Constructing Portable Compiled Instruction-set Simulators
— An ADL-driven Approach

Joseph D’Errico

Wei Qin

Department of Electrical and Computer Engineering
Boston University, Boston, MA 02215, USA
{jderrico, wqin} @bu.edu

Abstract

Instruction set simulators are common tools used
for the development of new architectures and embed-
ded software among countless other functions. This pa-
per presents a framework that quickly generates fast
and flexible instruction-set simulators from a specifi-
cation based on a C-like architecture-description lan-
guage. The framework provides a consistent platform for
constructing and evaluating different classes of simula-
tors, including interpreters, static-compiled simulators,
and dynamic-compiled simulators. The framework also fea-
tures a new construction method for dynamic-compiled
simulator that involves no low-level programming. It pro-
files and translates frequently executed regions of sim-
ulated binary to C++ code and invokes GCC to com-
pile such code into dynamically loaded libraries, which
are then loaded into the simulator at run time to ac-
celerate simulation. Our experimental results based on
the MIPS architecture and the SPEC CPU2000 bench-
marks show that our dynamic-compiled simulator is capa-
ble of achieving up to 11 times speedup compared to our
fast interpreter. Compared to other dynamic-compiled sim-
ulators requiring significant system programming expertise
to construct, the proposed approach is simpler to imple-
ment and more portable.

1. Introduction

Instruction-set simulators (ISS)’s mimic target architec-
tures on a host machine. They are used by computer archi-
tects to validate new architecture designs and by software
developers to verify the functional correctness of compilers
or application programs. They have also been used in mi-
croarchitecture simulators to update architectural states or
to generate traces.

Most ISS’s can be grouped into one of three ma-
jor classes. Interpretive simulation is the most traditional

3-9810801-0-6/DATEQ06 © 2006 EDAA

/ Emulated L» Fetch | Decode [—» Execute
Memory

Ly [
Figure 1. Interpretive Simulator

method. Under this method, instructions are fetched, de-
coded, and executed one by one, as is shown in Figure 1.
Although it is the slowest approach, interpretive simula-
tion is considered the most flexible. It is capable of pausing
and altering program flow at arbitrary positions dur-
ing run-time, interacting with debuggers or co-simulators,
and simulating self-modifying code such as boot-loaders.
Static-compiled simulation decodes and translates the en-
tire target binary prior to run-time. The elimination of
fetch/decode overhead causes static-compiled simula-
tors to run at significantly faster rates than interpretive sim-
ulators. However, the approach is less flexible since it does
not support self-modifying code, and its simulation flow is
hard to control. The third method, dynamic-compiled sim-
ulation, combines concepts from the first two classes. A
dynamic-compiled simulator uses run-time code genera-
tion techniques to translate chunks of target binary code
to host binary during execution. Translation can be per-
formed selectively to only frequently executed regions
of the target binary or to all executed instructions. This
method is slightly slower than static-compiled simula-
tion due to the translation overhead during run-time, but it
is more flexible and can simulate self-modifying code. Al-
though generally considered the superior simulation tech-
nology, dynamic-compiled simulation has limited use due
to the extensive system-level programming skills that it de-
mands from simulator developers.

This paper presents a retargetable framework that can
synthesize all three classes of simulators and their varia-
tions from a common target architecture description in a
C-like architecture description language (ADL). Depend-
ing on their requirements of flexibility and speed, users can

choose to generate the desired type of simulator without
modifying the description. Since the framework uses a uni-
versal infrastructure of key building blocks throughout the
different simulators, it also provides an ideal platform to
evaluate and compare the simulators.

The paper, furthermore, describes a new approach for
building retargetable dynamic-compiled simulators which
are fast, flexible, and portable. It is based on the dynami-
cally loaded library (DLL) feature of modern operating sys-
tems, the interface of which is simple and well-documented.
The approach involves no low-level assembly programming
and can be robustly implemented in a short period of time.

The remainder of the paper has the following organiza-
tion. Section 2 describes related work in the field of ISS de-
sign. Section 3 explains the structure of the framework and
our methods to construct simulators. Section 4 presents the
experiment results and Section 5 discusses the features and
properties of the generated simulators. At the end, Section 6
summarizes our findings and concludes the paper.

