
Automating Processor Customisation: Optimised Memory Access and Resource
Sharing

Robert Dimond, Oskar Mencer and Wayne Luk
Department of Computing, Imperial College,

180 Queens Gate, London. SW7 2RH
{rgd00,oskar,wl}@doc.ic.ac.uk

Abstract

We propose a novel methodology to generate Appli-
cation Specific Instruction Processors (ASIPs) including
custom instructions. Our implementation balances perfor-
mance and area requirements by making custom instruc-
tions reusable across similar pieces of code. In addition to
arithmetic and logic operations, table look-ups within cus-
tom instructions reduce costly accesses to global memory.
We present synthesis and cycle-accurate simulation results
for six embedded benchmarks running on customised pro-
cessors. Reusable custom instructions achieve an average
319% speedup with only 5% additional area. The maxi-
mum speedup of 501% for the Advanced Encryption Stan-
dard (AES) requires only 3.6% additional area.

1. Introduction

State-of-the-art embedded processing requires optimisa-
tion and balancing of requirements such as performance,
power consumption and area cost. Typically, an accept-
able execution speed must be achieved at the lowest possi-
ble power consumption and within a specified area budget.
Conventionally, the designer either selects an off-the-shelf
instruction processor, or else develops a customised hard-
ware accelerator for the task.

Application Specific Instruction Processors (ASIPs) pro-
vide an alternative solution by allowing the designer to cus-
tomise a base processor to a specific application. An ASIP
can be customised by changing the instruction set to directly
implement frequently performed operations. Such ‘custom
instructions’ provide the speed and efficiency of hardware
for selected program segments, while supporting the rapid
software design flow of a fixed processor. ASIP vendors
provide tools that automate the synthesis of a processor, for
example XTensa (Tensilica) and LISAtek (CoWare). How-
ever, the designer still selects custom instructions. High
level processor description languages [5] facilitate rapid in-
tegration, but do not help with selecting instructions.

ASIP customisation is automated by searching [6] for
an optimal partition of an application between hardware (as
custom instructions) and conventional software (base in-
structions). However, regarding custom instruction selec-
tion as a partitioning problem has a disadvantage: parti-
tioning does not consider reuse of instructions until after
they are selected. Techniques based on regularity extrac-
tion [2, 10], similar to that used for hardware resource shar-
ing seek to reuse instructions but are unable to exploit alge-
braic relationships for reuse over non-identical code.

This paper introduces a novel technique, Similar Sub-
Instructions (SSI) for automatic customisation of an exten-
sible processor. The SSI technique identifies structurally
similar computations that can be implemented using the
same hardware custom instruction. We claim three advan-
tages over previous regularity extraction techniques. 1) We
exploit commutativity in expressions so that instructions
can be reused across expressions that are non-identical.
2) We permit resource sharing for non-identical operators
that can be implemented using the same hardware. 3) Com-
putations may include reads from look-up tables that the
compiler identifies as read-only and can allocate to dedi-
cated custom instruction memories.

2. Related Work

We classify existing techniques for automatic processor
customisation as either partitioning or clustering. Partition-
ing methods [6, 8] divide computation between custom and
base instructions, then optionally perform tests to identify
identical custom instructions that can be reused. Cluster-
ing approaches [2] are driven by regularity extraction and
build instructions to implement frequently occurring seg-
ments. Sun et al. propose a method that combines elements
of both ideas [10].

Our system is similar to clustering approaches [2] al-
though we operate on incidence matrices rather than dags to
exploit commutativity and reuse across non-identical com-
putations. Unlike existing clustering approaches, we also al-

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



J = A⊕ (B >> 6)
K = C ⊕D ⊕ ((E >> 5) + 1)
L = (F >> 6)

(a) System of assignments.
⊕ A (B>>6) C D ((E>>5)+1) (F>>6)
J 1 1 0 0 0 0
K 0 0 1 1 1 0
L 0 0 0 0 0 1

(b) Incidence matrix and chains representation.

