
40Gbps De-Layered Silicon Protocol Engine for TCP Record

H.Shrikumar
Ipsil Inc., Cambridge MA, shri@ipsil.com

Abstract

We present a de-layered protocol engine for termination of
40Gbps TCP connections using a reconfigurable FPGA sili-
con platform. This protocol engine is designed for a planned
attempt at the Internet Speed Record. In laboratory demon-
strations at 40Gbps, this core beat the previous record of
7.2Gbps by a factor of five. We present an aggressive cross-
layer optimization methodology and corresponding design-
flow and tools used to implement this record-breaking TCP
Protocol Engine.

The 40Gbps TCP Offload Engine has been implemented on
a Xilinx FPGA platform, based on a VirtexII-pro 2VP7 de-
vice. Each FPGA device terminates a 10Gbps OC-768 chan-
nel, and the aggregate capacity of the four FPGA devices is
40Gbps. The four 10Gbps channels are intended to be con-
nected to four trunked 10GbE ethernet ports on a router. The
40Gbps TCP implementation has been demonstrated in the
lab in system level as well as gate-level simulations, and live
implementations have been tested with each 10Gbps channel
FPGA board connected back-to-back in transmission tests at
full wire-speed. We believe this to be the fastest TCP protocol
engine to have been implemented so far.

1 Introduction

1.1 De-Layered Silicon Protocol Stacks

The demand for scalable storage accessed through high-speed
networking is increasing; “big-science” applications such as
LHC and LSST [22] are expected to produce 5-10TB per
day, while commercial databases are beginning to reach be-
yond 20TB, and are expected to grow a 100-fold, as shown
in Figure 1 [36] At the same time, optical telecommunica-
tion technologies such as DWDM have enabled the trans-
mission of 200 lambdas on a single optical fibre, each such
channel being modulated at 10 to 40Gbps (OC-768), for an
aggregate capacity of over 6.5Tbps per fibre. Transcontinen-
tal science grids such as the 400Gbps National Lambda Rail
(NLR) are already being deployed. Thanks to cluster com-
puting, the data-production and consumption throughputs of
number-crunching computing clusters have also managed to
keep up with these telecom data-rates, growing at a rate faster
than Moore’s Law.

Figure 1: Storage Demands (Source [36])

It has been widely recognized that transport protocols such
as TCP have the potential to overwhelm the processing power
of a current generation CPU at 10Gbps and higher speeds.
This has led to the development of TCP offload engines. The
fastest commercial implementation of TCP in such an offload
engine today clocks at 7.2Gbps for a single connection [17].

These trends serve as our motivation for “de-layering”,
which is a methodology to implement multiple layers of pro-
tocol stacks in a single flattened aggressively co-optimized
implementation. In the work reported in this paper, we base
our implementation on a scalable silicon implementation of
TCP, called FlowStack. Using this silicon protocol engine,
we construct a storage array, called the Grid Storage Server.
It consists of a distributed disk block- and file-server architec-
ture well suited for Grid Computing applications that can be
implemented at a significantly lower cost that current CPU-
based file-server architectures (27 USD-per-GB for 2TB, and
approaching raw-disk costs for 48TB, Figure 2).

1.2 Organization of this paper

In the following sections, we first introduce the different com-
ponents of the 40Gbps storage server, and their system archhi-
tecture. Each component of the storage array has an instance
of the FlowStack TCP engine implemented in an FPGA. The
architecture of this protocol engine is described next, includ-
ing a brief description of the design methodology called “de-
layering” which allows for aggressive cross-layer oiptimiza-
tion. Finally, we conclude with a statement of the current

1

3-9810801-0-6/DATE06 © 2006 EDAA

Figure 2: Storage and Server Cost Trends (Source [21])

Figure 3: TCP Speed Record and FlowStack

state of the developments, the tests and demonstrations that
have been completed by the implementation for operation at
wire-speed.