2. Related Work

Considerable studies have explored varied instruction
set simulation techniques and have consequently led to the
availability of many different simulators. Among the recent
improvements to interpretive simulation is JIT-CCS [8],
which caches decoding results of instructions for reuse. IS-
CS [10] further optimizes decoding by moving it to simula-
tor building time. Both JIT-CCS and IS-CS are flexible and
retargetable. But their performance is constrained by their
fine-grained kernel loops which fetch and execute one in-
struction per iteration.

Studies have also sought to accelerate static-compiled
simulation. Zhu et al. [14] aggressively manipulates host
resources, especially registers, to boost simulation perfor-
mance. The FSCS [2] uses a simulator synthesis frame-
work based on the ArchC ADL. The framework translates
target program code to C functions, which are then com-
piled into simulator instances. During translation, it per-
forms control-flow related optimizations to improve simu-
lation performance. SyntSim [4] similarly uses C as the in-
termediate representation. However, its generated C code
are in one huge function and may occasionally cause the C
compiler to run out of memory. Thus it requires a profile of
the program to select the most frequently executed instruc-
tions to translate. The rest instructions are interpreted.

Early work on dynamic-compiled simulators focuses on
performance. Shade [5] is likely the first simulator in this
class. Embra [13] used Shade’s dynamic binary transla-
tion technique for full system simulation. However, none
of these simulators is retargetable or portable.

More recently, research in dynamic-compiled simula-
tion has focused on the addition of retargetability. The

Strata [11] infrastructure was designed to build retar-
getable dynamic-compiled simulators. Target-specific func-
tions, provided as extensions to Strata, can be added
for new targets. However, Strata is limited only to x86
hosts and porting Strata would require extensive knowl-
edge of the host architecture. In contrast, QEMU [3]
has been ported to a variety of hosts. Porting QEMU re-
quires some assembly code and intimate knowledge of the
inner workings of the host architecture and OS.

The above approaches have all made significant im-
provements to their respective simulator classes by using
novel optimizations and infrastructures. However, other fac-
tors, such as the coding style, and the features included
in the simulator, can play a significant role in determining
its speed. Common simulator features affecting speed in-
clude the use of statistics counters, the capability of detect-
ing memory faults of the target program, and interoperabil-
ity with other simulators. Since such differences exist, it is
hard to compare the performance of the simulators solely
based on the merits of their approaches.

3. Our Simulator Synthesis Framework

To improve productivity, we created a light-weight ADL
from which all three types of ISS’s can be synthesized.
Since the ADL only contains necessary information for ISS
generation, it is much simpler than more comprehensive
ones such as nML [6] or LISA [9]. It can serve as the inter-
face between a full-scale ADL and an ISS generation back-
end based on our framework. The ADL uses a C-like syn-
tax, shown in Figure 2, similar to that in GenISSLib [1]. For
each instruction, it describes the instruction encoding and
the instruction semantics. It borrows features from FSCS [2]
by separating the description of control flow instructions
from others, which is helpful for constructing dynamic-
compiled simulators. It also distinguishes between control
flow instructions with constant targets, which are statically
hard-coded in complied simulation, and those with variable
targets, which must be determined at run time.

op add(000000:rs:rt:rd:————— 100000) {
execute = "
WRITE_GPR(READ_GPR(rs) + READ_GPR(Srt), rd);

}

op beq(000100:rs:rt:imm) {
condition="READ_GPR (rs) == READ_GPR(Srt$)"
ctarget=“pc+4+ ((hword_t) imm << 2)"

}

op Jjr(000000:rs:——————————————= 001000) {
vtarget="READ_GPR (rs)"
}

Figure 2. Sample ADL code

For each architecture description input, our framework
will analyze the instruction encoding information and gen-
erate an efficient instruction decoder that is shared by all
synthesized simulators. It also shares highly optimized key
elements such as the target memory emulators, the system
call emulator and the program loader across all simulators.
Maximal sharing of infrastructure code among simulators
not only saves our development effort, but also enables fair
comparison of different simulator classes and provides con-
sistent performance data for trading off speed and flexibil-
ity. Below we will first describe the generation flow of three
types of simulators.

