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ETH Zürich
kuenzli@tik.ee.ethz.ch

Francesco Poletti
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Abstract
Recent research on performance analysis for embedded

systems shows a trend to formal compositional models and
methods. These compositional methods can be used to de-
termine the performance of embedded systems by compos-
ing formal analytical models of the individual components.
In case there exist no formal component models with the
required precision, simulation-based approaches are used
for system-level performance analysis. The often high run-
times of simulation runs lead to the new approach de-
scribed in this paper: Analytical methods are combined with
simulation-based approaches to speed up simulation. We
describe how the simulation models can be coupled with the
formal analysis framework, specify the interfaces needed
for such a combination and show the applicability of the
approach using a case study.

1 Introduction

System-level performance evaluation of heterogeneous
embedded systems becomes increasingly important the
larger these systems are designed. Recently, many process-
ing devices for embedded systems are designed as systems-
on-chip (SoC) [23]. Using this design paradigm, a complete
system consisting of computing, storage and communica-
tion resources is integrated on the same chip. Such a system
may consist of several IP cores and dedicated hardware, as
the Cell processor announced recently by Sony, IBM and
Toshiba [15]. To shorten the design times, predefined and
verified cores are used for newly designed systems [2]. Us-
ing cores, the designers can concentrate on overall system
design instead of working on the individual components.

Performance evaluation of embedded systems can be
broadly divided in two main areas: simulation-based ap-
proaches and formal methods. The trend for simulation-
based performance analysis goes to full system simula-
tion [7, 19, 21].
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Formal methods for performance evaluation are emerg-
ing that enable the analysis of whole systems using holis-
tic [16] and compositional approaches. In particular, the
system can be analyzed using models of the individual com-
ponents that can be later composed to capture the complete
system [17, 10].

Actually, there is no sharp division into simulation-based
approaches and formal methods for system-level analysis.
There exist approaches that abstract communication inter-
nals in system simulation and use transaction-level model-
ing in SystemC [4]. Lahiri et al. present a combined ap-
proach to communication analysis which uses simulation
for parameter extraction and then a formal method for fast
performance analysis [11]. Bobrek et al. also combine sim-
ulation with an analytical method in [3], with focus on the
analysis of shared resource contention. They simulate par-
allel execution of threads and record accesses to shared re-
sources, while a formal analysis model is then used to de-
termine the adjustment of the timing caused by the shared
resource contention.

The long run-times for simulation-based approaches are
a drawback for this class of performance evaluation meth-
ods. Our new method reduces the run-time of an evalu-
ation and reflects the idea of components. In analogy to
component-based design where existing IP blocks are com-
bined to form a SoC, our method allows the designer to
reuse existing analysis models for components – be it a
simulation model or a formal model – for the individual
components and compose them to form the complete sys-
tem model. The existing component models may result from
previous designs or may be delivered by IP vendors. Per-
formance evaluation is then conducted using these trusted
models of the components. The approach presented in [3]
is orthogonal to our approach, as it uses a hybrid approach
for in-component analysis, and could be used in addition to
further decrease simulation time.

The contribution of this paper is the definition of a new
hybrid approach for performance evaluation. In particular,
the definition of the needed interfaces is provided, they were
implemented, and the new method is used in a case study.
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2 Methods for Performance Evaluation
2.1 SystemC-based virtual platform

MPARM is a multi-processor cycle accurate virtual plat-
form based on SystemC [13]. Its purpose is the system-level
analysis of design tradeoffs in the usage of different proces-
sors, interconnects, memory hierarchies and other devices.

Processor cores are modeled by means of an adapted
version of a GPL-licensed ARM Instruction Set Simulator
(ISS) called SWARM [20] and written in C++. Since all of
the hardware devices mentioned above, including the inter-
connection layer, are coded in SystemC, we embedded the
ISS into a SystemC wrapper.

