

Abstract—In this paper we describe a methodology to measure

exactly the quality of fault-tolerant designs by combining fault-

injection in high level design (HLD) descriptions with a formal

verification approach. We utilize BDD based symbolic simulation

to determine the coverage of online error-detection and -

correction logic. We describe an easily portable approach, which

can be applied to a wide variety of multi-GHz industrial designs.

Index Terms—Formal Verification, Soft Error Injection,

Error Detection and Correction, Fault/Error Coverage

I. INTRODUCTION

While dimensions and operating voltages of computer

electronics have been shrinking constantly over the last years,

their sensitivity against radiation phenomena causing soft-

errors increased dramatically. Thereby a single radiation event

can cause corruption of one ore multiple data-bits. Several key

radiation mechanisms causing soft-errors have been identified.

Among them are alpha-particles and cosmic radiation.

Protection against cosmic radiation is accomplished by

additional error detection and error correction logic [1]. To

estimate the efficiency of these circuits in detection of (soft-)

errors, several approaches based on fault injection are known.

a) Simulation based injection can be applied early in the

design process. It benefits from a wide variety of fault

models that can be applied to any HLD or transistor level

representation [2], [3], [6].

b) Hardware based fault-injection can be realized in several

ways by irradiation, software- or scan-chain-based

injection. It can be applied when the actual hardware is

available and therefore also the silicon’s sensitivity can be

considered [3]-[5], [7].

Manuscript submitted for review September 11, 2005.

Udo Krautz is with the University of Kaiserslautern at the Electronic Design

Automation Group, P.O. Box 3049, 67653 Kaiserslautern, Germany (e-mail:

krautz@eit.uni-kl.de).

Heinrich Theodor Vierhaus is with the Brandenburg University of

Technology (BTU) at the Computer Science Dept., 03013 Cottbus, P.O. Box

101344, Germany (e-mail: htv@ informatik.tu-cottbus.de).

Matthias Pflanz, Christian Jacobi, Hans-Werner Tast, and Kai Weber are with

IBM Germany (IBM Deutschland Entwicklung GmbH) at the Microprocessor

Development Dept. and the CP Verification Dept., 71032 Boeblingen,

Schoenaicher Str. 220, Germany.

Corresponding author from IBM: Matthias Pflanz: phone: +49-7031-16-5138,

e-mail: mpflanz@de.ibm.com (cj | tast | Kai.Weber@de.ibm.com).

Both approaches, however, are limited in their coverage of the

circuit’s possible state-space as well as the number of faults

that can be considered. The simulation can only analyze one

circuit-state at a simulation-step. With multi-GHz designs and

aggressive pipelining, the simulation covers only small

fraction of the circuit’s state-space. The hardware-injection’s

limitation is its non-availability during the design-process as

well as the overhead of program-execution and analysis. While

the hardware is much faster than the simulation, it is

additionally limited by the amount of faults that can be

injected due to the limited number of circuit nodes that can be

controlled.

Recently Leveugle proposed a approach which is similar to

ours. Both methods overcome the limitations of simulation and

hardware fault injection by formal property checking [9].

While Leveugle showed a basic applicability of formal

methods in conjunction with fault injection, this paper presents

a concrete application. The outcome of our method also

extends the approach presented in [9] by counting certain

states instead of proving states (un)reachable. In contrast to

Leveugle we define a simple VHDL-based fault-injection-

scheme for an HDL-description. By comparing a fault-injected

model (device-under-test, DUT) with a non-fault-injected

model (golden-device) we avoid complex PSL definitions. By

exploiting the structural similarities of both models we are able

to efficiently verify any possible error behaviour with a

property checking approach.

We focus on the ability of any error-detection/correction logic

to handle the injected fault. We categorize 6 classes according

to their behaviour after a fault injection: 4 classes for the

combination of error detected / not detected and error

propagated / not propagated; and 2 classes for the behaviour

error corrected / not corrected. We carry out symbolic

simulation for a given sequential circuit and a determined

number of cycles. This algorithm constructs a BDD

representation of the circuit’s state space reachable within

these cycles. By analysing this BDD we can assign any state to

one of the defined classes and count their elements. With the

given number of elements we calculate the logic’s coverage of

injected faults.

