a transaction level approach to
evaluate system performance for SoC architectures using
SystemC as modeling language. Traces are used to capture
the behaviors of the application on a high abstraction level
and their interaction on the architecture. This provides high
simulation efficiency combined with easy reconfigurability

3-9810801-0-6/DATE06 © 2006 EDAA

of the underlying model to different resource and mapping
configurations.

The remainder of the paper is organized as follows. In
the following chapter we give an introductory overview of
modeling approaches on system level. Section 3 contains a
description of our method and describes its implementation
in SystemC. In Section 4, we demonstrate the usage of our
simulation approach for a generic network processor
architecture. Section 5 concludes the paper and gives some
outlook for further improvements of our system simulator.

2. Related work

Performance estimation on system level is a topic of
intensive research. Many approaches have been proposed
that rely on different concepts. A Network Calculus based
approach is described in [4] that uses performance
networks for modeling the interplay of processes on the
system architecture. Event streams covering the workload
and resource streams describing service of resources
interact in performance components that are connected to a
network. The resulting transformations enable the
derivation of performance data like resource load values or
end-to-end latencies. SymTA/S ([5]) uses formal
scheduling analysis techniques and symbolic simulation for
performance and timing analysis. One problem of exact
methods is their limited ability to capture real workload
scenarios. Therefore, in many cases simulation-based
methodologies are used.

Transaction level models (TLM) have gained wide
acceptance in the system level design community ([6]).
Decoupling function from communication and defining
interfaces that provide specific functions that can be used
to model abstract communication enables stepwise
refinement of TLMs. Nevertheless, TLMs are applied on
different abstraction levels and for very different purposes
([7]). The major abstraction level relevant for architecture
exploration is the level of concurrent processes. However,
in both variants, without and with timing information, the
abstraction is too high to enable capturing the influence of
the communication on system performance. In order to
meet the goals of fast evaluation and high precision we
concentrate in the following on models that are very
abstract in respect to functionality and precise concerning
architecture.

Ptolemy ([8]) is a design framework that targets at
modeling, simulation and design of embedded systems with
special consideration of different models of computation,
however, with the main focus on specification and code
generation. The POLIS system ([9]) supports the designer
in modeling and verification of applications represented as
CFSMs and guides towards implementation. The
commercial tool VCC was based on ideas of POLIS and
included the support of multiprocessor systems, however
with restricted support of application domains. Metropolis

([9]) is a design environment for all phases of the design
process from concept to implementation. It addresses also
performance evaluation through simulation and formal
methods using a metamodel that can represent different
design aspects like function and architecture models as well
as their mapping.

SystemQ ([11]) applies transaction level modeling in
SystemC and uses queuing networks to cover the behavior
of system-level platforms. Click ([12]) is an approach for
specifying packet processing functionalities in a very
efficient way, however, without providing means for the
evaluation of their performance on specific system
architectures. StepNP ([13]) is a network processor
evaluation platform that utilizes Click as input
specification. The performance simulation part of StepNP
uses a SystemC TLM, however, includes full functional
models that are executed on ISSs.

Trace driven simulation techniques have widely been
used in the performance evaluation of computer systems in
general ([14]) or in the area of multiprocessor systems
([15]). In [16] and [17] traces recorded from the functional
level are mapped to the architecture and are used in the
refinement process of the architecture, especially of the
communication infrastructure. These approaches mainly
rely on traces related to a given architecture and use them
in the refinement of the system. In our performance
evaluation approach we use traces in a more general way
for the specification of the functionality including the
mapping of its subtasks to the architectural resources and
description of SoC workloads.

3. Trace-based system simulator

3.1 Concept

A modular approach is followed for the abstract SoC
model that can be used to build network processor
architectures consisting of a variable number of modules
communicating via a shared SoC bus, as depicted in Figure
1. The modules may be embedded RISC processors, HW
accelerators for specific processing tasks and memory
blocks, either on-chip SRAM or memory controllers for
off-chip RAM. A buffer manager responsible for storing
and retrieving variable sized packets in memory and a
queue manager that administers output queues are attached
to the bus as well.