The platform instantiates several memory devices, which
can be used as private or shared memories (cf. Fig. 1). Their
latency can be configured to explore interconnection perfor-
mance under several conditions. We ported the RTEMS [18]
and uclinux [22] operating system to our platform.
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Figure 1. MPARM platform architecture.

2.2 Real-Time Calculus

In [5], Chakraborty et al. present Real-Time Calculus
(RTC), a system-level performance analysis method for em-
bedded systems. It is based on arrival curves and service
curves, a tool to characterize workload and processing ca-
pabilities, respectively.

For a given event stream, let R(t) denote the number of
events that arrive in the time interval [0, t]. The upper arrival
curve, denoted by αu gives an upper bound on the number
of events in any interval. Similarly, a lower bound on the
number of events arriving is given by a lower arrival curve
αl. R, αu and αl are related by the following equations:

αl(∆) = min
λ≥0

{R(∆ + λ) − R(λ)} (1)

αu(∆) = max
λ≥0

{R(∆ + λ) − R(λ)} (2)

The upper and lower arrival curves for an event stream
can be computed from simulation traces. For all possible
intervals ∆ we browse through the trace using a sliding

window of size ∆ and keep the maximum and minimum
number of events that can be seen in the window. The max-
imum leads to the upper arrival curve, the minimum to the
lower curve. The arrival curves describe timing properties
of a class of event streams, for example the average rate,
burstiness, long-term and short-term behavior. The work-
load characterizations for simulation and RTC can hence be
based on the same type of data, which makes RTC suitable
for a combination with a simulation-based approach. The
conversion of the event models from RTC to simulation and
vice versa is described in Sec. 3.

Using RTC, it is possible to determine worst-case bounds
on on-chip memory requirements, overall throughput and
delay, if the following information is available: (1) the ar-
rival curves capturing the workload, (2) a task graph de-
scribing the structure of the application, (3) a mapping of
the tasks to processing units and (4) a scheduling policy on
these resources. Furthermore, it is possible to give bounds
on the utilization of the processing elements in the system
and to get a description of the output event stream after be-
ing processed in the form of an arrival curve. The method
supports the analysis of computation and communication
tasks and several scheduling policies such as fixed-priority
or TDMA.

2.3 Comparison of the Approaches
Before we can combine the two approaches, we have to

validate whether the results of a formal method for perfor-
mance analysis match those of a detailed simulation. There
exist studies comparing the different approaches and dis-
cussing their limitations. But the comparison results in [8, 6]
are obtained for network processors and therefore not suit-
able for the platform and application domain used here.

The approach taken to compare the results is depicted in
Fig. 2. We first defined an input sequence for the simulation
(1). From this sequence with which the first stage of the
matrix multiplication pipeline is triggered, we computed the
upper and lower arrival curves which are used for the formal
analysis method (2). We then performed the simulation of
the system and the analysis (3), and calculated the arrival
curve from the simulation output (4) in order to be able to
compare the two approaches (5).

We perform the comparison based on arrival curves, be-
cause they give a compact characterization of the processed
event streams and we can determine properties of the event
streams, such as delay, burstiness, or timing behavior di-
rectly from these curves.

In Fig. 3, we give the results obtained for a multi-
stage matrix multiplication application. It is organized as
a pipeline, with 8 consecutive tasks of different worst-case
execution times to be executed for the application to com-
plete. The execution platform used for the comparison con-
sists of 4 ARM7 processors connected with a AMBA bus.
The data transfer between the tasks is done using a shared
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Figure 2. Procedure for the comparison of the
analytical approach and the simulation.

memory attached to the bus. We modeled two scenarios
with a different mapping of the tasks to the resources as
shown in Fig. 3(top).

