
Combining Algorithm Exploration with Instruction Set Design:
A Case Study in Elliptic Curve Cryptography∗

Johann Großschädl 1, Paolo Ienne 2, Laura Pozzi 2, Stefan Tillich 1, and Ajay K. Verma 2

1 Graz University of Technology
Institute for Applied Information Processing

Inffeldgasse 16a, A–8010 Graz, Austria
{johann.groszschaedl,stefan.tillich}@iaik.at

2 Ecole Polytechnique Fédérale de Lausanne
School of Computer and Communication Sciences

CH–1015 Lausanne, Switzerland
{paolo.ienne,laura.pozzi,ajay.verma}@epfl.ch

Abstract

In recent years, processor customization has matured to
become a trusted way of achieving high performance with
limited cost/energy in embedded applications. In particular,
Instruction Set Extensions (ISEs) have been proven very
effective in many cases. A large body of work exists today on
creating tools that can select efficient ISEs given an appli-
cation source code: ISE automation is crucial for increasing
the productivity of design teams. In this paper we show that
an additional motivation for automating the ISE process is
to facilitate algorithm exploration: the availability of ISE
can have a dramatic impact on the performance of different
algorithmic choices to implement identical or equivalent
functionality. System designers need fast feedbacks on the
ISE-ability of various algorithmic flavors. We use a case
study in elliptic curve (EC) cryptography to exemplify the
following contributions: (1) ISE can reverse the relative
performance of different algorithms for one and the same
operation, and (2) automatic ISE, even without predicting
speed-ups as precisely as detailed simulation can, is able to
show exactly the trends that the designer should follow.

1. Introduction

One of the most successful ways to use processors for
complex programmable System-on-Chips (SoCs) is to take a
basic processor architecture and modify it to better suit the
application-domain at hand. This opportunity for customiza-
tion ranks among the most interesting differences between
general-purpose computing—where performance is the all-
dominating parameter—and embedded computing—where
such a one-fits-all strategy is not optimal. Design goals for
embedded SoC are generally more heterogenous and may
express a certain level of performance as a design constraint
∗The research of Johann Großschädl and Stefan Tillich is supported by

the Austrian Science Fund (FWF) under grant number P16952–N04.

and energy consumption or silicon area as the parameters to
minimize. While the design of custom processors and tool
chains from scratch has never been very practical, several
customizable and extensible processors have appeared on
the market with some success [9, 19]. Roughly speaking,
these products provide an architectural template (including
supporting tool chain), which accepts Instruction Set Exten-
sions (ISEs) in the form of application-specific functional
units as shown in Figure 1.

Register File

ALU MUL LD/ST

Data Memory

S
p

e
c
ia

lis
e

d
 P

ro
c
e

s
s
o

r

out1 = F(in1, in2, in3, in4, in5)

out2 = G(in1, in2, in3, in4, in5)

out3 = H(in1, in2, in3, in4, in5)

AFU

Figure 1. Extensible processor with a five-input
three-output application-specific functional unit.

While ISE has been seen so far primarily as an efficient
paradigm for embedded application acceleration, and auto-
matic ISE as a useful tool for fast and effective exploration
of architectural choices, we claim and show in this paper
that an additional motivation to automate the ISE process is
to help algorithm exploration. In many application domains
there exist different algorithmic choices to realize identical
or equivalent functionality, e.g., the use of a prime field or a
binary extension field for the implementation of an elliptic
curve cryptosystem [3]. The effectiveness of these options is
typically evaluated on conventional microprocessors, while
we claim that the potentiality of ISE should always be borne
in mind during algorithm exploration. In fact, we show in
this paper that the availability of ISEs can have a dramatic

3-9810801-0-6/DATE06 © 2006 EDAA

impact on the effectiveness of the different algorithms at
choice, and that it may completely redirect the algorithm
selection. We also show that state of the art techniques for
automatic ISE generation are able to tell exactly the correct
trends that the system designer should follow.

