

Optimal Periodic Testing of Intermittent Faults
In Embedded Pipelined Processor Applications

N. Kranitis 1 A. Merentitis 1 N. Laoutaris 1 G. Theodorou 1

A. Paschalis 1 D. Gizopoulos 2 C. Halatsis 1
1 Dept. of Informatics & Telecom. Univ. of Athens, Greece – nkran@di.uoa.gr

2 Dept. of Informatics, Univ. of Piraeus, Greece

Abstract

Today’s nanometer technology trends have a very
negative impact on the reliability of semiconductor
products. Intermittent faults constitute the largest part of
reliability failures that are manifested in the field during
the semiconductor product operation. Since Software-
Based Self-Test (SBST) has been proposed as an effective
strategy for on-line testing of processors integrated in
non-safety critical low-cost embedded system
applications, optimal test period specification is becoming
increasingly challenging.

In this paper we first introduce a reliability analysis
for optimal periodic testing of intermittent faults that
minimizes the test cost incurred based on a two-state
Markov model for the probabilistic modeling of
intermittent faults. Then, we present for the first time an
enhanced SBST strategy for on-line testing of complex
pipelined embedded processors. Finally, we demonstrate
the effectiveness of the proposed optimal periodic SBST
strategy by applying it to a fully-pipelined RISC embedded
processor and providing experimental results.

1. Introduction
Current semiconductor fabrication processes for

nanometer technology have a very negative impact to
manufacturing yield and in-field reliability. The reliability
faults manifested in the field during the life cycle of
semiconductor products are classified in the following
three types. Permanent faults reflect irreversible physical
changes. Improvements in semiconductor design and
manufacturing have significantly decreased the
occurrence of permanent faults. Intermittent faults appear
repeatedly at the same location causing errors in bursts
when they are active, because of unstable or marginal
hardware mainly due to process variations and
manufacturing residuals. Transient faults (also known as
“soft-errors”) appear irregularly at various locations and
last short time. These faults are induced by temporary
environmental conditions such as neutron and alpha
particles, power supply and interconnect noise,
electromagnetic interference and electrostatic discharge.

Concurrent error detection, self-checking, time and
space redundancy mechanisms that significantly increase
system cost [1] are not suitable for non safety-critical low-
cost embedded system applications. In such embedded
applications detection of intermittent operational faults,
that cause errors in bursts only when they are active and
may precede the occurrence of permanent faults, is much
more important than detection of transient operational
faults that appear once and last short time.

On-line periodic testing is a non-concurrent test
strategy, well suited to such embedded systems since it
provides low-cost detection of permanent and intermittent
faults with very high probability, that trades off between
fault detection latency and performance overhead.

On-line periodic testing of deeply embedded
processors in complex low-cost and non safety-critical
embedded systems is becoming increasingly challenging.
Hardware-based built-in self-test (BIST) techniques for
on-line periodic testing provide excellent test quality and
at-speed testing at the cost of increased hardware
overhead, high power consumption and manual extensive
design changes. Software-based self-test (SBST) in
several variations on [2]-[9] has been proposed as a very
promising approach for at-speed processor testing using
low-cost structural testers. SBST is a non-intrusive
approach that utilizes processor resources and Instruction
Set Architecture (ISA) to perform test generation, test
application and test response evaluation. Recently, the use
of low-cost SBST techniques for on-line periodic testing
of embedded processors has been proposed in [8] as an
effective alternative solution to hardware-based BIST.

In this paper first we present a reliability analysis of
intermittent faults (also including permanent faults) using
probabilistic modeling. For on-line periodic testing of
embedded processors, we introduce a novel cost function
in order to minimize the test cost incurred by the
execution of SBST programs and achieve high detection
probability. Then, we present for the first time an
enhanced SBST strategy for on-line periodic testing of
embedded pipelined processors with more advanced ISA
than the publicly available benchmarks used so far (e.g.
[2],[3],[4],[7],[8]) and demonstrate the effectiveness by
applying it to a fully-pipelined RISC embedded processor.