For portability our approach doesn’t need a special reference

model or complex property definitions. The defined

behaviour-classes are applicable to any error-detection and

correction-logic. Therefore no manual abstraction may be

necessary.

Evaluating Coverage of Error Detection Logic

for Soft Errors using Formal Methods

U. Krautz
1
, M. Pflanz

2
, C. Jacobi

2
, H.W. Tast

2
, K. Weber

2
, H.T. Vierhaus

3

1
University of Kaiserslautern,

 2
IBM Deutschland Entwicklungs GmbH,

3
 Brandenburg University of

Technology

3-9810801-0-6/DATE06 © 2006 EDAA

The novel contributions of this paper are the following.

First, our approach is the first to address a coverage-analysis

for error-detection and correction logic with methods of fault-

injection and formal-verification. Second, our approach may

easily be automated, providing a verification-flow for error-

detection/correction coverage. We emphasise the avoidance of

complex property definitions. Third, our proposed fault-

injection-scheme is easily portable to any HDL-design and

allows exhaustive formal analysis of easily adaptable fault

models.

II. SOFT ERROR INJECTION OVERVIEW

In this chapter we give a general overview of the fault

injection scheme. We present our fault-model, a general error-

behaviour classification and our verification approach.

A. Fault-model

Online error detection and correction logic focuses on

transient faults. Sources of these errors aren’t necessarily

permanent silicon defects but randomly occurring effects. Due

to this unpredictable and non-reproducible behaviour, it is

impossible to simulate all effects in advance. Phenomena may

include electromagnetic influences; single-event upsets

through alpha-particle/cosmic radiation, or power supply

fluctuation. Figure 1 shows a delay error at a latch input line.

A critical load on the logic line causes an instable signal at the

latch launch time.

L1

L2

lclk

dclk

d

soft error

@ logic input

setup

launch

lclk

dclk

d

q

QS

E

Fig.1: Soft-Error caused by an additional load at a logic line

Today most soft-errors occur in memory arrays either within

SRAM- or DRAM cells. However, due to further technology-

scaling will increasingly also be affected latches within

combinatorial logic [1]. These latches may be directly hit by a

neutron causing the node to change its signal value due to

ionisation effects. Figure 2 shows a bit-flip in a latch node of

L2 due to a critical load.

L1

lclk

dclk

q

lclk

dclk

d

q

L2

QSE > Qcrit

soft error

@ latch node

(bit flip error)

Fig.2: Latch node bit-flip

These effects will be represented by our fault model. We

use a bit-flip-model that represents the flipping of a signal

value at wires within register- or memory cells. It is a common

abstraction for transient faults.

Despite the fact that a transient fault may occur anywhere in

the circuit, we reduce the injection-point to latches. This is

because transient faults in combinatorial logic will generate

glitches. These are by definition transient and will be

overwritten by correct data, unless the glitch reaches a latch

during launch-time. Then it will be transformed in a constant

faulty signal, affecting the logic behind the latch. We inject

faults in a high-level description of the design. Therefore

injections in combinational logic are not reliable, since the

synthesized circuit may contain a different structure and

therefore the injected fault may have different effects.

In contrast latch-nodes are un-changed during the overall

design flow. Therefore latch-nodes are kept through the

synthesis. To focus injection methodology to latches - reduces

the amount of injection-points in the circuit.

Also we inject only effective faults. A transient fault is

effective if the value of a node is inverted. In reality not every

transient fault induces a faulty behaviour
1
. By modelling a bit-

flip always to the node’s negative value, we reduce the amount

of injected faults. We consider two different fault-scenarios:

a. The input-data of the latch is already corrupt. We thereby

model delay-effects, which may result from line-coupling

in combinational logic. In a master-slave latch-design the

injection is made on the output-data of the L1.

b. The latch-node itself is corrupted due to ionization-

effects. We therefore inject faults in the L2.

In general we define a model to inject faults at the node of the

L2 latch (see also Fig. 3), since any injected fault will change

this value. We thereby reduce the amount of injected fault in a

master-slave latch-design.