Figure 1. Incidence matrix with input chains
example. The ⊕ symbol denotes any binary
commutative operator.

low access to read-only data within custom instructions by
incorporating dedicated memory elements, a technique first
proposed in [8].

Exploiting datapath reuse in an ASIP is first discussed
in Fauth et al. [4]. Their Hardware Modelling Cell (HMC)
serves a similar purpose to our generic operator (genop)
construct that models a hardware block. However, their
work assumes that instructions are manually pre-designed
and only considers reuse at the synthesis stage. Our tech-
nique considers reuse in the context of automatic design.

We use extended versions of techniques from computer
algebra. Our structural recognition technique is inspired by
Van Hulzen [9], which briefly suggests topological sorting
of incidence matrix columns to recognise structure. We also
extend Breuer’s grow factor algorithm [1], originally de-
vised for common sub-expression elimination. Our version
uses a modified ‘figure of merit’ heuristic, adapted to the
problem of finding custom instructions.

3. Similar Sub-Instructions

Our novel technique, Similar Sub-Instructions (SSI) au-
tomatically selects custom instructions within a high level
language compiler. SSI operates by finding repeated sub-
expressions that can be computed using the same hardware.
The technique has two outputs: software including custom
instructions at the appropriate locations and datapaths to im-
plement these custom instructions.

The key principle of our approach is to fit the expressions
in a program region to a model composed of two structures:
Incidence matrices and Chains. Incidence matrices repre-
sent expressions of binary, commutative operators. We use
incidence matrices to identify common structures of expres-
sions in the input code. Chains are sequences of unary op-
erators that represent inputs to incidence matrices. A unary
operator is a table lookup, negation or a constant input bi-
nary operator such as an add or shift. We use chains to find
opportunities to reuse hardware blocks. Any code that does

Algorithm 1: Structural recognition algorithm
Data: Incidence matrix I and input unary operators Itop
Result: New incidence matrix O and input unary operators Otop
begin1

O← Empty matrix with same number of rows asI2
foreach column Ii do3

placed← false4
foreach column Oj do5

if ¬∃k : Iik = 1 ∧Ojk = 1 then6
if topchain← Merge(Itopi, Otopj) then7

placed← true8
Otopj ← topchain9
Vector sum of columns10
Oj ← Oj + Ii11

end12
end13

end14
if ¬placed then15

Add as new column in output matrix16
Oj+1 ← Ii17

end18
end19

end20

not fit the incidence matrix and chains model (e.g. func-
tion calls) is assigned to a temporary variable and left un-
changed. There are four major steps involved that we detail
in the remainder of this section.

3.1. Step A: Structural recognition

The input to the structural recognition algorithm is a set
of incidence matrices. A separate incidence matrix is re-
quired for each binary commutative operator in the program
region being examined. An incidence matrix relates expres-
sion outputs (the row headings) to expression inputs (the
column headings), where a ‘1’ entry implies that the input
is contained in the sum for the corresponding output. For
example, the set of expressions in Figure 1a can be repre-
sented by the incidence matrix of Figure 1b. The advantage
of this representation is that the commutativity of the oper-
ator is explicit. In contrast, a conventional directed acyclic
graph (DAG) or expression tree obscures this information.
Exploiting commutative properties of arithmetic increases
the possibility of finding opportunities for instruction reuse.

In our system, the inputs to an incidence matrix consist
of chains which are unary expression sequences. A chain
can contain any sequence of unary operations, such as ma-
nipulation by a constant, table lookup or read of a tempo-
rary variable. A chain contains at least a read of some in-
put variable which might be external to the program region,
or the output of an incidence matrix. The chain generalisa-
tion allows similar structures to be found in expressions that
contain unary and non-commutative operators and to inte-
grate table-lookups. We find common structures by merg-
ing columns of an incidence matrix subject to the follow-
ing restrictions. Firstly, the chains at the input of each col-
umn (represented by topchains in Algorithm 1) must be sim-



