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Abstract 

Today’s nanometer technology trends have a very 
negative impact on the reliability of semiconductor 
products. Intermittent faults constitute the largest part of 
reliability failures that are manifested in the field during 
the semiconductor product operation. Since Software-
Based Self-Test (SBST) has been proposed as an effective 
strategy for on-line testing of processors integrated in 
non-safety critical low-cost embedded system 
applications, optimal test period specification is becoming 
increasingly challenging.  

In this paper we first introduce a reliability analysis 
for optimal periodic testing of intermittent faults that 
minimizes the test cost incurred based on a two-state 
Markov model for the probabilistic modeling of 
intermittent faults. Then, we present for the first time an 
enhanced SBST strategy for on-line testing of complex 
pipelined embedded processors. Finally, we demonstrate 
the effectiveness of the proposed optimal periodic SBST 
strategy by applying it to a fully-pipelined RISC embedded 
processor and providing experimental results. 

1. Introduction 
Current semiconductor fabrication processes for 

nanometer technology have a very negative impact to 
manufacturing yield and in-field reliability. The reliability 
faults manifested in the field during the life cycle of 
semiconductor products are classified in the following 
three types. Permanent faults reflect irreversible physical 
changes. Improvements in semiconductor design and 
manufacturing have significantly decreased the 
occurrence of permanent faults. Intermittent faults appear 
repeatedly at the same location causing errors in bursts 
when they are active, because of unstable or marginal 
hardware mainly due to process variations and 
manufacturing residuals. Transient faults (also known as 
“soft-errors”) appear irregularly at various locations and 
last short time. These faults are induced by temporary 
environmental conditions such as neutron and alpha 
particles, power supply and interconnect noise, 
electromagnetic interference and electrostatic discharge. 

Concurrent error detection, self-checking, time and 
space redundancy mechanisms that significantly increase 
system cost [1] are not suitable for non safety-critical low-
cost embedded system applications. In such embedded 
applications detection of intermittent operational faults, 
that cause errors in bursts only when they are active and 
may precede the occurrence of permanent faults, is much 
more important than detection of transient operational 
faults that appear once and last short time.  

On-line periodic testing is a non-concurrent test 
strategy, well suited to such embedded systems since it 
provides low-cost detection of permanent and intermittent 
faults with very high probability, that trades off between 
fault detection latency and performance overhead.  

On-line periodic testing of deeply embedded 
processors in complex low-cost and non safety-critical 
embedded systems is becoming increasingly challenging. 
Hardware-based built-in self-test (BIST) techniques for 
on-line periodic testing provide excellent test quality and 
at-speed testing at the cost of increased hardware 
overhead, high power consumption and manual extensive 
design changes. Software-based self-test (SBST) in 
several variations on [2]-[9] has been proposed as a very 
promising approach for at-speed processor testing using 
low-cost structural testers. SBST is a non-intrusive 
approach that utilizes processor resources and Instruction 
Set Architecture (ISA) to perform test generation, test 
application and test response evaluation. Recently, the use 
of low-cost SBST techniques for on-line periodic testing 
of embedded processors has been proposed in [8] as an 
effective alternative solution to hardware-based BIST.  

In this paper first we present a reliability analysis of 
intermittent faults (also including permanent faults) using 
probabilistic modeling. For on-line periodic testing of 
embedded processors, we introduce a novel cost function 
in order to minimize the test cost incurred by the 
execution of SBST programs and achieve high detection 
probability. Then, we present for the first time an 
enhanced SBST strategy for on-line periodic testing of 
embedded pipelined processors with more advanced ISA 
than the publicly available benchmarks used so far (e.g.  
[2],[3],[4],[7],[8]) and demonstrate the effectiveness by 
applying it to a fully-pipelined RISC embedded processor. 
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2. Reliability analysis 

2.1 Test model  
We consider a two-state continuous-parameter Markov 

model [8], [10], [11] for the intermittent faults. Let λ and µ 
denote the rates of leaving state 0 (operating) and state 1 
(fault), respectively, and let also St denote the state at time 
t. For this model, the time period during which the 
embedded processor stays at the operating (state 0) or the 
faulty (state 1) time has an exponential distribution with 
mean time the parameters 1/λ and 1/µ, respectively. Thus, 
the transition probabilities Pi,j(t) from state i at time t0 to 
state j  at time t0+t are: 
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The steady-state probabilities of being at each one of 
the two possible states upon an arbitrary observation 
instant, are π0=µ/(λ+µ) and π1=λ/(λ+µ) respectively. 