3.1. Interpretive Simulation

The interpretive simulator follows the traditional model
shown in Figure 1. The decoder employs multi-level table-
lookup to dispatch the execution flow to one of the interpre-
tation routines corresponding to the opcode of the fetched
instruction. Both the decoder and the interpretation routines
are synthesized from the ADL description. The framework
emits two interpreters by using two different memory emu-
lators. One does memory fault checking and will report on
all invalid memory accesses such as misaligned addresses
or violation of protection. The other is optimized for speed
and does not check safety.

3.2. Static-compiled Simulation

Program 0 Simulator
—

Core
Simulator
Code

—

(a) Compiled Time

- Execute
Initialize .

simulator

» Dispatch

function

(b) Run Time

Figure 3. Static-Compiled Simulator

The two-step process of static-compiled simulation is
shown in Figure 3. The first step involves a decompiler
which is synthesized from the ADL description. The de-
compiler divides the program binary into aligned pages and
translates each page into a C++ function. All C++ functions
are then compiled by GCC and linked with the core library
components to create a simulator instance. By default, each

page contains 1K instructions, the starting address of which
is aligned at a 1 K-word boundary. The page size can also be
specified by the user.

The structure of the generated functions is similar to that
of FSCS [2]. Each function contains a switch-case state-
ment. Each case block holds one translated instruction. A
function receives the program counter as the argument, and
upon entry steers execution to the corresponding case. If
a case holds a non-branch instruction, after its evaluation
the execution flow will fall through to the next case. For a
branch instruction, if its target address can be statically de-
termined and is within the same page, the a gofo statement
is used. Otherwise, the function returns.

In the second step (Figure 3(b)), simulation is performed.
Depending on the value of the program counter, the dis-
patcher will call the corresponding compiled function. Free
of fetching and decoding overhead, the loop in Figure 3(b)
executes much faster than the one in Figure 1. Moreover,
each function call evaluates around 50 instructions on av-
erage. Thus significantly less loop iterations are needed by
Figure 3(b) than Figure 1 to simulate one program, further
expanding the speed gap between the two techniques.

3.3. Dynamic-Compiled Simulation

Compiled? >—no @ no» Fetch |» Decode —» Execute

yes
C++ Shared
code Library

Dispatch yes

l I—v Decompile Compile Link

returns

(g++)
Execute |

function

Figure 4. Dynamic-Compiled Simulator

The dynamic-compiled simulator utilizes building
blocks of both the static-compiled and interpretive simula-
tors, as can be observed in Figure 4. The interpretation loop
from the interpretive simulator exists although it is aug-
mented by conditional statements which check if a page of
target code has already been compiled or is ready for com-
pilation. If either condition is true, the simulator leaves the
interpretation loop and performs compiled simulation. Dif-
ferent from the static-compiled case, the translation of
aligned code pages is done at run time and the results, in
the form of DLLs, are immediately linked to the simula-
tor.

We aim to run frequently executed code pages in com-
piled mode and the rest in interpretation mode. To determine

frequently executed pages, we use a constant threshold. If
the dynamic instruction count of a page exceeds the thresh-
old, the page will be translated into C++ and then compiled
into a DLL. The threshold can be specified by the user. Sec-
tion 5 will discuss the trade-off faced when choosing the
threshold as well as the page size.

Unlike sophisticated simulators in the same class which
perform binary translation internally, we rely on GCC and
the DLL interface of the host operating system. This choice
greatly simplifies the implementation and increases porta-
bility since no assembly programming is involved. How-
ever, it does suffer from the slow translation speed. To miti-
gate the problem, the simulator caches the DLLs in the hard
drive so that subsequent runs of the same target program can
directly reuse them.

4. Experiment Results

To evaluate our framework we constructed ISS’s of
the popular MIPS architecture. All experiments were per-
formed on an unloaded, 2.8GHz Pentium 4, Linux server
with 2GB RAM. The three ISS’s were compiled using
GCC 3.3.3 with -O3 and -fomit-frame-pointer flags for op-
timization. When compiling the generated C++ code
for both compiled simulators, the -O flag was used in-
stead of -O3. Omitting the expensive optimizations of
-O3 reduced compilation time without significantly af-
fecting the simulation speed. For all experiments, we
used 1K-sized pages for compilation and used a thresh-
old of 64M to control dynamic compilation.