3-9810801-0-6/DATE06 © 2006 EDAA

2. Reliability analysis

2.1 Test model
We consider a two-state continuous-parameter Markov

model [8], [10], [11] for the intermittent faults. Let λ and µ
denote the rates of leaving state 0 (operating) and state 1
(fault), respectively, and let also St denote the state at time
t. For this model, the time period during which the
embedded processor stays at the operating (state 0) or the
faulty (state 1) time has an exponential distribution with
mean time the parameters 1/λ and 1/µ, respectively. Thus,
the transition probabilities Pi,j(t) from state i at time t0 to
state j at time t0+t are:

()()tetP)
1,0 1)(µλ

µλ
λ +−−
+

=

)(1)(1,00,0 tPtP −=

()()tetP)
0,1 1)(µλ

µλ
µ +−−
+

=

)(1)(0,11,1 tPtP −=

The steady-state probabilities of being at each one of
the two possible states upon an arbitrary observation
instant, are π0=µ/(λ+µ) and π1=λ/(λ+µ) respectively.

2.2 Cost function derivation
The embedded processor that operates under this

intermittent fault is used for the processing of an endless
stream of jobs, with each job requiring a processing time
B. If the fault becomes active during the duration of a job
it corrupts the final result of the processing thus making it
useless and potentially dangerous.

Consider now a SBST program for the detection of the
aforementioned intermittent faults. Each test is assumed to
have a finite duration D. During the execution of a test: (i)
the processing of the current job is halted; (ii) the
intermittent fault remains at the state that it was at the
beginning of the test (i.e., we assume that the two-state
model “freezes” for the duration of the test). We assume a
perfect detection capability for the faults covered by the
SBST program and, thus, at the completion of the test we
always detect a fault if one is active at the beginning of
the test. When a fault is detected, the results of the
processing are discarded and the job re-enters processing
from the beginning. The time diagram (Figure 1) shows
the test period T, the test duration D, the processing time
lost due to a flawed results R and the number of tests
performed N under the given period and job duration B.

We are focusing on a periodic testing strategy in which
the nth test is executed at time tn = n·T, 1 ≤ n ≤ N, where T
is the testing period and N = ⎣B/T⎦ is the total number of
tests performed during a single job (for simplicity we
disregard the floor function in the sequel). The presented
reliability analysis does not require the test duration D to
be much less than the test period T, as it was required in
previous works [8], [10], [11].

T D
.

fault detected

*
R

N(T+D)

end

T D
.

fault detected

*
R

N(T+D)

end

Figure 1 Time diagram

Let pd denote the probability of detecting a fault with a
single test; pfd(n) the probability of detecting the fault (for
the first time) with the nth test and pfd the probability of
detecting the fault with any one of the N tests.

For the above intermittent fault model and testing
strategy, we have:

• ()()T
d eTPp)

1,0 1)(µλ
µλ

λ +−−
+

==

•)()()1()(1,0
1

0,0
1 TPTPppnp n

d
n

dfd ⋅=−= −−

• ()T
BN

n fdfd TPnpp 0,01
1)(−==∑ =

Let q denote the probability that an existing fault
becomes active (any number of times) during the time
interval [0, B] that is required for finishing a single job.
Then, the complementary probability, i.e., for the fault to
stay inactive during the job although it exists, is 1 − q =
P{E1 ∩ E2}, where E1 is the event that the fault is inactive at
t = 0 and E2 is the event that the fault remains inactive
during the interval [0, B]. The probability for the fault to
stay inactive during the job can be re-written as 1 – q =
P{E1}⋅P{E2|E1}. The probability of the event E1 is equal to
the probability of the event (S0 = 0), which is given by π0,
the steady-state probability of being at the operating state.
The probability of the event E2|E1 is equal to Β−λe . Thus,
the probability for the fault to stay inactive during the job
is Β−=− λπ eq 01 . Consequently the probability that the fault
becomes active during the time interval [0, B] is

Β−−= λπ eq 01 .
Let d denote the detection probability that an existing

fault becomes active (any number of times) during the
time interval [0, B] and is detected with anyone of the N
tests. Thus, the detection probability is fdpqd ⋅= . In
practice, it is required that d must be greater than 1-ε,
where ε is a prespecified value (e.g. ε =10-5).

Let us consider the case that the fault becomes active
one or more times during the processing of a job thereby
corrupting the final result and making it useless. Let R
denote the amount of processing time wasted in this case:

⎩
⎨
⎧

+⋅
≤≤+⋅

=
job theof end the tillundetected staysfault theif),(
/1 th test, by the detected isfault theif),(

DTN
TBnnDTn

R (1)

The first case amounts to the total processing time that is
wasted when a fault is detected prior to the completion of
the ongoing job, thus causing the discard of the partial
result and the restart of the job. The second case amounts
to the total processing time that is effectively wasted by
producing a flawed result when errors occur but remain
undetected. Using Eq. (1) the expected value E{R} of R,
can be written as follows:

{ } () () ()∑
=

⋅+⋅+−⋅+⋅=
TB

n
fdfd npDTnpDTTBRE

/

1

)(1/

In the following we define the cost function C(T) that
expresses the cost incurred when selecting a periodic test
strategy with period T.