⊕ A (B>>6) C D ((E>>5)+1) (F>>6)
J 1 1 0 0 0 0
K 0 0 1 1 1 0
L 0 0 0 0 0 1

(a) Initial matrix I

⊕ A
J 1
K 0
L 0

(b) O Step 1

⊕ A (B>>6)
J 1 1
K 0 0
L 0 0

(c) O Step 2

⊕ A‖C (B>>6)
J 1 1
K 1 0
L 0 0

(d) O Step 3

⊕ A‖C (B>>6) D
J 1 1 0
K 1 0 1
L 0 0 0

(e) O Step 4

⊕ A‖C (B>>6) D ((E>>5)+1)
J 1 1 0 0
K 1 0 1 1
L 0 0 0 0

(f) O Step 5

⊕ A‖C ((B‖F)>>6) D ((E>>5)+1)
J 1 1 0 0
K 1 0 1 1
L 0 1 0 0

(g) O Step 6

Figure 2. Walk-through of Algorithm 1 start-
ing from Figure 1b. Each step moves a single
column from the input matrix I to the output
matrix O. Column merging occurs at steps 3
(d) and 6 (g). The symbol ‖ indicates a hard-
ware block with multiple modes of operation.

ilar and thus capable of being merged. Secondly, merging
two columns must not create overlap between non-zero en-
tries. This means that columns can not be merged if they
are both inputs to the same row. The first test is a target spe-
cific check, implemented in a Merge function, that the two
chains can be implemented using the same hardware. The
second test is to prevent hardware reuse within the same in-
struction, to enable independent parts of that instruction to
be computed in parallel.

Pseudocode for structural recognition is shown in Algo-
rithm 1. Tests 1 and 2 above are implemented at lines 7 and
6 respectively. The function call Merge at line 7 attempts to
merge two chains and, if successful, returns the merged re-
sult. The merged result is represented by a chain of genops
that we define as:

Genop — A generic operator, or model of a hardware
block that can implement multiple basic operations.

For example, Figure 3a shows three chains each containing
a single operation. Figure 3b shows a possible merge result:
the generated chain contains a single genop that models a

(a) Input chains. (b) Output chain after two
merge operations.

Figure 3. Example Merge function (Algo-
rithm 1) on three sequences of unary opera-
tors. The result models an abstract hardware
adder/subtracter. The control input selects an
original operator sequences.

hardware block capable of implementing all three merged
chains. The Merge function implements a target specific set
of rules that control the extent of functionality that can be
merged into a single genop. For the above example Figure 3,
a rule for a hardware adder block will specify that a con-
stant add and constant subtract can be merged. Other tar-
gets might impose different restrictions to allow more or
less general hardware data-paths to be generated.

Figure 2 shows an example walk through of the algo-
rithm starting from the example of Figure 1. In this case,
two merges of columns take place at steps 3 and 6, giving a
four column wide result.

3.2. Step B: Breuer grow factoring

After structural recognition, the next step is to select
which columns of the matrix to implement within a custom
instruction. The input to this stage is the incidence matrix
from the structural recognition stage, the output is boolean
for each column of the matrix to indicate whether the col-
umn is calculated either inside or outside of the instruction.
We refer to this process as factoring where a custom instruc-
tion is used to implement the sum (using the appropriate op-
erator) of the column set selected as the factor.

Selecting a set of columns is a compromise: adding ad-
ditional terms to the factor means that more work is done
within a custom instruction. However, only expressions that
contain the entire factor will benefit from the generated in-
struction. The objective is to find an optimal solution that
lies somewhere between these points. To accomplish this
we use the heuristic grow factor algorithm, proposed by
Breuer [1]. Breuer’s grow factor algorithm finds an optimal
combination of columns (the factor) to maximise a heuris-
tic figure of merit. Breuer uses a greedy algorithm that adds
the column with the highest individual merit at each stage
which makes it practical to operate on very large matrices.

The heuristic figure of merit favours selection of instruc-
tions that (1) contain a large amount of computation and so
will give a significant speedup above a base instruction se-



quence, (2) can be reused to compute multiple expressions.
We calculate figure of merit using Eq. 1 and Eq. 2, where
the factored rows term gives the number of matrix rows con-
taining the entire factor including the current column c.