2 All-Silicon Grid Storage Server

The Grid Storage Server (Figure 4) is implemented using
two different types of protocol engines, both of which are
based on the FlowStack machine described in this paper. (1)
The 40Gbps WAN connection is terminated, via an OC-768
framer, by a set of 4 Xilinx FPGA boards, which together
implement the 40Gbps TCP termination engine. (2) On the
storage side, an array of 96 hard-disk drives are connected to
the server each using an instance of a 1Gbps silicon protocol
engine, also implemented using FlowStack.

As shown in Figure 4, these direct IP-attached disks to-
gether form a distributed file-server. This aggregation of disks
is orchestrated by a small set of meta-data servers, which run
traditional software implementation of control algorithms for
metadata management, access-control, locking, logging, re-
covery and backup, but since they are not on the fast-path
they are realized using inexpensive and low-performance ma-
chines.

2.1 TCP-Termination Engine and File Server

The TCP termination engine uses the FlowStack machine to
implement a fully standards-complaint TCP/IP stack, and is
capable of saturating a 40Gbps OC-768 pipe with a single or
multiple TCP stream(s). It is implemented completely in sil-
icon, using a set of four FPGA boards each with two 10Gbps
interfaces. These four boards are shown in the right half of
Figure 5.

The TCP-termination engine supports multiple simultane-
ous TCP streams. It maintains one TCP connection per client
on the network side, delivering file-services over RDMA. In
addition it separately maintains one TCP connection per disk-
drive, connecting via a block-server protocol. These two dif-
ferent classes of connections are interconnected to each other
via the file-server application-layer component which is also
resident in the FlowStack silicon (Figure 8).

The TCP/IP stack implemented in silicon in the Grid Server
is fully compliant with the applicable TCP/IP standards. The
TCP protocol is nominally not parallelizable , the shared TCB
state memory, or connection control block, is a point of con-
tention. In our implementation, we use a rotating token con-
stantly cycling between the four boards to allow the updates
to the TCB to be delayed by a few packets, thereby acheiv-
ing both short-term local reordering of packets as well as dis-
tributed state consensus between the four boards.

2.2 Disk Block Server: nbd

Figure 7 shows our all-silicon implementation of the disk
block-server component. Each disk server consists primar-
ily of a traditional inexpensive commodity disk directly con-
nected to the IP router by a silicon protocol engine. This pro-
tocol engine implements in FlowStack hardware the equiva-
lent functionality of a TCP/IP stack plus nbd, a disk block-
server upper layer protocol. Thus, while the meta-data is
managed by the CPU-based meta-data servers, the data-
blocks themselves flow directly from the IP attached disks
into the wide-area Grid fabric; scalably bypassing von Neu-
mann and IO-bus bottlenecks.

3 Design of Silicon Protocol Engine

In this section, we introduce the architectural and design as-
pects of the silicon protocol engine. First we describe some
of the performance limitations of a CPU based approach, and
the adaptiveness shortcomings of a custom ASIC based de-
signs. We follow this up with a description of the FlowStack
engines, its architecture and design methodology.

3.1 Traditional NPU v/s ASIC dichotomy

We would like to compare and contrast FlowStack with the
two competing existing approaches for the implementation of

2

Figure 4: ”Serverless” Grid Storage Server

Figure 5: 4x12port linecard and 40Gbps Grid-Storage Server

protocol offload engines[1], both of which have their serious
limitations. One approach implements the protocol engines
directly in silicon, while the other uses a set of special purpose
RISC CPU cores on a single chip.

The first type of implementation uses custom state-
machines implemented in VLSI ASICs to implement various
elements of a protocol stack. This approach is exemplified by
the iReady TCP Offload processor, EthernetMAX[2] or the
Univ of Oulu WebChip[3]. Manually translating complex
protocol specifications into Verilog gate structures for imple-
mentation in silicon is expensive and inflexible; investments
in the range of $50-70mn have been reported[4].