() () { }REqDNqTC ⋅+⋅⋅−= 1 (2)
The first part of C(T) amounts to processing time

unnecessarily wasted in running tests, when in fact no
faults have occurred (an event of probability (1−q)). This
part of the cost function favors the selection of large T’s.
The second part of C(T) amounts to the processing time
wasted when faults occur (an event of probability q). If
the fault is detected by the periodic test procedure, then no
additional time is wasted in processing a result that is
already flawed. If the detection fails, then the maximum
penalty is incurred, which is equal to the entire duration of
the processing. Thus, the second part of C(T) favors the
selection of small T’s (i.e., it favors frequent tests).

The optimal test period T* can be derived from the root
of the following equation

() 0=
dT

TdC (3)

Equation (3) does not have a simple closed-form
solution as it includes complex combined polynomial and
exponential forms of T. Thus, it can only be solved
numerically for an exact solution, using for example
Newton’s method.

2.3 Numerical and case study examples
Let us consider the following device parameters as a

numerical example: λ = 0.01 ms-1 and µ = 0.1 ms-1. The
embedded application job processing time is Β=1000ms
and the duration of the SBST test program is D=0.3ms
(according to experimental results of Section 3 that
follows). The cost function C(T) for the above device
parameters is depicted in Figure 2. The optimal test period
is T*=2.24ms while the total number of tests performed is
N=446.

Let us also consider different device parameters, with a
range of the ratio µ/λ between 0 and 10. Intermittent fault
modeling requires µ>λ while the corner case µ=0
represents a permanent fault.

Figure 2 Cost of test and optimal test period

Figure 3 Cost of test as a function of T and µ

The proposed cost function C(T) for the above device
parameters is shown in Figure 3. It can be easily seen that
if the mean time (1/µ) spent by the device in state 1 (fault
state) becomes smaller, the optimal test period gets
smaller as well. For the corner case µ=0 representing a
permanent fault, the cost function leads to an optimal test
period T* with the largest value. In Table 1, we have
calculated the optimal test period T* for several different
values of device parameter µ.

µ/λ µ (ms-1) Optimal test
period T*(ms)

Number of
tests N

0 0 7.64 130
1 0.010 5.38 185

2.5 0.025 4.04 247
5 0.050 3.06 326

7.5 0.075 2.56 390
10 0.100 2.24 446

Table 1 Optimal T* for different device parameters
Figure 4 depicts the detection probability d that an

intermittent fault becomes active during the time interval
[0, B] and is detected with any one of the N tests. It is
clear that for all the device parameters considered and the
optimal test periods of Table 1, there is very high
detection probability.

Figure 4 Detection probability in periodic testing

3. SBST strategy for on-line periodic
pipelined processor testing

On-line periodic testing is performed in-field while the
processor operates at its normal operational environment.
Software-Based Self-Test (SBST) has been proposed as
an effective strategy for on-line testing of processors
integrated in non-safety critical low-cost embedded
system applications [8]. The SBST program is resident in
the cache memory of the embedded core and is executed
at the processor’s actual speed (at-speed testing). The
above unique characteristics of on-line periodic testing
impose several additional constraints in comparison to
off-line manufacturing testing.

In Section 2, we introduced reliability analysis for
optimal periodic testing of intermittent faults that
minimizes the test cost incurred when running the SBST
program based on probabilistic modeling of intermittent
faults. In this Section, based on the component-based
SBST methodology for off-line [4], [7] and on-line testing
[8] we developed self-test routines that comply with the
stringent characteristics of on-line testing. We present for
the first time an enhanced SBST strategy for on-line
testing of complex pipelined embedded processors.
Moreover, we address successfully the new test challenges
related to more advanced processor architectures than the
publicly available processor benchmarks used so far (e.g.
[2],[3],[4],[7],[8]).

3.1 Self-test routine development
On-line periodic testing is often applied on mobile

platforms where power consumption is a critical factor. A
study by Intel [12] shows that a considerable part of the
total power dissipation concerns the memory system and
specifically the cache hierarchy system. Furthermore, the
system’s performance specifications are also an important
factor, thus special care must be taken so that the overall
performance is not degraded overmuch due to the
execution of the test routine. This means that the test
routine should have the shortest possible test execution
time (less than a quantum cycle).