As the abstract SoC model, implemented as a SystemC
TLM, is intended to be used for the investigation of our
FlexPath NPU concept ([18]) it has to provide models for
its pre- and post-processors as well the path dispatcher.
Pre- and post-processor modules offload the RISC cores
and are used in both the ingress and egress data path.

An application that runs on a network processor usually
comprises the processing of different types of packets that
receive specific treatment according to their protocol stack

and some packet individual properties. The basic principle
of our performance evaluation approach is to abstract the
involved functionalities by its processing latencies and to
cover only the interaction of the associated sub-functions
on the architecture, represented as inter-SoC-module
transactions, without actually running the corresponding
program code. This abstraction enables higher simulation
speed than an annotated, fully-fledged functional model.
Each sub-function is captured as a sequence of
transactions, also referred to as trace in this paper. The
binding decision for the sub-functions is considered by
storing the corresponding trace in the respective
architectural resource. A resource may contain several
traces, one per each sub-function that is bound to it. The
application is then simulated by forwarding packet
references through the system and triggering the traces that
are required for processing particular data packets in the
respective SoC modules.

CPU 1 CPU 2 ACC 1 SRAM SDRAM

SoC BusArbiter

Buffer
Manager

Path
Disp.

Queue
Manager

Pre-
Processor

Post-
Processor

MAC

Traffic Source/Sink

bus_master_if

bus_slave_if

direct_comm_if

Figure 1: Architecture model

Each trace is made up of a sequence of tasks that are
interleaved with transactions, representing the
communication with other traces of different resources.
Transfer of data to/from memory or external interfaces is
handled in the same way by calling the traces of these
components. For the sake of high simulation performance,
processing is denoted simply by its particular execution
latency on the respective resources. On the other hand,
superimposing the transactions on shared resources and
gathering usage data allows a precise evaluation of the
architecture performance. The complete list of trace
primitives used in our approach is given in Table 1, taking
into account the different types of SystemC sc_interface
that are currently used in our simulation environment.

Figure 2 shows a basic example for a CPU trace that
performs some very basic packet processing. It begins with
two read operations to fetch the packet reference and to

read the required headers from memory. After a certain
processing time - e.g. for checking the validity of the
packet - a lookup is performed, represented by a write to a
coprocessor and a read to return the result. Then packet
processing is continued with an intermediate write
operation and finally the modified parts of the packet are
written back to the memory and the packet reference is sent
e.g. to the queue manager.

t

R R W W WW

Proc Proc Proc

R

Figure 2: Example of a CPU trace

The transactions, in this case read and write, are
annotated with the target module and the amount of data to
be transferred and are issued on the CPU’s bus interface.
The bus model, in turn, maps the data volume into the
corresponding number of words and – if the model covers
this detail – number of burst transfers, performs arbitration
and administers the usage of the bus. If the bus is available,
the CPU requests are forwarded as a sequence of
transactions to the interface of the particular slave, e.g. the
SRAM or SDRAM block. In the respective memory, the
traces for read or write are triggered considering also
whether it is a single or burst access. In Figure 3 it is
shown how a single read operation from SRAM and a burst
read from SDRAM is transformed into traces specifying
their response behaviors. The start of a transaction is
indicated by an upward and the end by a downward arrow.
Write operations are covered correspondingly.

SRAM

Adr

Data

Ax

D(Ax)

SDRAM

Adr

Data

Ax

D(Ax) D(Ax+1)

Burst

t

Latency

t

Latency

D(Ax+2)

Lat Lat

Figure 3: Abstraction of memory read operations

As mentioned above, performing transactions via a bus
especially requires the consideration of additional delays
caused by its character as a shared medium. Figure 4 shows
this for the initial two read accesses in the CPU trace of
Figure 2, assuming a single read from SRAM and a burst
read of 3 words from SDRAM. The bus access times
shown in the timing diagram are dynamically determined
and contain latencies caused by both the arbitration process
and the load situation of the bus.

t

R R

Proc

...

t

SRAM
Bus

Access Bus Access

Proc

SDRAM

Figure 4: Expansion of a trace into a sequence of

transactions

This short example shows how the influence of both the
bus and properties of the involved architecture resources
are considered during simulation. Interaction of
architecture blocks via point-to-point links is also
implemented as transaction, however, is handled straight
forward without the overhead involved in bus based
communication.