The rest of this paper is organized as follows: in Section
2 and 3 we overview elliptic curve (EC) cryptography and
its underlying arithmetic operations. In Section 4 we study
a number of algorithmic flavors for implementing EC cryp-
tography and demonstrate that ISEs can reverse the relative
performance of different algorithms for one and the same
arithmetic operation, e.g., multiplication in a finite field. We
finally show in Section 5 that an automatic ISE tool can
predict correctly the same trends. Section 6 summarizes the
main results and concludes the paper.

2. Elliptic Curve Cryptography

Public-key cryptography is an integral part of modern
security protocols like SSL or IPSec/IKE [15]. The recent
years have seen a growing interest in elliptic curve (EC)
cryptography, a special variant of public-key cryptography
characterized by a good balance between security and per-
formance. Compared to their traditional counterparts like
RSA, EC systems can use much shorter keys (in the range
of 160–200 bits instead of 1024–2048 bits) to guarantee a
reasonable level of security [3].

From a mathematical point of view, EC systems operate
in the group of points on an elliptic curve defined over a
finite field [3]. Several standard bodies recommend to use
a prime field GF(p) or a binary extension field GF(2m) for
the implementation of EC cryptography. The performance
of an EC cryptosystem is primarily determined by the effi-
ciency of the arithmetic operations in the underlying finite
field, in particular the field multiplication. However, these
arithmetic operations are very computation-intensive since
the operands have a length of ≥ 160 bits. Moreover, certain
arithmetic operations, such as multiplication in binary exten-
sion fields, are not very well supported by general-purpose
processors. This motivated a number of micro-processor
vendors to extend their instruction set architectures with
special instructions to facilitate the efficient implementation
of field arithmetic; two familiar examples are SmartMIPS
[17] and the ARM SecurCore architecture [1].

3. Arithmetic Algorithms

Formally, a finite field or Galois field can be described as
a finite set of elements on which two operations—addition
and multiplication—are defined such that the field axioms
hold [14]. The elements of a prime field GF(p) are simply
the integers from 0 to p−1, while a binary field GF(2m)
consists of binary polynomials of degree up to m−1.

3.1. Multiplication in Prime Fields

The arithmetic in a prime field GF(p) is the conventional
modular arithmetic, i.e., addition and multiplication of field
elements (integers) modulo the prime P. However, since
the operand length (≥ 160 bits) exceeds the wordsize of the
processor, we are forced to represent the operands by arrays
of single-precision words, e.g., arrays of 32-bit words.

We will use the following notation in this paper: Upper-
case letters represent field elements (long integers), while
lowercase letters, usually indexed, refer to the individual
words of a field element. We denote the bitlength of field
elements by n and the processor’s wordsize by w. Following
this notation, we can write an n-bit integer A as

A =
s−1

∑
i=0

ai ·2i·w = as−1 ·2(s−1)·w + · · ·+a1 ·2w +a0, (1)

whereby s = dn/we is the number of words, and all words ai

are in the range of 0≤ ai ≤ 2w−1. For example, a 192-bit
integer A can be represented by an array of six words on a
32-bit processor, i.e., A = (a5,a4,a3,a2,a1,a0).

The multiplication of elements of a prime field GF(p)
is performed in two steps: multiplication of two s-word
integers A and B, yielding a 2s-word product, and reduction
of this product modulo the prime P. Most elliptic curve
cryptosystems use special primes for which the reduction
operation can be accomplished very efficiently [12]. There-
fore, the overall execution time of a multiplication in GF(p)
is dominated by the long integer multiplication.

a0 · b0

a1 · b0

a2 · b0

a3 · b0

a0 · b1

a1 · b1

a2 · b1

a3 · b1

a0 · b2

a1 · b2

a2 · b2

a3 · b2

a0 · b3

a1 · b3

a2 · b3

a3 · b3

a0 · b0

a1 · b0

a2 · b0

a3 · b0

a0 · b1

a1 · b1

a2 · b1

a3 · b1

a0 · b2

a1 · b2

a2 · b2

a3 · b2

a0 · b3

a1 · b3

a2 · b3

a3 · b3

b0b1b2b3

a0a1a2a3

z0z1z2z3z4z5z6z7

b0b1b2b3

a0a1a2a3

z0z1z2z3z4z5z6z7

Schoolbook multiplication Comba multiplication

Time

Figure 2. Schoolbook and Comba multiplication.