The diagrams in Fig. 3(middle) depict the output ar-
rival curves for the two scenarios. The curves show on the
one hand the arrival curves describing the worst-case out-
put traffic as predicted by RTC and on the other hand they
give the arrival curves describing the output traffic gener-
ated by the simulation. As the modular performance analy-
sis method is based on worst-case analysis, the curves re-
sulting from the analytical method lie outside of the curves
based on simulation (cf. Sec. 2.1), as expected. This can be
interpreted as follows: In case of simulation for scenario 1,
the smallest time interval where there are 4 events is 6 ms,
the largest interval is 9.9 ms for the used trace. For RTC,
the smallest interval is 5 ms, the largest interval is 10 ms.
Fig. 3(bottom) shows that the trends for the output traffic
pattern for the two scenarios that are shown by both RTC
(left) and the simulation (right) match well. This result al-
lows us to claim the ability of RTC to correctly predict the
behavior of a component.

The run-times of the two approaches for the example ap-
plication are shown in Table 1. RTC uses less than a second
to complete whereas the corresponding simulation frame-
work takes between 40 seconds an around 6 minutes to
complete dependent on the waiting time between consecu-
tive activations of the matrix multiplication. This increase in
simulation speed comes at the cost of a pessimistic predic-
tion of task execution, and therefore resource consumption.

3 Interfaces between Simulation and Formal
Method

In this section we will introduce the interfaces needed
to combine system simulators with formal analysis mod-
els for a hybrid analysis. Because formal analysis methods

Sc. Method Run-Time [s]
1 RTC 0.965
1 Simulation 43–321
2 RTC 0.984
2 Simulation 42–384

Table 1. Run-times of evaluation methods for
the 2 different scenarios.
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Figure 3. top: Mapping for the two scenarios.
middle: Comparison between arrival curves
computed from simulation and with RTC
bottom: Comparison between RTC (left) and
simulation (right).

work for non-functional property analysis only, the hybrid
approach can also cover only these aspects and functional
analysis has to be performed using a functional simulator.

T1 T2 T3 T4

simulation
formal

analysis
simulation

S/F-converter F/S-converter

Figure 4. The task chain for hybrid approach
with resource-independent components.

Figure 4 gives an example system model for the hybrid
approach. We can identify two problems, (i.) the interface
from simulation to formal models and (ii.) the interface



from formal analysis models to simulation (cf. Fig. 4). In
order to introduce these interfaces more formally, we define
what we understand by an event trace and an event class.

Definition 1 Event trace. An event trace is a sequence
of events (ei, ti), where ei denotes the event data and ti
the time stamp at which the event data ei is available to
the application. The set of all events is denoted as E, i.e.
(ei, ti) ∈ E.

Definition 2 Event class. An event class is formed by
events that have to be processed in the same way by an ap-
plication. Events belonging to the same event class take the
same path through an application task graph. If (ej , tj) ∈
Ei, then event (ej , tj) belongs to an event class Ei.

3.1 S/F-Converter
The conversion of event streams from the simulation

subsystem into an event model for the formal analysis
method appears to be much simpler than the reverse di-
rection. Once the simulation of a component has fin-
ished, we can analyze the output event traces of the form
(e1, t1), (e2, t2), ..., (ei, ti), (ei+1, ti+1), ... . First, we have
to classify the events in the event trace and annotate them
with the event class they belong to. In the next step we can
derive the upper and lower event arrival curve that represent
each event class Ek with:

R(t) = |{(ei, ti) ∈ Ek : ti ≤ t}|
From R(t), we can then compute αl, αu with equations (1)
and (2) in Sec. 2.2.
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Figure 5. Interface between formal analysis
method and simulator: the S/F-converter.

The event classification and the arrival curve calculation
are performed by the classifier and the trace analyzer shown
in Fig. 5. The event data items ei are sorted according to
the event classes by the data collector. The output from the
trace analyzer, the arrival curves describing the timing of the
event stream are then passed to the formal analysis method,
whereas the event data collection is passed to the functional
simulator for further processing.