The second approach to implementing protocol offload is
in the form of a pipeline of RISC processors on a system-on-
a-chip (SoC). This class of implementation is also known as
NPU (Network Processing Units); a number of NPUs have

Figure 6: FlowStack engine in a Xilinx 2VP7 FPGA

Figure 7: FlowStack disk-block server with IDE

been benchmarked in[1]. The current crop of NPU devices
scale upto 4 to 10 Gigabits per second and cost around $200-
500, or in the range of $1000-3000 for a complete network
interface card containing the chip. While the RISC CPU ap-
proach is certainly more flexible and programnmable, it is
not inexpensive and does not scale very well. The techno-
logical future of this architecture is forever tied to the limi-
tations of Moore’s law, which for our purposes is simply not
fast enough.

3.2 The FlowStack Protocol Engine

The FlowStack architecture avoids this conundrum by follow-
ing a design approach which strikes a new balance between
ease of programming and the speed of silicon implementa-
tion.

The principal components of the FlowStack protocol en-
gine are depicted in Figure 3. The engine consists of a rather
thin scaffolding or ECA harness of hand-coded ran-
dom logic which supports the operation of the ECA Table, a

3

rather large AND-OR plane of logic which is implemented
using semi-automated means. This latter logic plane is called
the ECA-table, or Event-Condition-Action table.

The FlowStack Scaffolding contains a collection
of primitive functional units, including counters, registers and
other protocol-specific functional units which are used by the
ECA table. For instance, there are several different types of
counters, some of them are upcounting while other down-
count, and some saturate at the top-count while others are de-
signed to roll-over. Other functional elements include barrel-
shifters, ones-complement adders and LFSR implementations
of CRC32 and CRC16. These counters and functional units
dont have any a-priori assignment; the ECA table can use any
of these structures for any purpose from time to time. How-
ever, each such facility is ideally suited to perform a class of
tasks that are commonly expected in protocol processing.

The ECA-table orchestrates the operation of all the
counters and other functional units in the scaffolding. As
the data arrives into the device, it flows past the ECA table
structure at full wire-speed. The ECA table contains all the
boolean logic terms to parse the packets and to save relavant
information into various machine registers. These registers
are saved in a Context Memory at the end of a packet,
and restored upon the arrival of the next packet in the same
flow.

In a sense, the FlowStack machine can been visualized as a
giant ALU with one single instruction1 and the context mem-
ory is akin to a register file. Conceptually the machine takes
an entire packet as its input word for each beat of its opera-
tion. It indexes into and reads the current status of the context
memory pertaining to the connection and after completing the
computation of all the protocol layers for this packet, it writes
the new status words back to the context memory.

3.3 Layers v/s Slices

The ECA-table is implemented by composting a collection
of slices that are individually implemented and tested. How-
ever, unlike horizontal layers in traditional protocol imple-
mentations, each slice represents a vertical section through
the protocol stack, which follows the life of a packet from the
network interface all the way up the protocol stack to the ap-
plication layer and back down the stack to the egress port on
the network. This vertical orientation of the slices allows the
programmer a first opportunity for cross-layer optimizations.

Each slice is programmed in a language that is syntactically
a simple subset of C and Verilog, and is as easy to code as
traditional software. The statements are of the form –
if (network event) // event
at (context == boolean) // condition
{ context = new values } // action.
While the final compiled ECA-table is monolithic hardware,

1Is it a most complex CISC or a most reduced RISC?

Figure 8: Slices - De-layered Programming Model

the steps that lead to its implementation are modular, with
striking resemblence to software development.

Each such slice is then combined, or composited, along
with all the other slices into the final ECA-table. The scripts
that accomplish this compositing perform some consistency
and coding style checks and can detect and report conflicts
between slices, as follows:

1. Protocol Functional Verification stage: A conflicting
case is a packet that is claimed by two or more ECA
slices. This is disambiguated by specifying a priority
order among the slices, and is analyzed for correctness
using reachability and bisimulation[16] against a tradi-
tional software implementation.

2. Compositing Time: The ECA slice compositing tool can
identify and flag all the overlap cases, which can be ver-
ified against the list of overlaps that have been explic-
itly analyzed during the protocol functional verification
stage.