There exist two different algorithms for implementing a
long integer multiplication: the schoolbook multiplication
[15] and the Comba multiplication [7] (see Figure 2). Both

algorithms require to carry out exactly s2 single-precision
multiplications for s-word operands, but they differ in the
order in which they process the partial products and in the
number of load/store operations. Since both algorithms are
well documented in the literature, e.g., in [12], we only
summarize their main characteristics in this paper.

The schoolbook multiplication can be implemented ac-
cording to Algorithm 2.9 in [12]. From an algorithmic point
of view, the schoolbook multiplication has a nested loop
structure with a relatively simple inner loop that does the
bulk of computation. The individual words z of the result
Z = A ·B are produced in a row-by-row fashion as shown
in Figure 2. In any iteration of the inner loop, an operation
of the form z+a ·b+u is carried out, whereby a, b, z, and
u are all w-bit words. The result of z+a ·b+u is always a
2w-bit (i.e., double-precision) quantity, and thus it fits into
two w-bit registers.

The inner loop is iterated exactly s2 times, and hence the
number of (w×w)-bit (i.e., single-precision) multiplications
is also s2. Besides the single-precision multiplication and
additions, two load operations (for b and z) and one store
operation (for z) take place in the inner loop. The word a is
loaded in the outer loop and can be kept in a register during
the iterations of the inner loop (see [12] for details).

Comba multiplication [7], depicted on the right of Fig-
ure 2, forms the product Z = A ·B by computing each word
z of Z at a time, starting with the least significant word z0.
A formal description of Comba’s multiplication method is
given in [12, Algorithm 2.10]. The algorithm has a nested
loop structure, whereby the inner loop is iterated s2 times
when the operands have a length of s words. However, the
main differences to the schoolbook method are the order in
which the partial products are generated (see Figure 2), and
that the store operations are performed solely in the outer
loop. A word z of the result Z is written to memory only
after it has been completely calculated. Therefore, Comba’s
method requires fewer memory accesses than the school-
book method.

The operation carried out in the inner loop of Comba’s
method is a “classical” multiply-accumulate operation: two
single-precision words a, b are multiplied and the 2w-bit
product a ·b is added to a cumulative sum. This cumulative
sum is generally larger than 2w bits, and therefore it must
be held in three w-bit registers. In summary, the inner loop
of Comba’s method is iterated s2 times, and each iteration
loads two words from memory and performs a MAC opera-
tion. The store operations are done in the outer loop.

3.2. Multiplication in Binary Fields

The elements of a binary extension field GF(2m) are bi-
nary polynomials (i.e., polynomials whose coefficients are
0 or 1) of degree up to m−1. The addition of two elements

of GF(2m) is simply accomplished by adding the coefficients
of the corresponding binary polynomials modulo 2, which
is nothing else than a logical XOR operation. On the other
hand, the multiplication in GF(2m) is performed modulo an
irreducible polynomial p(t) of degree m [14]. In this paper
we use indexed Greek letters to denote the coefficients of a
binary polynomial, i.e., we write

a(t) =
m−1

∑
i=0

αi · t i = αm−1 · tm−1 + · · ·+α1 · t +α0 (2)

whereby each of the m coefficients is either 0 or 1. Similar
to long integers, we can also store a binary polynomial
of degree m− 1 in an array of s = dm/we single-precision
words. The i-th word ai of a binary polynomial a(t) contains
the w coefficients αi·w, αi·w+1, . . ., αi·w+w−1.

Multiplication in GF(2m) requires multiplying the two
field elements (i.e., binary polynomials) together, yielding a
binary polynomial of degree ≤ 2m−2, and then finding the
residue modulo the irreducible polynomial p(t), which can
be done very efficiently when p(t) is a trinomial or a pen-
tanomial [12]. The standard algorithm for multiplying two
binary polynomials is the so-called Shift-and-XOR method
(shown in Algorithm 1), which is similar to the shift-and-add
algorithm for integer multiplication. Algorithm 1 forms the
product z(t) = a(t)⊗b(t) by scanning the coefficients of the
multiplier polynomial b(t) from βm−1 to β0 and adding the
partial product a(t) ·βi to the intermediate result z(t). Before
adding a(t) ·βi, the intermediate result z(t) must be multi-
plied by t (i.e., left-shifted by 1 bit) to align if for the next
partial product. After m steps, z(t) is the product a(t)⊗b(t).