3.2 F/S-Converter
An F/S-converter transforms event models that result

from the formal analysis method into event traces used
for the simulation. This conversion tool from the for-
mal method to simulation is more involved than the S/F-
converter introduced in the previous section. In our setup,

with RTC as formal method and the MPARM simulation
framework written in SystemC [9], the problem of design-
ing an F/S-converter (as shown in Fig. 6) can be seen as
designing a SystemC module, which generates events ac-
cording to the arrival curve that was obtained using RTC.
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Figure 6. Interface between simulator and a
formal analysis method: the F/S-converter.

The generated trace of time stamps has to fulfill a set of
requirements: First of all, a generated trace must not violate
neither the upper nor the lower arrival curve received from
the formal analysis. Second, we would like the generated
traces to represent a bad-case, bursty behavior, as arrival
curves are used for worst-case analysis. Nevertheless, the
generated trace should also be representative for the arrival
curve as a whole. In this sense, the generated trace should
show “fractal” behavior [12], i.e. in a short observation in-
terval, the trace should be as bursty as allowed by the up-
per and the lower arrival curve in a short time interval —
whereas for a larger observation interval, the trace should
represent the whole upper and lower arrival curves.

The main idea underlying the proposed event trace gen-
eration algorithm is to use an ON/OFF traffic source (see
e.g. [1]). In contrast to standard ON/OFF models, if our
event generator is in the ON state, we generate events as
soon as we are allowed by the upper curve. Similarly, if in
the OFF state we generate an event only if the lower arrival
curve would be violated otherwise. The basic event trace
generation algorithm consists of three main steps:

1. determine time stamp T at which to switch state

2. generate events according to state while time t < T

3. switch state and go to step 1.

The time t is set to 0 after a state switch and denotes the time
spent in a state. The switch time T is determined using a
Weibull-distribution to best reflect the desired behavior [1].

Additional information needed for the simulator, such as
the event type, which may not be included in the analytical
description of the event stream, has to be passed to the data
extractor. In the data synchronizer the event time stamps
and the corresponding event data are synchronized and used
to trigger the simulator. In the case study presented in the
next section, we use a traffic generator written as a mod-
ule in SystemC to feed the data into the simulator, at times



determined by an event trace generator based on the arrival
curves obtained by the formal analysis method. The traffic
generator module is described in more detail in [14].

3.3 Benefits of hybrid approach
The hybrid approach presented in this paper can be used

to analyze applications that consist of task chains. It is pos-
sible to cut this chain into segments of the chain that are ex-
ecuted on independent hardware resources. These segments
can then be either analyzed using the formal method, and if
not applicable analyzed using a simulator (cf. Fig. 4).

Using the hybrid approach, we can lower the overall ex-
ecution time compared to simulation because of two rea-
sons: (1) The run-time of a single evaluation for the hybrid
approach is significantly smaller than with simulation, be-
cause we replace individual simulator components by for-
mal models. (2) The F/S-converter constructs short, repre-
sentative traces for simulation from the formal model. As
a consequence, less simulation runs are needed for a good
coverage.

Assume that for the task chain given in Fig. 4, we have
to perform n pure simulations to well cover all possible
load scenarios. For the hybrid approach, we still have to
perform n simulation runs for the components before the
S/F-converter, the converter then aggregates the n simula-
tion traces to a single pair of arrival curves, representing the
n traces. The analysis has to be performed only once and the
output of the formal analysis, a trace generated by the F/S-
converter has also to be simulated only once, as the trace is
generated based on the aggregation of all input traces.

The analysis method as it is presented in this paper
can handle feed-forward data flow graphs, without feed-
back loops across the borders between the different analysis
methods. Further, data splits or joins are restricted to oc-
cur in simulation components due to limitations of the for-
mal analysis method used. These usage restrictions shall be
tackled in future work.