The trace specification for the system architecture is
currently a manual process. The timing behaviors of the
different resources can either be retrieved from data sheets,
e.g. for memory or specific accelerator blocks, or by
recording the activity of embedded CPUs with a logic
analyzer in combination with a disassembler, that allows to
sequence the program execution. A simpler starting point
for trace specification are packet processing benchmarks
like [19] that give typical instruction profiles for specific
network processing tasks.

The complete processing of a packet in the system is
thus defined by the sequence of traces. This sequence is
predetermined by specifying an initial trace that is executed
in the processor model and differentiates packets with
particular protocol stacks. All further processing steps are
then determined by this initial trace. Therefore, each
incoming packet is annotated with the information about
the entry point for the processing of the packet. Control
dependencies as part of the processing are resolved in
advance by assigning packets to different entry points. This
procedure enables to consistently capture the processing of
packets of the same type, i.e. of the same protocol stack
(e.g. TCP over IP over Ethernet).

In order to capture the part of the behavior of real
applications, which is directly related to specific properties
of an individual packet (e.g. its size, the resulting priority
and output port), a reference to a packet info containing
these values, is forwarded through the simulator. At
simulation time it is then possible to access this data and
take it into account when translating the trace specification
into the correct sequence of transactions. A good example
for this issue is the packet size that is required in the buffer
manager to store/retrieve the variable sized packets in/from
memory. The external traffic workload is specified in a
trace-like notation. It contains for each arriving packet the
interarrival time from the preceding packet and all
information that is needed on its path through the system
architecture. In this way either artificial traffic or real

network traffic downloadable in pcap format from the
internet and transformed to the required trace format can be
used for stimulation.

3.2 Implementation

The simulation model is modular and can easily be
adapted to different architecture variants. On startup, a
configuration file is loaded that specifies the properties of
the SoC architecture to be simulated, especially the number
and type of the resources as shown in Figure 1, and the data
to be measured, e.g. load values of resources including the
bus, queue fill levels or latencies of packets. Moreover, for
each resource a file is loaded describing the traces,
corresponding to the sub-functions that are mapped onto
that resource.

Interaction between resources may occur mainly on two
different parts of the communication architecture: either on
the central SoC bus or on several point-to-point links -
including interrupt lines - that connect the modules
directly. For this purpose the following interfaces have
been defined:
• bus_master_if: implements read / write on the bus
• bus_slave_if: implements arbitration (read_request /

write_request) and read / write in the slave
• direct_comm_if: implements point-to-point read / write

and interrupt on any resource type (where required)
For modeling the bus communication, a concept has

been chosen that allows the usage of bus models on
different levels of abstraction. In addition to an abstract,
timed model, a cycle-accurate model has been developed
that can be used for a more detailed investigation of
bottlenecks in the system. For this purpose specific
wrappers are available that adapt the high level models of
bus masters and slaves to the detailed bus. Both bus models
capture the behavior of a CoreConnect PLB bus including a
priority based arbitration scheme, pipelined address phases,
split transactions and concurrent transfers on the parallel
read and write busses. Bus locks are not supported in both
models, while timeouts are covered only in the cycle
accurate version. Common transaction level models are
located on a higher level of abstraction where these effects
are frequently disregarded, leading to lower precision of
simulation results.

Table 1 contains an overview of all trace primitives that
are used to specify sub-functions in the different resource
types of the simulator. Not all primitives are allowed in
each resource type. This depends for example on the
attachment to the communication architecture or the role as
bus master or slave.

Each primitive is annotated with a certain number of
parameters, like a latency value representing the duration
of a packet processing subtask or a specific data amount for
read and write operations (blocking or non-blocking). The
variable size variants get the data amount via a packet

reference, as described before. Currently, a processing
latency is a fixed value representing the required number of
clock cycles. Variable processing latencies, e.g. for
covering data dependencies, could easily be implemented
in the same way as variable size data transfers. Function
primitives that are translated to transactions with a different
module of the architecture specify the target module and
the trace number that has to be executed in the called
module. Interrupts can be used in accelerators and on some
of the modules in the ingress data path to cause CPUs to
execute a specific trace as interrupt service routine, e.g. for
reading back data or fetching packets for processing. The
semaphore primitive is of special use to model data
dependencies when performing parallel tasks. If a CPU has
called an accelerator and continues its processing, a
semaphore can be used to indicate a step in a trace where
the result of the accelerator has to be read back at the latest,
before processing can be continued.