In order to satisfy these requirements, self-test routines
are developed in a way that they utilize the characteristics
of temporal and spatial locality. According to this, test
routines include compact loops that take advantage of
temporal locality and data structured in arrays that exploit
spatial locality. In addition, references to the data memory
should be kept to a minimum. This was achieved by the
use of a software MISR routine that performs compaction
of the test responses so that only a single signature per
component is written in the data cache, keeping cache
references that result in cache miss overhead and increase
in power consumption to a minimum.

Since on-line testing is performed in-field at the normal
operational environment and under the restrictions of the
operating system, on-line embedded processor testing is
much more challenging than off-line testing. For example,

only a limited part of memory hierarchy can be accessed
in normal mode of operation, thus resulting in lower fault
coverage in certain processor units like the instruction
fetch unit and other address related units. However, these
faults should be considered as functionally untestable. In
addition, self-test code that minimizes references to
memory hierarchy including stack memory imposes
increased test challenges for certain processor units.

3.2 Self-test program enhancement
Modern embedded systems include complex high

performance embedded processors that can handle real
time applications with hard deadlines and increased
throughput needs. Those requirements are satisfied by the
use of advanced ISAs with characteristics like Instruction-
Level Parallelism, system coprocessors support, etc.
Multi-stage pipeline and exception support systems are
very common in the embedded processors. Consequently,
SBST should target those units in order to guarantee
higher fault coverage and thus more reliable real time
operation.

The goal of achieving high fault coverage in complex
pipeline systems comprises several challenges that must
be addressed. The unique character of the processor
pipeline as a performance increase mechanism not visible
to the assembly programmer, leads to reduced
controllability and observability restrictions in some of its
subcomponents. Specifically:

• Hazard Detection unit is a control component with
limited visibility to assembly programmers resulting
in reduced controllability and observability.

• Pipeline control is a control component that decodes
the processor instruction at the instruction fetch
pipeline stage producing the appropriate control
signals for the subsequent pipeline stages. This
implies limited observability.

• Pipeline registers are not directly visible to the
assembly programmer. However, the Data part is
much more testable than the Address part. Moreover,
limited access to the memory hierarchy in normal
mode operation imposed by the operating system,
results in low fault coverage in the high order bits of
the pipeline address registers. Faults in such pipeline
register logic should be considered functionally
untestable during on-line SBST. The same reasoning
is valid for the instruction fetch unit.

• Forwarding logic implemented by forwarding
multiplexers is not visible. Despite the fact that the
controllability and observability is limited,
forwarding multiplexers are functional components
that can be targeted effectively by deterministic test
routines that apply regular test patterns and
guarantee very high fault coverage.

The role of the exception support system to interrupt
the normal mode operation of a processor differentiates
the challenges related to its on-line periodic testing.

Specifically:
• The part of the exception register that holds the

address where the exception occurred and the
exception controller, provides reduced controllability
and observability.

• Exceptions that are generated by the ISA can be
triggered by the SBST routine. On the other hand,
exceptions triggered by external interrupts cannot be
triggered by the SBST routine, thus resulting in part of
the exception control to be SBST untestable.

We enhanced the on-line self-test program of [8] by
adding self-test routines that target pipeline and exception
logic using a deterministic approach for the functional
units and a functional testing approach for the control
units. Forwarding logic implemented by forwarding
multiplexers is targeted by deterministic tests applied by
proper instruction sequences and propagated to fully
observable GPRs. The data part of the pipeline registers
was targeted by deterministic test patterns. The address
part was also targeted deterministically and special care
was taken so that all address logic test responses are
propagated to the processor data bus, since the data
memory is the processor primary output where test
response capturing can take place. The test routine
targeting the exception register that holds the address
where the exception occurred, follows a similar approach.