1 To change a latch-node a certain critical load Qcrit, created by the

ionization is necessary. Latches might store the correct value even if a signal

is delayed.

L1

OR L2

fi_L2_sel

lclk

dclk

d

 0 1

mux

Fig. 3: Injecting effective Faults by flipping L2-values

Transient faults in combinational logic may create glitches that

will spread through fan-out networks. Also glitches on clock-

wires may affect several latches. Therefore we have to

consider multi-fault-injections, since a single fault-model

might not cover certain errors.

B. Fault-injection

We will now describe the fault-injection-mechanism. As

explained in the previous section, we override signals by their

inverted values to inject faults.

This is realized by a HDL-model describing the injection. A

signal will be overwritten for one clock-cycle. Since it is

transient this is the minimum time necessary to reach a latch
2
.

We use a VHDL-extension called BugSpray that allows

reading and overriding inputs and outputs as well as internal

signals of the original VHDL. This allows changing values

without changing the code of original VDHL. For fault

injection, we define a fault vector in a BugSpray VHDL file

which has one bit corresponding to every latch in the DUT.

The formal verification tool generates all possible

combinations for this fault vector; a ‘1’ in the respective

position will flip the corresponding latch. With an ‘n-hot’

function the number of simultaneous error injections is limited;

for single-bit injection, e.g., we force the fault vector to

contain exactly one ‘1’, but in an arbitrary position.

For injection, all input-signals to a latch-stage are read via

BugSpray and combined to form a single data-vector. Then a

fault-vector is generated to select the bits to be inverted. The

faulty data-vector generated by the injection is used to

overwrite the output of this latch-stage for one clock-cycle.

In pipeline designs this approach can be extended to every

pipeline-stage, each creating an appropriate fault-vector.

C. Classification

 A transient fault on an internal circuit node may propagate

through the logic and corrupt at least one of the model’s

primary outputs; the fault is called observable in that case.

Note that it may take multiple cycles till the fault corrupts the

primary output. It can also happen that the fault does not

propagate to a primary output, in which case it is called

unobservable. This may be the case if the error was

2 Not including delay-effects of the silicon-implementation.

overwritten by correct data, e.g., a multiplexer might not select

the faulty data. The error detection logic may detect a certain

fault and recognize it for further handling or may not detect it.

We define four classes for coverage measurement of detection

circuits:

TABLE 1: PROPERTY CLASSIFICATION

Table 1 shows the classification of different properties. By

counting the number of events for each class, we can calculate

the coverage of error detection logic as

This puts the number of “good” cases in relation to the number

of total cases. We have to subtract the number of class-3 cases

where actually nothing happens. Note that we say case 0 is a

“good case” although the error propagates to the outputs. This

is because the error is detected and the detection logic can tell

some “recovery unit” to deal with it.

 When we consider correction capabilities, we have to extend

the definition of our classes. The error correction logic may

detect an error and try to correct it. It then gives a message to

the recovery unit that there was an error that has been

corrected. However, it may happen that the correction unit

reports the error as corrected although it still persist; this can

happen, e.g., for an ECC station with too many bit-flips. The

ECC logic then detects the error as “correctable” although it is

not. The classes for correction logic are

Class’(0) = error detected and reported as corrected, but

propagated (false correction)

Class’(1) = error detected and reported as corrected, not

propagated (successful correction)

Class’(2) = error not detected, propagated to outputs

Class’(3) = error not detected, not propagated (e.g.

overwritten faults)

 Class’(4) = error detected but reported as not corrected,

propagated (un-correctable error)

Class’(5) = error detected but reported as not corrected, not

propagated (false detection)

Based on counting the occurrence of these classes, the

coverage for combined error detection and correction logic is

defined as followed:

 Error propagated

to Primary Outputs

Error did not propagate

to Primary Outputs

Error detected Class(0) Class(1)

Error not detected Class(2) Class(3)

 Class(0) + Class(1)

Coveragedet = ––––––––––––––––––––––––

 No. Injected Faults – Class(3)

This again puts in relation the cases deemed “good” versus all

cases, and again we subtract Class’(3) since neither the fault

propagates nor it is detected. We consider cases as “good” if

either no fault propagates to the output, or if the “recovery

unit” is informed of a potential error, i.e., a non-recovered

error is reported.