Trace Primitive Parameters

Bus Read specific size Data amount, target, sub-funct
Bus Read variable size Reference to packet info
Dcomm Read specific size Data amount, sub-funct
Dcomm Read variable size Reference to packet info
Bus Write specific size Data amount, target, sub-funct
Bus Write variable size Reference to packet info
Dcomm Write specific size Data amount, sub-funct
Dcomm Write variable size Reference to packet info
Processing Latency
Issue Interrupt CPU number, int. service routine
Semaphore Slave number
End of trace -

Table 1: List of trace primitives

sc_interface sc_module

direct_comm_if

res_base

res_slave

res_masterslave
res_s_mem

res_ms_cpu

res_ms_acc res_ms_bmg

res_ms_qm

res_ms_pd

res_b_pre

res_b_post

bus_slave_if

Figure 5: Class hierarchy of architecture modules

The different resource types as depicted in the
architecture in Figure 1 are derived in a class hierarchy that
adds increasingly more details specific to the respective
type, as shown in Figure 5.

The implementations of the interface functions in the
particular resource type allow controlling the interaction
between resources and the bus, respectively, and triggering
the execution of the required traces, realized as concurrent
processes.

4. Experimental results

The trace based performance evaluation approach
described above is now applied to investigate the
architecture of a very simple network processor (NPU)
with a single CPU for packet processing, as shown in
Figure 6. The packets arriving from four independent MAC
ports are segmented and stored in SDRAM by the buffer
manager, the administration data for linking the segments
belonging to a packet is held in SRAM. The CPU first
fetches packet descriptors from the buffer manager and
then the packet header from memory. After processing,
data is written back and packet descriptors are sent to the
queue manager, which determines when packets have to be
retrieved from memory and sent out to the target network
interface.

CPU 1 SRAM SDRAM

SoC BusArbiter

Buffer
Manager

Queue
Manager

MAC

Traffic Source/Sink
Figure 6: Simple NPU example

In this case a very basic processing scenario for IP
forwarding ([19]) is modeled consuming 400 instructions
per packet on the CPU, which needs 1.4 clock cycles per
instruction. Input traffic consists of 64 byte packets. The
following diagram shows the packet throughput (in million
packets per second) of the system depending on the offered
load with the processor clock speed as parameter.

The results of the evaluation in Figure 7 show that with
increasing ingress load the NPU first gets into saturation
due to overload of the CPU. Raising the clock rate of the
CPU moves the saturation packet rate to a higher value, as
expected. However, further increase of the load (beyond
1.5 Mpps) leads to a steep reduction of performance for all
CPU speeds. An additional simulation with two CPUs
running at 300 MHz shows a corresponding behavior. An
analysis of further measurement data that are recorded
during simulation shows that the increase of input traffic

leads to a bottleneck at the SDRAM interface. The buffer
manger autonomously stores more packets than the CPU
can process and thus reduces the memory bandwidth that is
available for packet processing, throttling in turn the CPU.
This example with initially unexpected results shows that it
is very important to have a system architecture where the
available resources are balanced and cooperate in an
efficient manner. Exploration tools that help in finding
such architectures are therefore of high importance.

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5

Input load [Mpps]

Th
ro

ug
hp

ut
 [M

pp
s] 200 MHz

300 MHz
400 MHz
500 MHz
600 MHz
2 CPUs 300 MHz

Figure 7: Simple NPU performance results

In order to adjust the model either concerning CPU
speed or number of CPUs only a simple change of
parameters in a configuration file was necessary. The
runtime for all simulations contained in the diagram was
about 10 min. on a 3.2 GHz Pentium 4 with 1 GB memory
under Linux using SystemC 2.0.1. For generating the
curves, a total of 270,000 packets have been simulated.