FoM(factor) =
∑

column∈factor
FoM(column) (1)

FoM(column c) = Weight(chain)× factored rows
(2)

The chain weight is an estimate of the computational load
of a chain associated with a matrix column. It is computed
as the sum of the weight of all operations in that chain. The
weight of each operation is a metric for how worthwhile it is
to implement that operation in a custom instruction. A high
relative weight is given to operations that translate well into
hardware, for example, table lookups where the table can be
allocated to dedicated RAM or fixed shifts/rotates.

Algorithm 2 gives pseudocode for our version of the
grow factor algorithm. The operation has four iterative
steps:

1. The figure of merit is calculated individually for each
matrix column (Eq. 1) not currently in the factor. Only
rows that contain all of the current factor are included
(the test for this is on line 10).

2. The column with the highest merit computed in the
previous step is added to the current factor (line 14).

3. If the current factor has the highest total figure of merit
(Eq. 2), it is recorded as the best factor and the highest
count updated (line 21).

4. The process is repeated until the factor becomes larger
than the number of inputs (register ports) available to
the custom instruction (line 5), or until every column
is in the factor.

3.3. Step C: Heuristic instruction selection

The heuristic selection stage gives a simple yes/no re-
sponse as to whether each custom instruction is worthwhile.
In our implementation, this test prevents generating instruc-
tions close to, or very similar to those that exist in the basic
instruction set. Without this check, the algorithm will find
2 input add, exclusive OR or other basic operations as cus-
tom instructions.

We use two basic tests. The first automatically approves
instructions with more than a minimum number of inputs.
This allows instructions to be selected that are versions of
basic instructions with more inputs; a three input AND for
example. The second is a mean input weight heuristic that is
intended to select instructions that perform significant com-
putation relative to the number of inputs (to guard against
only selecting wide versions of basic operators).

Algorithm 2: Breuer grow factor algorithm for select-
ing terms to implement within a custom instruction.
FOM is the figure of merit heuristic.

Data: An incidence matrix I and topchains Itop
Result: A set of column numbers factor
begin1

inputs← 02
maxmerit← 03
currentfactor ← ∅4
while inputs < maximum do5

maxcolsum← 06
foreach columnIi do7

colsum← 08
foreach elementIij do9

if ¬∃x ∈ currentfactor : Ixj = 0 then10
colsum← colsum+ Weight(Itopi)11

end12
end13
if colsum > maxcolsum then14

maxcolsum← colsum15
maxcol← i16

end17
end18
inputs← inputs+ inputs added to factor19
currentfactor ← currentfactor ∪maxcol20
if FOM(currentfactor) > maxmerit then21

maxmerit← FOM(currentfactor)22
factor ← currentfactor23

end24
end25

end26

Mean input weight is defined as:

Weight =
figure of merit

width× factored width
(3)

The figure of merit is as calculated in Breuer factorisation
(Section 3.2, Eq. 2). The width is the number of inputs to
the custom instruction. The factored width is the number
of rows in the incidence matrix that contain the entire fac-
tor, equal to the number of uses of the instruction. The ra-
tionale is to benefit instructions that are more than just ba-
sic commutative operations with multiple inputs. Instruc-
tions that do significant computation in the chains will have
a high mean input weight and are thus likely to be selected.
We use a fixed threshold parameter, below which an instruc-
tion is rejected.

3.4. Step D: Hardware generation

Given the incidence matrix (Section 3.1) and factor set
(Section 3.2), we use simple rules to generate the final code.
For every matrix row that contains the factor, we insert the
custom instruction. If the matrix row contains elements not
contained within the factor, we generate code to calculate
the respective input chains and then ‘sum’ (using the appro-
priate binary operator) with the result generated by the cus-
tom instruction. For matrix rows that do not contain the en-
tire factor, we generate conventional code. The process is
best illustrated by the example of Figure 4. Here, the three



⊕ A‖C ((B‖F)>>6) D ((E>>5)+1)
J 1 1 0 0
K 1 0 1 1
L 0 1 0 0P

2 4 1 2
factor 0 1 0 0

(a) Example factoring reproduced from Figure 2.