Our findings are based on the results of simulating all C-
based SPEC CPU2000 [12] benchmarks. The benchmarks
were compiled using a MIPS cross-GCC with the -O3 and
-static flags. The only exception is for 176.gcc where we
used the -O flag to work around a compiler bug. For all
benchmarks, their first reference inputs provided by SPEC
were used.

4.1. Speed Comparison

The interpretive simulators depend on the fine-grained
fetch/decode/execute loop in Figure 1 and thus have the
slowest speed. Our results show that the speed-optimized
interpreter runs at an average of 37.3 million instructions
per second (MIPS) with a small standard deviation of 2.5
MIPS. The interpreter that performs memory safety check-
ing has a 18% slower speed of 30.7 MIPS due to the over-
head associated with checking all memory accesses. We use
the fast interpretive simulator as the baseline case to evalu-
ate the speed of the compiled simulators.

Figure 5 displays the performance of the compiled ISS
classes. The first two consecutive runs of the dynamic-
compiled simulator were recorded because a difference in

14
13 [Static-Compiled
12 4 @ Dynamic-C iled, 2nd Run M
11 H W Dynamic-Compiled, 1st Run
10 —
*Th N
S s H M
2 5
o 57
5 1
4 4
3
2
1
0
$ O 2 g S R & R &S
N &S E L ¢ & R QO
@9 & (\eq ,\<~‘° & \Q’*‘\ & "o’éfb 0&& Qfo“) By @9 40‘\ 691} Q@
K X '&,5 & &‘b \é\ qf;bg Vv q?") & o

Benchmark

Figure 5. Speedup of Compiled Simulators

speed exists — the second run benefits from reusing the
cached DLLs as a result of the first run. In other words,
the second run does not contain the compilation overhead
of the DLLs and therefore yields better performance.

Clearly, the static-compiled simulator dominates on pure
performance, and it is, on average, 7.9 times faster than
the interpretive simulation (computed by the total simula-
tion time of all benchmarks). However, the performance of
the static-compiled simulator is not nearly as predictable as
that of the interpretive simulator. Its speedup ranges from
13 times to 5.6 times interpreter speed. Most likely, this
is a result of the varying instruction mixes across differ-
ent benchmarks. In the static-compiled simulator, it takes
only one host instruction to interpret an arithmetic instruc-
tion of the target but more than 10 host instructions to in-
terpret an memory instruction (need to translate the target
memory address to a valid host address). A high percent-
age of hard-to-interpret instructions will result in a reduced
speedup.

With some instructions interpreted, the dynamic-
compiled simulator has slower but still formidable speed.
It averages 4.8 times interpretation speed on the first run
and 6.6 times on the second. In the best case (256.bzip2),
the simulator achieves a speed of 450 MIPS, or 11 times
the speed of the interpreter. Like the static-compiled
case, the performance varies based on benchmark. For
most benchmarks, such variations are akin to the varia-
tions in static-compiled speed-up. Only one benchmark,
176.gcc, fails to meet this paradigm. In fact, it has a slow-
down for the first run. The next section, Section 4.2, dis-
cusses this anomaly further.

4.2. Analysis of Simulation Performance

Because we use GCC to compile DLLs, it is expected
that its long compilation latency may affect the perfor-
mance. The speed gap between the first and the second runs

300.twolf
256.bzip2
255.vortex

254.gap
253.perlbmk
197.parser

188.ammp
186.crafty

183.equake
181.mcf
179.art

Benchmark

177.mesa

176.gcc
175.vpr

164.9zip

; ; ; ; ; ; ; ; ;
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of Total Time

Figure 6. Compilation Overhead vs. Simula-
tion Latency

of the dynamic-compiled simulators in Figure 5 confirms
this, so does the long compilation delay of the first step of
static-compiled simulation. On our experiment platform, it
takes roughly 2 seconds for GCC to build an DLL contain-
ing 1K translated instructions.

For static-compiled simulation, Figure 6 illustrates the
percentage of time that the entire simulation process (com-
piling and then running once) spends in compilation. In all
but two cases, running the compilation takes longer than
running the actual benchmark. With compilation overhead
included, the average speed of static-compiled simulation
drops to 2.5 times the speed of interpretive simulation. Cer-
tainly, if a simulator instance is reused several times, or
if larger reference inputs are used so that simulation takes
longer, the percentage of total time spent in simulation will
increase and the speedup will improve.