4 Case study
For the case study, we analyzed a GSM audio encoder

application. The tasks graph of the application consists of
a chain of 21 consecutive tasks. It receives sequences of
frames as input that have to be encoded before being trans-
mitted. These input frames are guaranteed to respect certain
best/worst case bounds, while the encoded sequences have
also to respect bounds in order to guarantee a good com-
munication. We first specified the load traffic that should be
supported by the GSM encoder application by means of an
arrival curve describing upper and lower bounds on the ar-
rival of packets to be processed by the encoder. After a static
profiling of the application we partitioned the task chain to
be executed on two processors to obtain a balanced system.
The two processors are connected with a AMBA-bus and
communicate over a FIFO-queue located in a shared mem-
ory attached to the bus.

We performed 3 experiments for the analysis of the sys-
tem: (1) We used only RTC, (2) we used the hybrid ap-
proach presented in this paper, and (3) we performed a full
system simulation. For all the 3 experiments we used the
same input load, either event traces (for the simulation) or
the corresponding input arrival curve (for the hybrid ap-
proach and the formal analysis). The input load specifies
the arrival of frames to be encoded.

For the hybrid approach, we partitioned the system as
shown in Fig. 7(left). As described in Sec. 3.2, we use an
F/S-converter to interface between RTC and the simulator.
We replaced one ARM7 processor by its formal model and
integrated a traffic generator into the MPARM simulation
framework. The traffic generator puts the intermediate data
collected from a functional simulation of the GSM encoder
application into the FIFO-queue.

The curves presented in Fig. 7(middle) show the output
arrival curves for the 3 experiments. The curves give up-
per and lower bounds on the number of audio frames that
are finished processing in any time interval. The upper and
lower output curve were calculated for exp. 1 using RTC,
and obtained from the output simulation traces in case of
the hybrid approach (exp. 2) and the simulation (exp. 3) us-
ing the same procedure as described in Sec. 3.1.

The outermost curves give the upper and lower arrival
curve calculated with RTC. RTC is a method for worst-case
analysis, i.e. the other curves have to lie within the bounds
obtained with this method. The curves for the hybrid ap-
proach lie between the curves for RTC and the simulation
curves. This behavior of the hybrid approach is also ex-
pected, as the first part of the analysis was performed using
a worst-case analysis method, and the synthetic trace used
as stimulation for the second part is based on the worst-case
arrival curves.

We now look at the fill level of the intermediate buffer
between the two processors. In case of RTC we predict
that the buffer fill level is at most 5 frames waiting to be
processed. For the pure simulation, the maximum buffer fill
level varies between 1 and 4. Dependent on the simulation
trace used, we derive different design values for the queue
size needed (cf. Fig. 7(right)). In contrast, for the hybrid
analysis run, we can see that the buffer fill level is at most 4
frames waiting in the queue with only a single simulation.

Table 2 gives the run-times for the three different exper-
iments. The times are given for a single evaluation run. The
hybrid approach allows to speed up the simulation by a fac-
tor of 1.73 for our example. This is a significant improve-
ment, because we still simulate more than half of the sys-
tem (cf. Fig. 7(left)). Using the new method described in
this paper, we could (1) speed up the simulation for a single
evaluation run and (2) lower the number of simulation runs
needed for a complete system evaluation.
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Exp. Method Run-Time [s]
1 RTC 0.273
2 Hybrid 292
3 Simulation 508

Table 2. Run-times of evaluation methods for
a single run of the GSM encoder.

5 Conclusion
In this paper, we presented a hybrid approach for system-

level performance evaluation of embedded systems that
combines formal analysis methods with a simulation frame-
work. We defined the interfaces needed for this combination
and showed the applicability using a case study. In addition
to the benefits discussed in this paper, the approach also al-
lows us to shorten the development times for the evaluation
system model. This is due to the fact that not all compo-
nents have to be written as SystemC simulation models, but
analytical components can be used. In future, we would like
to apply the hybrid approach to analyze larger systems. Fur-
thermore, we believe that for the approach presented in this
paper there are more and more application scenarios, as for
the design of embedded systems an increasing number of
reusable components exist and the systems tend to become
more and more complex.
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