J = A⊕ custom()
K = A⊕D ⊕ ((E >> 5) + 1)
L = custom()

(b) Resulting code

Figure 4. Example operation of the hardware
generation (Section 3.4) starting from the re-
sult of Figure 2

cases are illustrated. Both J and L contain the factor imple-
mented by the custom instruction (Case 1). J differs from
L in that it contains an additional term (Case 2). K does
not contain the factor, and so has to be implemented with-
out the custom instruction (Case 3). We generate custom in-
struction hardware to implement the sum of the input chains
for each column in the factor.

4. Implementation

To evaluate our technique, we implemented: (1) An op-
timising C compiler containing the algorithms of Section 3,
(2) A 32-bit pipelined processor that can be extended with
custom instructions, (3) A cycle-accurate simulator.

(1) Our C compiler is implemented using the CoSy
framework and includes a Similar Sub-Instructions phase
together with two groups of conventional optimisation tech-
niques. The first, pre-optimisation group helps to expose po-
tential custom instructions. The second post-optimisation
group, improves the quality of the code containing cus-
tom instructions. Pre-optimisation includes loop unrolling,
so that the regularity of looping structures is exposed and
detection of read-only arrays (look-up tables), so that table
look-ups can be implemented within a custom instruction.
Post-optimisation includes scheduling base and custom in-
structions to minimise pipeline stalls.

(2) Our ASIP processor is generated to support the cus-
tom instructions selected by the compiler and the MIPS in-
teger instruction set. To obtain area and clock-rate results,
we place and route the ASIP on a Xilinx XC2V2000 FPGA.

(3) Cycle accurate simulation is provided by extending
the SimpleScalar [3] framework to support our processor.
The simulator includes a memory system model which is
configured for a typical embedded MIPS processor with
2KB of instruction cache and a data cache size of 1 or 2KB.
The caches are direct mapped with a random replacement

Figure 5. Area and overall performance for
processors with and without custom instruc-
tions, scaled by maximum clock rate of the
custom processor.

policy and 16 byte block size, with all other parameters set
to SimpleScalar defaults.

5. Results

To demonstrate our methodology, we use our C compiler,
generated ASIP processor and cycle-accurate simulator de-
scribed in Section 4 to obtain results for six application
benchmarks. We select benchmarks from the cryptography
(AES, Blowfish) and image processing (Colorspace conver-
sion, Laplace edge detection, SUSAN edge detection, Dis-
crete Cosine Transform) domains. AES, Blowfish and SU-
SAN are part of the MiBench [7] suite. In all cases the
code was not hand optimised with the exception of adding
static to the definition of certain arrays so that they could
be recognised as read-only by the compiler.

Table 1 shows example results for an automatically cus-
tomised and a non-customised processor for each bench-
mark. We observe that the custom instruction implementa-
tions require significantly fewer execution cycles compared
to the same benchmark running on the non-customised pro-
cessor. This means that we can achieve the same perfor-
mance at a lower clock rate, or a higher overall perfor-
mance. In addition, there are fewer instructions executed,
so instruction fetch and decode overhead will be reduced.
Adding the custom instructions results in a small clock rate
penalty, although in every case a large performance im-
provement is still achieved, from 21% (DCT) up to 501%
(AES) with a mean of 319% (Figure 5).

The benefit of implementing table look-ups within cus-
tom instructions is shown by the significantly lower perfor-
mance penalty of halving the cache size for the Blowfish,



Benchmark Base MIPS CPU With Custom Instructions
1kb Cache 2kb Cache 1kb Cache 2kb Cache Area cost Custom Insts.
KC Miss KC Miss KC Miss KC Miss RAM[b] Logic[Slices] # Selected # Reuse

Blowfish 2190 26439 2030 18207 931 1270 930 1240 1024 1455 2 2,2
Colourspace 32.8 29 32.8 29 18.3 26 18.3 26 32 1415 1 1
DCT 737 390 737 390 594 130 594 130 64 1380 2 65,65
Edge Detect 36.1 1 36.1 1 28 1 28 1 64 1377 1 3
SUSAN 32.1 71 32.1 41 22.3 41 22.3 41 516 1410 1 31
AES 8.73 142 8.06 107 1.3 15 1.3 15 1024 1412 1 64

Table 1. Simulation and synthesis results showing customised and non-customised processors for
six benchmarks. Core area comprises block RAM usage (bytes) and XC2V2000 SLICES. Execution
cycles/1000 (KC) and number of cache misses for 1kb and 2kb data cache.