For dynamic-compiled simulation, less time is spent in
compilation because we selectively compile only the fre-
quently executed pages of the program. Nevertheless, com-
piling a page may not be beneficial if the resulting DLL is
not used frequently after it is compiled. This scenario un-
fortunately becomes true for 176.gcc, which has a relatively
short execution trace and poor locality. During its first run,
a total of 22 pages are compiled, but only 32% of the total
6G instructions benefit from compiled simulation. The re-
maining 68% are interpreted. The mere performance gain
from the 32% compiled instructions is totally canceled by
the compilation time for the 22 pages. Thus we observe a
slowdown for its first run in Figure 5. In the second run, a
total of 44% interpreted instructions still limits the perfor-
mance gain significantly.!

To further characterize the performance of 176.gcc, we

1 On a second run, all cached pages are loaded on simulation start and
do not go through page profiling. Therefore less instructions are inter-
preted.

used all its seven reference inputs from SPEC, which are
of different lengths. Depending on the length of the trace,
the speed ranges from a slowdown on the smallest trace
to a 5.5X speedup on the largest. This trend suggests that
programs with longer running traces would perform bet-
ter with our dynamic-compiled simulator. This is desirable
since long programs need the speedup most. Accelerating
the simulation of programs which run on the order of hours
is more of a concern than accelerating those that run on the
order of seconds or minutes.

5. Discussions

It is unfair to discuss the speed of the simulators without
mentioning their capabilities. Among all simulators gener-
ated, the interpreter with memory checking has the most
features but the slowest speed. Both interpreters support
simulating self-modifying code and interfacing to a GDB
remote debugging interface [7]. They are suitable to be used
to debug application programs.

Both compiled simulators are optimized for speed
and therefore do not include the memory checking ca-
pability. The static-compiled one can neither simulate
self-modifying code nor interface to GDB. In contrast,
the dynamic-compiled simulator is capable of both given
a simple extension. To support self-modifying code, es-
pecially to allow a compiled page to modify itself, we
implemented an exception handling mechanism by us-
ing setjmp and longjmp functions of ANSI C. We also
monitor all memory write accesses. When an instruc-
tion writes to a page that has been complied, a longjmp is
triggered so that compiled simulation is interrupted. Af-
ter the DLL of the modified page is unloaded, simula-
tion resumes from the interrupted location. The page will
be interpreted until the threshold is met again. The mecha-
nism, when activated, has a 20% impact on the performance
of the dynamic-compiled simulator.

Table 1 summarizes the performance and capabilities
of the different simulator configurations in our framework.
The two speed numbers for the dynamic-compiled simu-
lator are for the first and the second runs. The first num-
ber for the static-compiled simulator takes into account
compilation time. We also performed experiment on the
ARM architecture using all C-based SPEC CPU2000 inte-
ger benchmarks. The results show that the average speed
of the dynamic-compiled simulator is 121 MIPS on first
runs, 3.9 times of that of the interpreter. In comparison,
the reported speed of JIT-CCS was around 7 MIPS on a
1.2GHz Athlon and that of IC-CS was 12 MIPS on a IGHz
P3, for the ARM ISA. Both are significantly slower than
our dynamic-compiled simulators after the difference of the
host machines is taken into account. This is mainly due to
the high looping overhead of their fine-grained kernel loops.

Simulator || Speed(MIPS) | Mem-Check | Self-Mod |

Interp. 1 30.7 Yes Yes
Interp. 2 37.3 No Yes
Dynamic 1 150/195 No Yes
Dynamic 2 181/245 No No
Static 91.8/294 No No

Table 1. Summary of Simulators

Specifying the threshold and the page size can alter re-
sults for the dynamic-compiled simulator. If the size of
pages is too large, compilation time will increase quickly
due to some quadratic optimizers in GCC. However, small
pages will cause more iterations of the leftmost loop in Fig-
ure 4, which will slow down the simulation speed due to
the dispatcher overhead. A higher threshold will reduce the
number of pages to translate, but will increase the percent-
age of interpreted instructions. The default parameters for
our framework, 1K instructions per page and a 64M thresh-
old, achieve a good balance for large benchmarks such as
the SPEC CPU2000 based on our observations.