D. Verification

For verification the previously described injection-scheme is

implemented. The formal verification approach is used to

exhaustively analyse each possible error resulting from

injected faults and each state of the circuit. This section

describes how this is achieved.

For verification we construct a fault-injection-model (FIM) to

be verified. This contains an entity of the design under

verification where errors will be injected (DUT) and a second

entity of the same design where no errors will be injected

(golden device). To both entities the same data is supplied. An

estimation whether an injected fault is observable or not will

be achieved by comparing both instance’s primary outputs.

Since both consist of the same logic structure, the injected

fault must be the reason for any difference at their outputs.

Note that this will not allow any conclusion whether the

implemented logic is functionally correct. This is feasible to

our approach, since we want to measure the error-coverage,

although low coverage might indicate a functional problem
3
.

Note that this also assumes that the error appears in a fixed

amount of time at the output, since we only check for equality

for a fixed number of cycles. This is not a problem for

pipelined structures.

The FIM’s structure is pictured in Fig. 4. Inputs to the FIM are

any faults and data, both considered as vectors of bits. The

output indicates whether a property is satisfied or not. The

FIM’s state space will be exhaustively explored by the

verification-tool counting any states that will satisfy the

property. Additional constrains might need to be established.

3 The approach might be extended to additionally check whether a state

exists for which an error is detected/corrected but no error was previously

injected.

Fig. 4: Verification Environment Structure

Faults are constrained at the ‘fault injection’ module. Here is

an ‘n-hot’ fault-vector ensured, providing a constant amount of

simultaneous faults. In pipelined structures we define

‘simultaneous faults’ as faults injected on one data-value

across the pipeline. Otherwise the injection would allow

several faults on a single value in different pipeline-stages,

rendering the counting erroneous.

Valid data is constrained via the ‘data generator’. Initially any

data is allowed, although some inputs of the design

(DUT/golden device) might be dependent to other

inputs/states, e.g.: Parity or ECC that require special pattern

generation.

Properties are defined in the ‘property checker’ module.

Basically it defines the 4/6 classes as properties. Additionally a

property ‘fault injected’ is defined. This ensures that across the

pipeline on any data-value a fault is injected and by counting it

also provides the total amount of possible injections.

The verification is performed by symbolically simulating the

structure from Fig. 4 using the engine from [14]. Symbolic

simulation builds cycle-by-cycle a BDD representation of the

content of each gate and latch in the design. At every cycle it

also builds a BDD for the properties, in our case for the 4

respectively 6 defined classes. Based on the BDD-

representation input patterns might be calculated that fulfil a

certain property and help a designer to find problems.

Counting elements of the defined classes is achieved by simply

calculating the number of input patterns to the FIM (including

faults) that make one of the 4 (or 6) properties true. Given a

BDD representation of the properties, this can efficiently be

done by enumerating all paths from the BDD’s top variable to

the ‘1’-node.

III. EXPERIMENTS AND RESULTS

The proposed approach was implemented to prove its

feasibility. The proof of concept was accomplished by

examination of a trivial logic. It was then adapted to more

complex designs. The most complex circuit investigated was a

single-precision FPU with a Berger-Code-prediction which is

presented in this chapter.

A. Verification Setup

Figure 5 shows the setup for our coverage evaluation

approach. The verification tool counts hits on defined

properties, which we use to calculate the coverage of detected

(corrected) soft-errors:

 Class’(1) + Class’(4) + Class’(5)

Coverage = –––––––––––––––––––––––––––––––

 No. Inj. Faults – Class’(3)

FIM

fault
injection

data
generator

golden
device

device
under test

property
checker

Fig. 5: Verification setup for Coverage evaluation

B. Residual-3 code protected Adder

We investigated the feasibility of our approach with different

designs: Starting from a simple adder - protected by parity, we

measured soft-error coverage of a residual-3 checker (without

correction) for a single-stage adder.

All injected single bit soft errors could be found by the

detection logic. Therefore our residual-3-code checker has a

detection coverage of 100% for single-bit soft-errors in a one-

stage adder. Table 2 shows results for injected double errors

(at data bits as well as at res3-code bits). Our verification

environment shows that only about 50% of all possible double-

bit soft-errors could be found by the checker.