3. Synthesis time: During logic synthesis, the silicon
compiler or synthesis is instructed via the fullcase
pragma to identify and flag any cases that overlap in their
enabling conditions.

4. At Runtime: The remaining logical conflicts between
cases in the ECA table slices have now been separated
by explicit prioritization of the choices. Each such con-
flict case gets reduced into priority encoder by the FPGA
synthesis tool.

All transitions irrespective of the layer find themselves res-
ident in the ECA table, and anything that is a state variable
goes into the context memory (Figure 9). The synthesis tool
is able to automatically identify homomorphic subsets of the
gate structures in the ECA table, even if they be from concep-
tually unrelated layers or slices, and is able to further combine
them together to reduce the logic and to improve both clock

4

Figure 9: De-layering and Compositing

speed as well as area and power consumption. This is the
second opportunity for optimization which is not available in
either the NPU or custom ASIC approach described earlier.

3.4 FlowStack Advantages

As a result of benefiting from the cross-layer optimization op-
portunities, both those arising during manual implementation
the vertical protocol slices as well as those arising during the
automated synthesis of the composite ECA table, the Flow-
Stack engine produces a silicon core that is simultaneously
very compact, high performance and easy to program.

For instance, a complete implementation of TCP/IP along
with support the the fast path components of RDMA (Re-
mote Direct Memory Access) and nbd (network block dae-
mon) protocols is only about 25,000 gates. This occupies only
about 30% of an inexpensive FPGA device, such as the Xilinx
Spartan. Alternatively, it can be commercially implemented
in custom silicon for even further savings.

Arising from a combination of the fact that the FlowStack
design already has very few gates complexity to begin with,
and the fact that most real-life protocols, especially when
carefully optimized, have a fairly regular structure, the re-
sulting FlowStack core is both very small and capable of
very high speed operation. In a Xilinx Virtex-II FPGA,
the FlowStack engine can be clocked in excess of 125Mhz
clock-speeds, at which speed it is capable of handling several
100Gbps of network traffic.

3.5 FlowStack Engine 40-100Gbps Capability

3.5.1 FlowStack Comparison with traditional NPUs

The FlowStack engine combines the programmability, flex-
ibility and adaptability of software/firmware programmed
Network Processing Units (NPUs) with the speed power and
silicon-area advantages of hard-logic implementation of com-
munication protocols.

In a CPU-based NPU, each word of the incoming packets
requires a variable number of instructions to be processed by
a pipeline stage CPU. This processing time variance requires
that the adjacent pipeline CPU stages be connected using elas-
tic buffers. Since these elastic buffers have to be configured
with memories to hold data comparable to either entire or sig-
nificant portions of network packets, they are usually imple-
mented using off-chip memory.

The total bandwidth required of this FIFO/buffer memory
is lower-bounded by twice the wire-rate speed, at the least;
typically for some headroom to absorb larger peaks in packet
rates, these memories are designed with a throughput of at
least 4x network throughput, for each direction. At line-
speeds of 40-100Gbps, this means that these internal system
buffer/FIFO memories would need a read-write port through-
put of approximately 320Gbps to 800Gbps; these rates are
difficult to attain in affordable designs using current technol-
ogy or in the near future.

In contrast, the process of converting complete protocol
stacks into Verilog or VHDL for implementation in the ASIC
is both very complex and risky. The environment in which
Verilog/VHDL designs are developed is a much lower level of
abstraction than the level at which upper level protocol engine
state machines are defined; this makes the process of man-
ual translation of protocol engines to ASIC devices both very
complex, time-consuming and a risky engineering project.

The FlowStack engine, on the other hand, combines the
best of both worlds. The protocol engine is itself coded in a
process that is rather similar to a software development envi-
ronment, making it easy to modify and verify. Once the verifi-
cation is complete, the protocol engine is reduced or compiled
into a low-level gate implementation by an automated reduc-
tion/compositing process. The result of this process is a sin-
gle flattened AND-OR tabled called the ECA Table, which
can process one word of data from the network port in each
cycle of operation, with zero variance. The design therefore
completely avoids expensive FIFOs.