All the pipeline and exception control logic are targeted
using standard verification-based functional testing
techniques with test development performed at high-level
as in [7]. Use of high-level RTL verification metrics
supported by industry standard simulation tools like RTL
statement, branch, condition and expression coverage,
helps to improve verification manual effort. In many
practical cases, verification-based test routines are
developed at the design verification phase. Test code can
be reused for the testing of control and hidden
components with no additional manual effort involved or
in the worst case substantially alleviating any manual self-
test routine development effort.
4. Experimental results

In this section, the effectiveness of the SBST strategy
for on-line periodic testing is demonstrated by its
application to a complex fully pipelined processor. Athena
is an in-house developed processor designed to fulfill the
requirements of a fully functional complex processor
benchmark. It is a 32-bit embedded RISC processor core
that implements a 5-stage pipeline with hazard detection
and forwarding mechanisms [13]. Athena implements the
full MIPS-I ISA with the sole exception of the unaligned
load and store operations that are patented. The processor
core is enhanced with a fast parallel multiplier [14] and
exception handling mechanisms that supports four types
of exceptions: unknown command, external interrupt,
ALU overflow and commands that cause exception
(Syscall or Break in MIPS-I ISA). The RTL processor

model was synthesized targeting a 0.18um technology
library. Synthesis was optimized for area and the netlist
gate-count was 26,432 gates with 1518 FFs. The design
runs at a clock frequency of 89 MHz. A Test Evaluation
Framework using commercial tools was used for VHDL
synthesis, functional and fault simulation.

According to [7], [8] the processor units that have the
highest priority for on-line periodic testing are the
functional Data-Visible Components [8] (parallel
multiplier, register file, ALU, shifter and sign extension
unit), which occupy the 77.8% of the processor area.
Targeting only these functional components results to
acceptably high total fault coverage of 89.4% due to
collateral coverage. The enhanced test program increases
the fault coverage to 96.67% as a result of targeting
explicitly the pipeline and exception logic. It should be
clarified that a large number of the undetected faults are
functionally untestable using processor instruction at the
normal mode of in-field operation. However, currently
there is no tool available for systematic extraction of such
functionally untestable faults.

The derived self-test program for on-line periodic
testing has the required stringent characteristics:

• Small code of only 3025 words, that takes
advantage of temporal locality and spatial locality.

• A small number of only 42 memory data references
(19 stores and 23 loads) that imposes very few data
cache misses.

• A short CPU execution time of 23,337 clock cycles
and an absolute time of 260us, which is much less
than a quantum time cycle.

For every self-test routine, a test signature is derived
after compaction of all responses by using a shared
software MISR subroutine of only eight words. At the end
of periodic testing, nine signatures one for every CUT
plus one for the functional test are stored to data memory.

Table 2 presents the component gate count, self-test
program statistics (program size in words, CPU clock
cycles and data memory references – loads and stores),
along with the achieved single stuck-at fault coverage and
the percentage of the processor overall fault coverage
which is missing from each of the processor components.

As in previous work [7], [8] the attained fault coverage
for the processor functional units is almost complete.
Deterministic tests, which utilize the inherent regularity
that characterizes the architecture of several processor
functional components, are applied by compact self-test
routines with high structural test coverage for any gate-
level implementation. This inherent regularity is not
exploited either by pseudorandom test development or by
ATPG-based test development approaches.

Processor components related to address logic, called
Address-Visible Components [8] have reasonably high
fault coverage, considering that the high order bits of the
address bus are functionally untestable during periodic on-
line testing.

Control components have fairly low fault coverage due
to poor controllability and observability characteristics.
However, these components are very small in comparison
to the functional components, resulting in satisfactory
fault coverage for the entire processor. Verification-based
functional testing of these components was performed
according to [7] by taking advantage of existing software
platforms. Through re-usability, any manual self-test
routine development effort is substantially alleviated.
Athena Processor Verification Suite (APVS) was
developed at the design phase of Athena and produces
automatically verification-based functional test code.

The improvement in fault coverage achieved by the
enhanced test program specifically in the pipeline parts is
depicted in Table 3.

Pipeline Parts
[7], [8]

FC
(%)

Miss. FC
over All

(%)

Enhanced
FC
(%)

Miss. FC
over All

(%)

Pipe Control 64.7 0.44 83.2 0.32
Pipe Reg. Data 74.6 1.07 96.8 0.16
Pipe Reg. Addr. 62.9 0.41 78.8 0.25
Forward. MUXs 85.9 0.31 100.0 0.00
Hazard Detect. 54.6 0.23 92.5 0.08
Total Pipeline 73.5 2.46 92.9 0.56

Table 3 Fault coverage for pipeline components

5. Conclusions
The contribution of the paper is twofold: First, we have

presented a reliability analysis of intermittent faults using
probabilistic modeling and we have introduced a novel
cost function in order to minimize the test cost incurred by
the execution of SBST programs for on-line periodic
testing of embedded processors. Secondly, we have
presented for the first time an enhanced SBST strategy for
on-line periodic testing of embedded processors with
more advanced ISA than the publicly available processor
benchmarks used so far (e.g. [2],[3],[4],[7],[8]). We have
demonstrated the effectiveness of the proposed optimal
periodic SBST strategy by applying it to a fully-pipelined
RISC embedded processor and providing a set of
experimental results.