Operand

width

No.

possible

Injections

Class(0) Class(1) Class(2) Class(3)

1 bit 60 46.67% 0% 50.00% 3.33%

2 bit 448 42.86% 0% 50.99% 6.25%

4 bit 16,896 48.90% 0% 48.10% 3.00%

8 bit 12,451,840 50.11% 0% 47.79% 2.10%

TABLE 2: RESULTS FOR DOUBLE BIT SOFT-ERROR INJECTIONI N A RES3-

PROTECTED ADDER

The verification was executed on a 64-bit Power3 workstation

with 1.6GHz and 10GB RAM. The runtime for single and

double bit injection was about 5 seconds for operand widths 1

to 4-bit and about 6-7 seconds for 8-bit.

C. ECC protected data flow

A further example was a 64/76-bit ECC station. It can correct

all single-bit error and detect all double bit errors. To evaluate

the coverage, we injected single – up to 5 soft-errors per

operation step. Table 3 shows coverage results:

Counterexamples Fail classes No.

Inj.

Faults

No. Injections

(0) (1) (2) (3) (4) (5)

1 76 - 100% - - - -

2 2,850 - 1.3% - - 98,7% -

3 70,300 3.4% - - - 96.4% -

4 1,282,975 2.2% - - 0.1% 97.7% -

5 18,474,840 3.2% - - 0.1% 96.7% -

TABLE 3: ECC COVERAGE RESULTS

D. Berger-Code protected FPU

A more complex design was an IEEE 754 single-precision

floating point unit (FPU) which was protected by Berger-

Code-Prediction (BCP) [10], [11]. We used a four-staged

pipeline for the FPU design. Every stage provides internal

signals for the BCP logic [12]. The Berger-Code is able to find

all unidirectional faults in the data-flow (that is if multiple bits

flipped to the same value – ‘0’ or ‘1’). Due to the use of

internal signals for BC Prediction, it must be assumed, that not

all single bit soft errors could be detected properly.

To limit the complexity of BDDs, we measured the coverage

of BCP checkers for every single stage. Furthermore, we

applied case-splitting for alignment-/normalize shifter and

variable ordering as described in [13]. To ensure a valid

alignment-shift no injection on exponents in the first stage was

allowed. This is because otherwise the case-split, as well as the

variable ordering could not be applied.

Class absolute relative

Stage 1

0 1,833,748,071,658,450,000,000 95.67%

1 0 0%

2 276,215,971,115,318,000 0.0144%

3 82,707,713,779,318,400,000 4.315%

Σ 1,916,732,001,408,880,000,000 100.00%

Stage 2

0 1,980,518,622,404,670,000,000 99.63%

1 0 0%

2 6,843,187,526,954,920,000 0.35%

3 440,652,771,858,807,000 0.02%

Σ 1,987,802,462,703,490,000,000 100.00%

Stage 3

0 1,218,495,483,153,780,000,000 98.89%

1 0 0%

2 6,846,034,813,820,280,000 0.55%

3 6,843,340,080,969,930,000 0.56%

Σ 1,232,184,858,048,570,000,000 100.00%

Stage 4

0 1,295,378,667,588,060,000,000 96.69%

1 0 0%

2 15,651,729,154,185,300,000 1.17%

3 28,668,332,260,581,600,000 2.14%

Σ 1,339,698,729,002,830,000,000 100.00%

TABLE 4: SINGLE-BIT SOFT-ERROR COVERAGE OF THE FPU-BCP CHECKER

DUT-VHDL

Error det. /
Error corr.

Golden-VHDL

Error det. /
Error corr.

= ?

det. / not det.

Error
Injection

Fault
vector

[=,det] [≠,det] [=,not det] [≠,not det]

C ... Error detection coverage

I ... Number of injected faults

C =
D + ED

I - nE

D ED nD nE

Result DUT Result golden VHDL

Our results show an average coverage of 98.75% for the BCP

error detection of single bit soft-errors. The share of

undetectable errors is 0.66%. If we subtract the share 0.59%

for undetected errors which didn’t propagate (overwritten

faults), the coverage could be increased.