The idea of invoking GCC to dynamically gener-
ate DLLs is perhaps not brand new. However, we are not
aware of any previous report on its application to accel-
erating instruction-set simulation. Thus we view it a con-
tribution of this paper to introduce the idea. The most
notable feature of the approach is its simplicity and porta-
bility. In fact, our framework is purely based on C++. Its
development is not dependent on the particular host archi-
tecture. This is contrary to the necessary expert-level un-
derstanding of the host platform needed to port QEMU [3]
or Embra [13]. As long as a C++ compiler and a DLL inter-
face are available for the host architecture, our framework
can be quickly ported. Both requirements are readily sat-
isfiable for modern workstations or personal computers.
The drawback of our approach, the occasional slow-
ing down of simulation due to long compilation latency,
can potentially be overcome by distributing the compila-
tion tasks to other processors or workstations. This task
remains a topic of our ongoing research.

6. Conclusions

In this paper, we described a framework that generates
three major classes of instruction set simulators from an
ADL description. Since the framework utilizes a univer-
sal infrastructure to construct all simulators, it provides a
consistent platform for evaluating different classes of sim-
ulation techniques. The framework also features a new
technique to construct dynamic-compiled simulators. Aside
from good performance and portability, the technique is
simple to implement. It is also flexible enough to support
self-modifying code and a GDB interface. We believe that

it is a practical technique to use and deploy in place of in-
terpreters.

7. Acknowledgments

This research is partially supported by a UROP Faculty
Matching Grant from Boston University. We thank Prof.
Patrick Schaumont and the anonymous reviewers for their
invaluable comments to improve the paper.

References

[1] http://www.microlib.org, 2005.

[2] M. Bartholomeu, R. Azebedo, S. Rigo, and G. Araujo. Opti-
mizations for compiled simulation using instruction type in-
formation. In Proceedings of the 16th Symposium on Com-
puter Architecture and High Performance Computing, pages
74-81, 2004.

[3] F Bellard. http://www.gemu.org, Sep 2005.

[4] M. Burtscher and I. Ganusov. Automatic synthesis of high-
speed processor simulators. In Proceedings of the 37th an-
nual International Symposium on Microarchitecture, 2004.

[5] B. Cmelik and D. Keppel. Shade: A fast instruction-set sim-
ulator for execution profiling. In Proceedings of the 1994
ACM SIGMETRICS Conference on the Measurement and
Modeling of Computer Systems, pages 128—137, 1994.

[6] A. Fauth, J. V. Praet, and M. Freericks. Describing instruc-
tions set processors using nML. In Proceedings of Confer-
ence on Design Automation and Test in Europe, pages 503—
507, Paris, France, 1995.

[7] Free Software Foundation, Inc. http://www.gnu.org/
software/gdb/gdb.html, June 2005.

[8] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr,
and A. Hoffmann. A universal technique for fast and flexi-
ble instruction-set architecture simulation. In Proceedings of
Design Automation Conference, pages 22-27, 2002.

[9] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr. LISA —
machine description language for cycle-accurate models of
programmable DSP architectures. In Proceedings of Design
Automation Conference, pages 933-938, 1999.

[10] M. Reshadi, P. Mishra, and N. Dutt. Instruction set compiled
simulation: A technique for fast and flexible instruction set
simulation. In Proceedings of Design Automation Confer-
ence, 2003.

[11] K. Scott and J. Davidson. Strata: A software dynamic trans-
lation infastructure. In Proceedings of the IEEE 2001 Work-
shop on Binary Translation, 2001.

[12] Standard Performance Evaluation Corporation. http://
www . spec.org, Aug 2005.

[13] E. Witchel and M. Rosenblum. Embra: Fast and flexible ma-
chine simulation. In Proceedings of the 1996 ACM SIG-
METRICS Conference on the Measurement and Modeling of
Computer Systems, pages 68—79, 1996.

[14] J. Zhu and D. D. Gajski. A retargetable, ultra-fast instruc-
tion set simulator. In Proceedings of Conference on Design
Automation and Test in Europe, 1999.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