Word widths in the FlowStack engine can range between
8 to 512 bits. The clock speeds at which the FlowStack en-
gine can operate depends on process technology; speeds in
the range of 100MHz are easily attained in FPGA delivery-
platforms, while speeds in ASIC realizations can certainly be
higher by an order of magnitude. A 256 or 512 bit word-width
can accomodate almost all of the header/control information
in a packet. Thus a FlowStack engine is capable of process-
ing 100 Mega-packets per second. With typical payload sizes
per packet (1 to 10KBytes), this translates into a processing
capability in the range of 100-200 Gbps; the limit therefore is
not in the inherent capability of the FlowStack engine itself
but ultimately in the limits placed on clock speed by the sili-
con pcess-technology used and in limits placed on I/O by the
pin-bandwidth.

5

4 Implementation and Records

The TCP protocol engines have been implemented in Xilinx
2VP7 FPGA platforms, connected with Rocket-IO ports. The
device successfully clocks at 125MHz, which is the speed
needed to process data at 10Gbps at wire-speed. The disk
nbd termination TCP engines have been implemented in Xil-
inx Spartan devices; they support 1Gbps each using a clock of
62.5MHz. The remaining system has been succesfully simu-
lated using the ns2 TCP network simulator for 40Gbps oper-
ation and TCP fairness.

As further work, we plan to test this TCP protocol engine
across a suitable optical fiber cable, as an attempt to better the
current Internet Speed Record.

References
[1] Memik et al., ”Evaluating Network Processors using Netbench,
ACM Trans. on Embedded Computing System (2002)”
[2] Nikos Kontorinis, Dustin McIntire, Zero Copy TCP/IP,
http:/ / www.ee.ucla.edu/ ingrid/ Courses/
ee201aS03/ lectures/ Zero-CopyTCP.ppt

[3] Riihijarvi, P.Mahonen, M.J.Saaranen, J.Roivainen, J.-P.Soininen,
”Providing network connectivity for small appliances: a functionally
minimized embedded Web server”, IEEE Communications Maga-
zine, 39(10), Oct 2001, pp74-79.
[4] ”iReady to Go”, Byte and Switch, April 14,
2004 http:/ / www.byteandswitch.com/
document.asp?doc.id=51001

[5] eVLBI fringes to Arecibo http:/ / www.evlbi.org/
evlbi/ te024/ te024.html

[6] H.-I. Hsiao and D. J. DeWitt. ”Chained Declustering: A New
Availability Strategy for Multiprocessor Database Machines.”, Pro-
ceedings of the 6th Intl Conference on Data Engineering, 1990.
[7] Tom Barclay, Wyman Chong, Jim Gray ”A Quick Look at SATA
Disk Performance”, Microsoft Research, 455 Market St., Suite 1690,
San Francisco, CA 94105
[8] Pei Cao, Swee B. Lim, Shivakumar Venkataraman, and John
Wilkes, ”The TickerTAIP parallel RAID architecture”, Proceedings
of the 20th Annual International Symposium of Computer Architec-
ture, May 1993, 52-63.
[9] M. Stonebraker and G. A. Schloss. ”Distributed RAID - A New
Multiple Copy Algorithm”, Sixth Int’l. Conf on Data Engineering,
pages 430–437, 1990.
[10] J. Ousterhout. ”Why aren’t operating systems getting faster as
fast as hardware?” In Proc. of the Summer USENIX Conference,
pages 247–256, June 1990.
[11] J. Gray, B. Horst, and M. Walker. ”Parity striping of disc arrays:
Low-cost reliable storage with acceptable throughput”. In Proceed-
ings of the Int. Conf. on Very Large Data Bases, pages 148–161,
Washington DC., Aug. 1990.
[12] Lee, E.K., ”Highly-Available, Scalable Network Storage”, 1995
Spring COMPCON, Mar. 1995.
[13] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. ”The HP Au-
toRAID Hierarchical Storage System”, In Proc. of the 15th Symp.
on Operating Systems Principles, Dec 1995.