The accumulated run time for FPU experiments was about

2520 min. It could be decreased to less than 24 hours with a

parallel run on multiple workstations.

IV. CONCLUSION

We presented a general approach for verification of error-

detection and error-correction logic which is applicable to a

wide range of industrial designs. Our main advantage is the

possibility to completely evaluate the capability of the ‘device-

under-verification’ to detect and correct errors. In contrast to

known approaches we additionally calculate a coverage rather

than proving that a certain error is (un)detectable.

We thereby consider any data and any given fault. Since our

method does not need a special reference-model, it is

applicable early in the design-process and very flexible.

Because no complex property definitions are necessary no

verification expert is needed and the approach might be

performed by the designer.

This approach has been extended to estimate the influence of

more than one fault at a given time to evaluate the impact of

multiple errors. It has been applied on several designs

including ECC-stations and simple FPUs. The approach’s

main confinement is the verification-task, which sometimes

has to be split to several cases. As shown on the FPU, the

injection of faults may prohibit an effective case-split.

REFERENCES

[1] Robert Baumann, “Soft Errors in Advanced Computer Systems”, IEEE

Design & Test of Computers, May-June 2005, p. 263

[2] M. Phadoongsidhi, K.K. Saluja, “Event-Centric Simulation of Crosstalk

Pulse Faults in Sequential Circuits”, Proc. 21st Intl. Conference on

Computer Design, 2003, pp. 42-47

[3] P. Folkesson, S. Svensson, J. Karlsson, “A Comparison of Simulation

Based and Scan Chain Implemented Fault Injection”, 28th Annual

International Symposium on Fault-Tolerant Computing, 1998, Munich,

pp. 284-293

[4] R.J. Maritnez, P.J. Gil, G. Martin, C. Pererz, J.J. Serrano, “Experimental

validation of high-speed fault tolerant systems using physical fault

injection”, Dependable Computing for Critical Applications, No. 7,

1999, pp. 249-265

[5] C. Constantinescu, “Experimental evaluation of error detection

mechanisms”, IEEE Transactions on Reliability, Mar 2003, pp. 53-57

[6] S.R. Seward, P.K. Lala, “Fault Injection for Verifying Testability at the

VHDL Level”, Intl. Test Conference, 2003, p. 131-137

[7] J.R. Samson, W. Moreno, F. Flaquez, “Validating fault tolerant designs

using laser fault injection”, IEEE International Symposium on Defect

and Fault Tolerance in VLSI Systems, 1997, pp. 175-183

[8] R. Velazco, T. Calin, M. Nicolaidis, S.C. Moss, S.D. LaLumondiere,

V.T. Tran, R. Koga, “SEU-hardened storage cell validation using a

pulsed laser”, Nuclear Science, Vol. 43 No. 6 Dec. 1996, pp. 2843-2848

[9] R. Leveugle, “A New Approach for Early Dependability Evaluation

Based on Formal Property Checking and Controlled Mutations”, 11th

IEEE International On-Line Testing Symposium”, July 2005, pp. 260-

265

[10] J.-C. Lo, S. Thanawastien, T.R.N. Rao, M. Nicolaidis, “An SFS Berger

Check Prediction ALU and Its Application to Self-Checking Processors

Designs”, IEEE Trans On CAD, vol. 11, No. 4, April 1992, pp. 525-540

[11] M. Pflanz, K. Walther, H.T. Vierhaus, “On-line Error Detection

Techniques for Dependable Embedded Processors with High

Complexity”, Int. On-line Test Workshop (IOLTW’01), July, 2001, Italy

[12] M. Pflanz, “Online Error Detection and Fast Recover Techniques for

Dependable Embedded Processors”, Springer book, 2002

[13] C. Jacobi, K. Weber, V. Paruthi, J. Baumgartner, “Automatic Formal

Verification of Fused-Multiply-Add FPUs”, Design, Automation and

Test in Europe (DATE) 2005,

[14] V. Paruthi , C Jacobi_ , K. Weber, “Effcient Symbolic Simulation via

Dynamic Scheduling, Don't Caring, and Case Splitting”, CHARME

2005

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