Algorithm 1. Shift-and-XOR multiplication.

Input: Binary polynomials a(t) and b(t) of degree m−1.
Output: Product z(t) = a(t)⊗b(t) of degree 2m−2.

1: z(t)← 0
2: for i from m−1 by 1 downto 0 do
3: z(t)← z(t) · t +a(t) ·βi

4: end for
5: return z(t)

While Algorithm 1 looks quite simple, it must be consid-
ered that the polynomials have a very high degree and are
stored in arrays of s single-precision words. Therefore, an
actual implementation of Algorithm 1 in software results in
a nested loop structure, whereby the inner loop is iterated
32s2 times if a single word consists of 32 coefficients. Opti-
mized variants of the Shift-and-XOR algorithm, such as the
left-to-right comb method [12], use look-up tables to reduce
the number of both shift and XOR operations .

Virtually all modern processors provide instructions for
a (w×w)-bit multiplication of integers, but not for binary
polynomials. A number of researchers proposed to emulate

l1: lw $t0, 0($t1) # load A[j]

addiu $t1, $t1, 4 # increment A pointer

multu $t0, $t4 # multiply A[j] by B[i]

lw $t2, 0($t3) # load Z[k]

maddu $t5, $t7 # add previous U to product

maddu $t2, $t7 # add Z[k] to product

addiu $t3, $t3, 4 # increment Z pointer

mflo $t6 # read V

mfhi $t5 # read U

sw $t6, -4(t3) # write V to Z[k]

bne $t1, $t8, l1 # branch if not end of loop

Figure 3. Inner loop of schoolbook multiplication.

this missing instruction in software with the help of shift
and XOR operations [13]. This emulated instruction, which
we call MULGF2 as in [13], opens up the possibility to
use word-level algorithms for the multiplication of binary
polynomials, similar to the schoolbook or Comba method
for the multiplication of integers. Word-level algorithms for
binary polynomials are discussed in detail in [10].

4. Implementation on MIPS32

Typical software implementations of an EC cryptosystem
spend the majority of the execution time in the inner loop
of the field multiplication. Speeding up this critical code
section (e.g., through hand-crafted assembly code or dedi-
cated instruction set extensions) can result in a tremendous
performance gain. In the following, we discuss the efficient
implementation of diverse algorithms for field multiplication
on a MIPS32 processor [16], assuming also the possibility
of extending the native instruction set. In addition, we pro-
vide experimental results obtained through simulations with
SimpleScalar [5]. These experimental results include the
timings for a single field multiplication, as well as the total
execution time of a so-called point multiplication, which is
the major building block of an EC cryptosystem [3]. A point
multiplication is performed by a sequence of field operations
(see [12] for details), and hence serves as a benchmark for
the efficiency of the field arithmetic.

4.1. Multiplication in Prime Fields

The execution time of a multiplication in a prime field is
proportional to s2, whereby s is the number of 32-bit words
needed to store an element element of the field. Both the
schoolbook and Comba’s method execute single-precision
multiplications and additions in their inner loops. However,
the inner loop of the schoolbook algorithm can be better
optimized on MIPS32 processors.

The inner loop of the schoolbook method performs an
operation of the form z+a ·b+u, with all four operands
being 32-bit words. A whitepaper by MIPS Technologies [4]

Operation Schoolbook Comba

Field mul. (conv. SW) 629 827
Field mul. (with ISE) 485 441

Point mul. (conv. SW) 2.16 ·106 2.84 ·106

Point mul. (with ISE) 1.67 ·106 1.47 ·106

Speed-up factor 1.29 1.93

Table 1. Simulation results for 192-bit prime field.

recommends to use the MADDU instruction to add the 32-bit
words z and u to the 64-bit product a ·b. Figure 3 illustrates
a highly-optimized assembly implementation of the inner
loop of the schoolbook method (see [4] for a more detailed
description). A MIPS32 core with a (32×16)-bit multiplier
executes the instruction sequence shown in Figure 3 in 11
cycles, provided that the instructions are ordered properly
to fill load/branch delay slots and that the load operations hit
the data cache. Table 1 specifies the overall execution time
of a multiplication in a 192-bit prime field (s = 6) and the
execution time of a full point multiplication.