[14] B. R. Montague, ”The Swift/RAID distributed transaction
driver,” Tech. Rep. UCSC– CRL–93–03, Computer and Informa-
tion Sciences Board, UCSC., 1993.
[15] K. Hwang, H. Jin, and R. Ho, ”RAID-x: A New Distributed
Disk Array for I/O-Centric Cluster Computing”, Proceedings of 9th
IEEE International Symposium on High Performance Distributed
Computing (HPDC-9), August 1-4, 2000, Pittsburgh, pp.279-286.
[16] R. Milner, J. Parrow, D. Walker : ”A Calculus of Mobile Pro-
cesses - Part I” – LFCS Report 89-85. University of Edinburgh.
[17] Fifth Annual HPC Bandwidth Challenge, http:/ /
www.sc-conference.org/ sc2004/ bandwidth.html
[18] C.Salter, T.Ghosh, Arecibo observatory eVLBI experimental
setup, personal communication, Dec 2004.
[19] Christian Tanasescu, SGIInc., ”From Top500 to Top20Auto
Survey of HPC Installations in the Automotive Indus-
try”, SC-2003 Conference, Phoenix, November 18,2003.
http:/ / www.top500.org/ lists/ 2003/ 11/
Top20Auto Top500V2.pdf
[20] Alan Dix, Janet Finlay, Gregory Abowd and Russell Beale,
”Human Computer Interaction”, Prentice Hall Europe.
[21] E. Grochowski, R.D. Halem, ”Technological impact of mag-
netic hard disk drives on storage systems”, IBM Systems Journal,
July, 2003.
[22] Richard Mount et al, ”The Office of Science Data-Management
Challenge”, Report from the DOE Office of Science Data-
Management Workshops, March - May 2004
[24] Winter Consulting’s 2003 survey of Largest DBs,
tt http:/ / mxtest.wintercorp.com/ vldb/ 2003 TopTen Survey/
TopTenWinners.asp
[25] Jeffrey C. Mogul, TCP offload is a dumb idea whose time has
come, Proceedings of HotOS IX: The 9th Workshop on Hot Topics
in Operating Systems, May 18-21, 2003, Lihue, Hawaii, USA.
[26] D. D. Clark, D. L. Tennenhouse, ”Architectural Considerations
for a New Generation of Protocols”, Proc. ACM SIGCOMM’90.
[27] H. Shrikumar, ”De-Layered Grid Storage Server”, to appear in
ACM SIGBED Review, Fall 2005.
[28] Pat Selinger, ”Top Five Data Challenges for the Next Decade”,
Keynote Address at the ICDE 2005, April 2005.
[29] M. Stonebraker, et al, ”C-Store: A Column-oriented DBMS”,
Proceedings of the 31st VLDB Conference, Norway, 2005.
[30] M. Stonebraker, ”One Size Fits All: An Idea Whose Time Has
Come and Gone”, http:/ / www.cs.brown.edu/ ugur/
fits all.pdf
[31] Daniel J. Abadi, ”The Design of the Borealis Stream Processing
Engine”, Proceedings of the 2005 CIDR Conference, http:/ /
nms.lcs.mit.edu/ papers/ borealis-cidr05.pdf
[32] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A Scal-
able Distributed File System. In Proceedings of the 16th ACM Sym-
posium on Operating Systems Principles, Oct. 1997.
[33] L. Lamport, ”Time Clocks and the Ordering of Events in a Dis-
tributed System,” Comm. ACM, vol. 21, no. 2, 1979.
[34] M. Herlihy and J. Moss, ”Transactional Memory: Architectural
Support for Lock-Free Data Structures ”, Proceedings of the 20th
International Symposium in Computer Architecture, 1993
[35] Miltos D. Grammatikakis and Stefan Liesche, ”Priority Queues
and Sorting Methods for Parallel Simulation”, Software Engineer-
ing, vol. 26, no.5, 2000.
[36] Pat Selinger, ”Top Five Data Challenges for the Next Decade”,
Keynote Address at the ICDE 2005, April 2005.

6

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