References
[1] M. Nicolaidis, Y. Zorian, “On-line Testing for VLSI – A

Compendium of approaches”, in Journal of Electronic
Testing: Theory and Applications, v.12,1-2, 1998, pp. 7-20.

[2] J. Shen, J. Abraham, “Native mode functional test
generation for processors with applications to self-test and
design validation”, in Proc. of IEEE International Test
Conference 1998, pp. 990-999.

[3] L. Chen, S. Dey, “Software-Based Self-Testing
Methodology for Processor Cores”, IEEE Transactions on
CAD of Integrated Circuits and Systems, vo.20, no.3, pp.
369-380, March 2001.

[4] N. Kranitis, D. Gizopoulos, A. Paschalis, Y. Zorian,
“Instruction-Based Self-Testing of Processor Cores”, in
Proc. of the IEEE VLSI Test Symposium 2002, pp. 223-228

[5] P. Parvathala, K. Maneparambil, W. Lindsay, “FRITS – A
Microprocessor Functional BIST Method”, in Proc. of the
IEEE International Test Conference 2002, pp. 590-598.

[6] L. Chen, S. Ravi, A. Raghunathan, S. Dey, “A Scalable
Software-Based Self-Testing Methodology for
Programmable Processors”, in Proc. of the Design
Automation Conference (DAC) 2003, pp. 548-553.

[7] N. Kranitis, A. Paschalis, D. Gizopoulos, G. Xenoulis,
“Software-Based Self-Testing of Embedded Processors”,
IEEE Transactions on Computers, vol. 54, no. 4, pp. 461-
475, April 2005.

[8] A. Paschalis, D. Gizopoulos, “Effective software-based
self-test strategies for on-line periodic testing of embedded
processors”, IEEE Transactions on CAD, Vol. 24, no.1,
pp. 88 – 99, Jan. 2005.

[9] M. Hatzimihail, M. Psarakis, G. Xenoulis, D. Gizopoulos,
A. Paschalis, “Software-Based Self-Test for Pipelined
Processors: A Case Study”, in Proc. of the Defect and Fault
Tolerance in VLSI Systems (DFT'05), 2005, pp. 535-543

[10] S.Y.H. Su, I. Koren, Y.K. Malaiya, “A Continuous-
Parameter Markov Model and Detection Procedures for
Intermittent Faults”, IEEE Transactions on Computers, vol.
c-27, no. 6, June 1978, pp. 567-570.

[11] T. Nakagawa, K. Yasui, “Optimal Testing-Policies for
Intermittent Faults”, IEEE Transactions on Reliability, vol.
38, no. 5, Dec. 1989, pp. 577-580.

[12] Intel "Mobile Power Guidelines 2000", Dec. 11, 1998
[13] D. Patterson, J. Hennessy, “Computer Organization and

Design: The Hardware/Software Interface”, MKP 1997.
[14] J. Pihl, E. Sand, Arithmetic Module Generator,

http://www.fysel.ntnu.no/modgen

Component Gate Count
(gates)

[7], [8] Fault
coverage (%)

New Fault
coverage (%)

Size
(words)

Clock
Cycles

Data
References

Missing FC
over All (%)

Parallel Mult. 8,746 98.3 98.3 113 9,469 1 0.82
Register File 9,669 99.9 99.9 1,408 4,224 1 0.03
Shifter 861 100.0 100.0 190 721 1 0.00
ALU 579 98.2 98.4 178 1,533 1 0.06
Control Logic 457 62.1 76.6 596 5,492 8 0.44
Pipeline 3676 73.5 92.9 412 1,399 5 0.56
Exception Unit 574 31.2 83.3 31 244 4 0.09
Sign Extension Unit 176 100.0 100.0 68 131 17 0.00
Instruction Fetch Unit 1078 58.1 80.7 29 124 4 0.86
Remaining (not target) 616 0.47
Total 26,432 89.4 96.67 3,025 23,337 42 3.33

Table 2 Test statistics for processor targeted components

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