2.2 Cost function derivation 
The embedded processor that operates under this 

intermittent fault is used for the processing of an endless 
stream of jobs, with each job requiring a processing time 
B. If the fault becomes active during the duration of a job 
it corrupts the final result of the processing thus making it 
useless and potentially dangerous. 

Consider now a SBST program for the detection of the 
aforementioned intermittent faults. Each test is assumed to 
have a finite duration D. During the execution of a test: (i) 
the processing of the current job is halted; (ii) the 
intermittent fault remains at the state that it was at the 
beginning of the test (i.e., we assume that the two-state 
model “freezes” for the duration of the test). We assume a 
perfect detection capability for the faults covered by the 
SBST program and, thus, at the completion of the test we 
always detect a fault if one is active at the beginning of 
the test. When a fault is detected, the results of the 
processing are discarded and the job re-enters processing 
from the beginning. The time diagram (Figure 1) shows 
the test period T, the test duration D, the processing time 
lost due to a flawed results R and the number of tests 
performed N under the given period and job duration B. 

We are focusing on a periodic testing strategy in which 
the nth test is executed at time tn = n·T, 1 ≤ n ≤ N, where T 
is the testing period and N = ⎣B/T⎦ is the total number of 
tests performed during a single job (for simplicity we 
disregard the floor function in the sequel). The presented 
reliability analysis does not require the test duration D to 
be much less than the test period T, as it was required in 
previous works [8], [10], [11].  
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Figure 1 Time diagram 

Let pd denote the probability of detecting a fault with a 
single test; pfd(n) the probability of detecting the fault (for 
the first time) with the nth test and pfd the probability of 
detecting the fault with any one of the N tests. 

For the above intermittent fault model and testing 
strategy, we have: 
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Let q denote the probability that an existing fault 
becomes active (any number of times) during the time 
interval [0, B] that is required for finishing a single job. 
Then, the complementary probability, i.e., for the fault to 
stay inactive during the job although it exists, is 1 − q = 
P{E1 ∩ E2}, where E1 is the event that the fault is inactive at 
t = 0 and E2 is the event that the fault remains inactive 
during the interval [0, B]. The probability for the fault to 
stay inactive during the job can be re-written as 1 – q = 
P{E1}⋅P{E2|E1}. The probability of the event E1 is equal to 
the probability of the event (S0 = 0), which is given by π0, 
the steady-state probability of being at the operating state. 
The probability of the event E2|E1 is equal to Β−λe . Thus, 
the probability for the fault to stay inactive during the job 
is Β−=− λπ eq 01 . Consequently the probability that the fault 
becomes active during the time interval [0, B] is 

Β−−= λπ eq 01 . 
Let d denote the detection probability that an existing 

fault becomes active (any number of times) during the 
time interval [0, B] and is detected with anyone of the N 
tests. Thus, the detection probability is fdpqd ⋅= . In 
practice, it is required that d must be greater than 1-ε, 
where ε is a prespecified value (e.g. ε =10-5). 

Let us consider the case that the fault becomes active 
one or more times during the processing of a job thereby 
corrupting the final result and making it useless. Let R 
denote the amount of processing time wasted in this case: 
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The first case amounts to the total processing time that is 
wasted when a fault is detected prior to the completion of 
the ongoing job, thus causing the discard of the partial 
result and the restart of the job. The second case amounts 
to the total processing time that is effectively wasted by 
producing a flawed result when errors occur but remain 
undetected. Using Eq. (1) the expected value E{R} of R, 
can be written as follows: 
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In the following we define the cost function C(T) that 
expresses the cost incurred when selecting a periodic test 
strategy with period T. 