As mentioned before, the inner loop of the schoolbook
method performs a single-precision multiplication and two
additions. Obviously, the highest performance gain can be
achieved when all operations of the inner loop are combined
into a single custom instruction, which was first proposed in
[8]. It was shown in [11] that the availability of a custom
instruction for calculating z+a ·b+u allows to implement
the inner loop with only 7 instructions. As a consequence,
the overall execution time of a field multiplication is reduced
from 629 to 485 clock cycles (see Table 1), and the point
multiplication becomes approximately 29% faster.

l1: lw $t0, 0($t1) # load A[j]

lw $t2, 0($t3) # load B[k]

addiu $t1, $t1, 4 # increment A pointer

maddu $t0, $t2 # (HI|LO)=(HI|LO)+A[j]*B[k]

bne $t3, $t4, l1 # branch if not end of loop

addiu $t3, $t3, -4 # decrement B pointer

Figure 4. Inner loop of Comba multiplication.

The inner loop of Comba’s multiplication technique per-
forms a “classical” MAC operation, i.e., two 32-bit words
are multiplied and the product is added to a running sum. At
a first glance, it seems that the MADDU instruction provides
exactly the functionality needed for this operation. However,
the problem is that the accumulator of a standard MIPS32
core is only 64 bits wide, and thus the MAC unit is not able
to sum up several 64-bit products without overflow. Accord-
ing to our experiments, the inner loop of Comba’s method
can not be executed in less than 18 cycles on a MIPS32 core.

All limitations of the MIPS32 architecture can be easily
mitigated by tailoring the MAC unit to suit the needs of long
integer arithmetic. Comba’s multiplication method requires

a MAC unit with a “wide” accumulator so that a number
of 64-bit products can be summed up without overflow. On
a MIPS32 processor with a “wide” accumulator, the inner
loop of the Comba multiplication can be implemented as
shown in Figure 4. Any iteration of the loop requires only
six clock cycles to complete, even on a MIPS32 processor
with a (32×16)-bit multiplier, since the BNE instruction can
be executed during the second cycle of the MADDU. The two
ADDIU instructions, which do simple pointer arithmetic, are
used to fill a load and branch delay slot, respectively. Our
simulations show that an extended MIPS32 core is able to
execute a 192-bit Comba multiplication in 441 clock cycles
(see Table 1), which is almost twice as fast as the implemen-
tation with native MIPS32 instructions. Also the full point
multiplication is accelerated by roughly the same factor.

The most important aspect to observe is that instruction
set extensions change the relative performance of the two
algorithms: the schoolbook method is faster on a conven-
tional MIPS32 processor, but the Comba method wins when
custom instructions are available.

4.2. Multiplication in Binary Fields

A concrete implementation of the inner loop of the Shift-
and-XOR method (Algorithm 1) performs simple operations
like loads, stores, shifts, and XORs on 32-bit words (see
[12] for for a detailed description). While the inner loop is
quite fast on MIPS32 processors (less than 10 cycles), the
performance of the algorithm suffers from the high number
of iterations. The MIPS architecture has no special features
from which the inner loop operation could profit. Therefore,
the execution time for a multiplication in a binary field is
relatively slow (e.g., 2758 cycles when the polynomials have
a degree of 191), which also impacts the overall execution
time of the full point multiplication (see Table 2).

Operation Shift+XOR Word-level

Field mul. (conv. SW) 2758 7848
Field mul. (with ISE) 2151 456

Point mul. (conv. SW) 4.05 ·106 10.42 ·106

Point mul. (with ISE) 3.28 ·106 0.87 ·106

Speed-up factor 1.23 11.97

Table 2. Simulation results for 191-bit binary field.

The inner loop of the Shift-and-XOR multiplication can
be accelerated by combining a shift and an XOR operation to
a custom instruction. This custom instruction can be simply
realized by passing one operand of the XOR through a barrel
shifter, similar to the ARM architecture. Using the custom
instruction saves two clock cycles in any iteration of the
inner loop, which reduces the overall execution time of a
multiplication in GF(2191) from 2758 to 2151 cycles.