The experiment shows that our approach is very useful
for investigating alternative architectural choices with very
short turnaround times and for an interactive search in the
solution space. In the experiment we have done this only
for the processor complex. However, our simulation
environment provides means to modify other parameters
(e.g. number of resources, mapping of sub-functions to
resources or queue sizes) in a similarly efficient way.

5. Conclusions and outlook

In this paper we have presented an efficient approach
for performance evaluation as part of the architecture
exploration process. The method is based on trace driven
simulation using transaction level SystemC modeling
technique with a very abstract specification of the
functionality and yet very detailed coverage of the behavior
of the architecture. This allows for a very fast and
nevertheless precise investigation of SoC architectures.

Future work will be the support of more heterogeneous
communication architectures with several buses or NoCs
and the realization of a GUI that further eases configuration
and measurement evaluation. The approach is generic in a
way that it can also be applied in different application areas
other than packet processing. One major extension will be

the support of SoC architectures that are adaptable at run-
time.

6. References

[1] K. Keutzer, et al., “System Level Design: Orthogonalization
of Concerns and Platform-based Design”, IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
Vol 19, 2000

[2] SystemC homepage, http://www.systemc.org
[3] T. Grötker, S. Liao, G. Martin, and S. Swan, “System Design

with SystemC”, Kluwer Academic Publishers, Boston, May
2002

[4] L. Thiele, E. Wandeler, “Performance Analysis of
Distributed Embedded Systems”, in R. Zurawski (Ed.),
“Embedded Systems Handbook”, CRC Press, 2005

[5] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, R.
Ernst, “System level performance analysis – the SymTA/S
approach”, IEE Proc.-Comput. Tech., March 2005

[6] L. Cai, D. Gajski, “Transaction Level Modeling: An
Overview”, CODES+ISSS 2003

[7] A. Donlin, “Transaction Level Modeling: Flows and Use
Models”, CODES+ISSS 2004

[8] J. Buck et al., “Ptolemy: A Framework for Simulating and
Prototyping Heterogeneous Systems,” Int’l J. Computer
Simulation, Apr. 1994

[9] F. Balarin et al., “Hardware-Software Co-Design of
Embedded Systems: The Polis Approach”, Kluwer Academic
Publishers, 1997

[10] F. Balarin, et al., “Metropolis, An integrated Electronic
System Design Environment”, IEEE Computer, April 2003

[11] S. Sonntag, M. Gries, C. Sauer, “SystemQ: A Queuing-
Based Approach to Architecture Performance Evaluation
with SystemC”, Proc. Emb. Comp. Systems: Architectures,
Modeling, and Simulation (SAMOS) 2005

[12] E. Kohler, et al., “The Click modular router”, ACM Trans.
on Computer Systems, Vol. 18, No. 3, 2000

[13] P. Paulin, C. Pilkington, E. Bensoudane, “StepNP: A
System-Level Exploration Platform for Network Processors”,
IEEE Design&Test of Computers, Nov.-Dec. 2002

[14] S.W. Sherman, J.C. Browne, “Trace Driven Modeling:
Review and Overview”, Proc. Symp. On Simulation of
Computer Systems, 1973

[15] A. Prete, G. Prina, L. Ricciardi, “A Trace-Driven Simulator
for Performance Evaluation of Cache-Based Multiprocessor
Systems“, IEEE Trans. Parallel and Distributed Systems, Vol
6, No. 9, 1995

[16] P. Lieverse, P. van der Wolf, E. Deprettere, “A Trace
Transformation Technique for Communication Refinement”,
CODES 2001

[17] A. Lahiri, A. Raghunathan, S. Dey, “Fast performance
Analysis of Bus-Based System-On-Chip Communication
Architectures”, ICCAD 1999

[18] R. Ohlendorf, A. Herkersdorf, T. Wild, “FlexPath NP – A
Network Processor Concept with Application-Driven
Flexible Processing Paths”, CODES+ISSS 2005

[19] R. Ramaswamy., T. Wolf, “PacketBench: A Tool for
Workload Characterization of Network Processing”, IEEE
Workshop on Workload Characterization, October 2003

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