SUSAN and AES benchmarks. For example, halving the
size of the data cache for the non-customised processor in-
creases execution time of Blowfish by 8% but has negligible
effect on the customised processor. Supporting table look-
ups within a custom instruction incurs some area penalty
(the RAM column in Table 1), although in all cases this is
significantly less than an additional 1K of cache when tag/-
valid bits and cache logic are considered.

The area efficiency advantage of reusing hardware data-
paths (number of static instruction uses reported in the ‘#
uses’ column) is shown by the low additional area require-
ment, a mere 5% average across all benchmarks. For AES,
the maximum acceleration of 501% is achieved with only
3.6% additional area and only 1kb of block RAM. There
is significant reduction in cache misses, up to 90%, which
constitutes a significant power saving if misses result in ac-
cess to off-chip RAM. We anticipate that the energy saving
of a customised processor will be at least as good as the per-
formance improvement.

In addition, Similar Sub-Instructions reduces compile
time by an average of 10% across our benchmarks. Incor-
porating multiple operations within custom instructions re-
duces execution time of the compiler back-end while adding
only a small contribution to the compilation time itself.

6. Conclusion

We present ‘Similar Sub-Instructions’, a technique for
finding reusable custom instructions that incorporate lim-
ited memory access in hardware look-up tables. Our custom
architectures result in high speedup compared to the fixed
processor at a competitive price in additional area. Much
of the speedup is attributable to the table look-ups that re-
duce costly cache misses, indicating that memory system
customisation is a fruitful direction for ASIP research. In
our future work, we intend to exploit the short solution time
of our technique by targeting a processor configurable at
run-time (e.g. Stretch).

Acknowledgement We are indebted to ACE Associated
Compiler Experts, Celoxica, the EPSRC, Tensilica and Xil-
inx who provided tools and/or funding to support our work.

References

[1] M. A. Breuer. Generation of optimal code for expressions
via factorisation. Communications of the ACM, 12(6):333–
340, June 1969.

[2] P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafzadeh. Instruc-
tion generation and regularity extraction for reconfigurable
processors. In Proc. CASES 2002, pages 262–269, October
2002.

[3] D. C. Burger and T. M. Austin. The SimpleScalar tool set.
[4] A. Fauth et al. Generation of hardware machine models from

instruction set descriptions. In Proc. IEEE Workshop VLSI
Signal Proc., Veldhoven (Netherlands), pages 242–250, Oc-
tober 1993.

[5] G. Braun et al. A novel approach for flexible and consistent
ADL-driven ASIP design. In Proc. DAC, pages 717–722,
June 2004.

[6] K. Atasu et al. Automatic application-specific instruction-
set extensions under microarchitectural constraints. In Proc.
DAC, June 2003.

[7] M.R. Guthaus et al. MiBench: A free, comercially represen-
tative embedded benchmark suite. In Proc. IEEE 4th Annual
Workshop on Workload Characterisation, Austin, TX., De-
cember 2001.

[8] P. Biswas et al. Introduction of local memory elements in in-
struction set extensions. In Proc. DAC, pages 729–734, June
2004.

[9] V.V. Goldman and J.A. van Hulzen. Automatic code vec-
torisation of arithmetic expressions by bottom-up structure
recognition. In Computer Algebra and Parallelism, pages
119–132. 1989.

[10] F. Sun, S. Ravi, and N.K. Jha. Custom-instruction synthe-
sis for extensible-processor platforms. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Sys-
tems, 23(2):216–228, February 2004.


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