The word-level multiplication algorithms are adoptions
of the schoolbook and the Comba method for binary polyno-
mials. Both have in common that the performance depends
heavily on the efficiency of the MULGF2 instruction. How-
ever, since this instruction is not available on conventional
MIPS32 processors, it must be emulated in software using
shift and XOR instructions [13]. Despite our best effort, we
were not able to reduce the execution time of the MULGF2
operation to less than 190 cycles. Therefore, the word-level
algorithms are very slow on a MIPS32 processor.

An obvious way to speed up the word-level technique is
to implement the MULGF2 instruction in hardware, e.g., on
a dedicated polynomial multiplier. Executing the MULGF2
instruction in hardware in one or two cycles accelerates
the word-level multiplication by a factor of as much as 12
compared to a conventional software implementation with
emulated MULGF2. This tremendous performance gain is
not surprising when considering that the emulation of the
MULGF2 instruction requires 190 cycles. Table 2 contains
the execution time of the word-level multiplication with and
without hardware support for the MULGF2 operation.

Our simulation results clearly demonstrate that instruc-
tion set extensions change the relative performance of the
two algorithms. The conventional software implementation
of the word-level multiplication with emulated MULGF2
instruction is much slower than the Shift-and-XOR method.
However, the situation is totally different when MULGF2
is executed in hardware. In this case, a field multiplication
according to the word-level technique is almost five times
faster than the Shift-and-XOR method (see Table 2).

5. Automatic Exploration

The typical design flow for manual selection of ISE is
as follows: the designer takes the source code of the fastest
possible software implementation as starting point and tries
to identify the critical code sections. Thereafter, ISEs are
defined and evaluated with the goal to speed up the critical
code sections. However, this approach is not viable since it
leads to sub-optimal results in application domains where a
number of different but equivalent implementation options
exist, e.g., different data structures or different algorithms.
EC cryptography is a typical example of such an application
domain since there exist many different algorithms for one
and the same arithmetic operation, e.g., multiplication in a
finite field. This calls for a systematic approach to explore
the algorithmic design space.

Devising tools that attempt to automate the ISE identifi-
cation process is an active research discipline. Several tools
have been presented in the past years [2, 6, 18], and all aim
at efficiently and quickly generating the best ISEs for a given
application by automatic analysis of the application source
code. We applied the automatic ISE (AutoISE) generation

Arithmetic algorithm 2/1 3/1 3/2 6/2

GF(p) Schoolbook 1.11 1.19 1.28 1.34
GF(p) Comba 1.11 1.13 1.21 1.21

GF(2m) Shift-and-XOR 1.44 1.59 1.77 1.89
GF(2m) Word-level 2.02 2.17 5.14 5.48

Table 3. Speed-up factors by automatic ISE.

technique proposed in [2] to the arithmetic algorithms for
EC cryptography from Section 3. The AutoISE tool allows
selection of any number of ISEs from an application source
code, under user-given micro-architectural constraints defin-
ing the number of input/output ports that the chosen ISEs
are allowed to use1. AutoISE uses a simple but effective
estimation of the speed-up for selecting among millions of
identified ISEs. Table 3 summarizes the achieved speed-up
factors depending on the number of input/output ports.

The key point to observe is that, even when using a very
rough performance estimation model, the results obtained
through the automatic ISE tool are in good agreement with
those specified in Section 3; in particular, it shows that the
word-level algorithm for binary fields can be accelerated
by a much higher degree than the other algorithms. In a
manual ISE design flow, the word-level multiplication for
GF(2m) would likely be ignored due to its poor software
performance. On the other hand, automatic ISE tools reduce
the risk of overlooking a good candidate algorithm. These
tools can predict the important trends correctly and guide
system designers efficiently and effectively, while screening
them from architectural details.

6. Conclusions

In this paper we have shown that automatic instruction
set extension is not only a tool for improving the perfor-
mance of embedded application execution or for achieving
fast exploration of customized architecture solutions. An
additional motivation to automate the ISE selection process
is to help algorithm exploration. Via a study based on EC
cryptography, we have shown that the availability of ISE
can have a dramatic impact on the relative performance
of different algorithmic choices. We have first manually
selected ISEs for different EC implementations, and have
measured achieved speed-up by simulation, using a detailed
model of the ISEs chosen. Our study shows for the first time
that the availability of ISE can reverse the relative interest
of different algorithm choices. Furthermore, we have run
an automatic ISE tool and demonstrated that, even without
predicting speed-ups as precisely as detailed simulation can,
it is able to show exactly and in a matter of seconds the
correct trends that the system designer should follow.

1A detailed discussion of the instruction selection process of the Auto-
ISE tool is beyond the scope of this paper. Here we simply want to demon-
strate the usefulness of the AutoISE tool for a high-level exploration.

References

[1] ARM Limited. SecurCoreTM Solutions. Product brief, avail-
able for download at http://www.arm.com, Feb. 2002.

[2] K. Atasu, L. Pozzi, and P. Ienne. Automatic application-spe-
cific instruction-set extensions under microarchitectural con-
straints. In Proceedings of the 40th Design Automation Con-
ference (DAC 2003), pp. 256–261. ACM Press, 2003.

[3] I. F. Blake, G. Seroussi, and N. P. Smart. Elliptic Curves in
Cryptography. Cambridge University Press, 1999.

[4] W. Bond. 64-bit architecture speeds RSA by 4x. Whitepaper,
available for download at http://www.mips.com, 2002.

[5] D. C. Burger and T. M. Austin. The SimpleScalar Tool Set,
Version 2.0. Technical Report CS-TR-97-1342, University
of Wisconsin, Madison, WI, USA, June 1997.

[6] N. Clark, H. Zhong, and S. Mahlke. Processor acceleration
through automated instruction set customization. In Proceed-
ings of the 36th Annual International Symposium on Micro-
architecture (MICRO-36), pp. 129–140. ACM Press, 2003.

[7] P. G. Comba. Exponentiation cryptosystems on the IBM PC.
IBM Systems Journal, 29(4):526–538, Dec. 1990.

[8] J.-F. Dhem. Design of an efficient public-key cryptographic
library for RISC-based smart cards. Ph.D. Thesis, Université
Catholique de Louvain, Louvain-la-Neuve, Belgium, 1998.

[9] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and
F. Homewood. Lx: A technology platform for customizable
VLIW embedded processing. In Proceedings of the 27th
Annual International Symposium on Computer Architecture
(ISCA 2000), pp. 203–213. ACM Press, 2000.

[10] J. Großschädl and G.-A. Kamendje. Instruction set extension
for fast elliptic curve cryptography over binary finite fields
GF(2m). In Proceedings of the 14th Conference on Appli-
cation-specific Systems, Architectures and Processors (ASAP
2003), pp. 455–468. IEEE Computer Society Press, 2003.

[11] J. Großschädl and G.-A. Kamendje. Optimized RISC archi-
tecture for multiple-precision modular arithmetic. In Security
in Pervasive Computing — SPC 2003, LNCS 2802, pp.
253–270. Springer Verlag, 2003.

[12] D. R. Hankerson, A. J. Menezes, and S. A. Vanstone. Guide
to Elliptic Curve Cryptography. Springer Verlag, 2004.

[13] Ç. Koç and T. Acar. Montgomery multiplication in GF(2k).
Designs, Codes and Cryptography, 14(1):57–69, Mar. 1998.

[14] R. Lidl and H. Niederreiter. Introduction to Finite Fields and
Their Applications. Cambridge University Press, 1994.

[15] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

[16] MIPS Technologies, Inc. MIPS32TM Architecture for Pro-
grammers. Available for download at http://www.mips.
com, Mar. 2001.

[17] MIPS Technologies, Inc. SmartMIPS R© Architecture Smart
Card Extensions. Product brief, available for download at
http://www.mips.com, Feb. 2001.

[18] L. Pozzi, K. Atasu, and P. Ienne. Exact and approximate
algorithms for the extension of embedded processor instruc-
tion sets. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, to appear.

[19] J. Turley. Tensilica CPU bends to designers’ will. Micropro-
cessor Report, 13(3):12, Mar. 1999.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