( ) ( ) { }REqDNqTC ⋅+⋅⋅−= 1                      (2) 
The first part of C(T) amounts to processing time 

unnecessarily wasted in running tests, when in fact no 
faults have occurred (an event of probability (1−q)). This 
part of the cost function favors the selection of large T’s. 
The second part of C(T) amounts to the processing time 
wasted when faults occur (an event of probability q). If 
the fault is detected by the periodic test procedure, then no 
additional time is wasted in processing a result that is 
already flawed. If the detection fails, then the maximum 
penalty is incurred, which is equal to the entire duration of 
the processing. Thus, the second part of C(T) favors the 
selection of small T’s (i.e., it favors frequent tests).  

The optimal test period T* can be derived from the root 
of the following equation 

( ) 0=
dT
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Equation (3) does not have a simple closed-form 
solution as it includes complex combined polynomial and 
exponential forms of T. Thus, it can only be solved 
numerically for an exact solution, using for example 
Newton’s method. 

2.3 Numerical and case study examples  
Let us consider the following device parameters as a 

numerical example: λ = 0.01 ms-1 and µ = 0.1 ms-1. The 
embedded application job processing time is Β=1000ms 
and the duration of the SBST test program is D=0.3ms 
(according to experimental results of Section 3 that 
follows). The cost function C(T) for the above device 
parameters is depicted in Figure 2. The optimal test period 
is T*=2.24ms while the total number of tests performed is 
N=446. 

Let us also consider different device parameters, with a 
range of the ratio µ/λ between 0 and 10. Intermittent fault 
modeling requires µ>λ while the corner case µ=0 
represents a permanent fault. 

 
Figure 2 Cost of test and optimal test period 

 
Figure 3 Cost of test as a function of T and µ 

The proposed cost function C(T) for the above device 
parameters is shown in Figure 3. It can be easily seen that 
if the mean time (1/µ) spent by the device in state 1 (fault 
state) becomes smaller, the optimal test period gets 
smaller as well. For the corner case µ=0 representing a 
permanent fault, the cost function leads to an optimal test 
period T* with the largest value. In Table 1, we have 
calculated the optimal test period T* for several different 
values of device parameter µ. 

µ/λ µ (ms-1) Optimal test 
period T*(ms) 

Number of 
tests N 

0 0 7.64 130 
1 0.010 5.38 185 

2.5 0.025 4.04 247 
5 0.050 3.06 326 

7.5 0.075 2.56 390 
10 0.100 2.24 446 

Table 1 Optimal T* for different device parameters 
Figure 4 depicts the detection probability d that an 

intermittent fault becomes active during the time interval 
[0, B] and is detected with any one of the N tests. It is 
clear that for all the device parameters considered and the 
optimal test periods of Table 1, there is very high 
detection probability.  

 
Figure 4 Detection probability in periodic testing  



 

   

3. SBST strategy for on-line periodic 
pipelined processor testing  

On-line periodic testing is performed in-field while the 
processor operates at its normal operational environment. 
Software-Based Self-Test (SBST) has been proposed as 
an effective strategy for on-line testing of processors 
integrated in non-safety critical low-cost embedded 
system applications [8]. The SBST program is resident in 
the cache memory of the embedded core and is executed 
at the processor’s actual speed (at-speed testing). The 
above unique characteristics of on-line periodic testing 
impose several additional constraints in comparison to 
off-line manufacturing testing.  

In Section 2, we introduced reliability analysis for 
optimal periodic testing of intermittent faults that 
minimizes the test cost incurred when running the SBST 
program based on probabilistic modeling of intermittent 
faults. In this Section, based on the component-based 
SBST methodology for off-line [4], [7] and on-line testing 
[8] we developed self-test routines that comply with the 
stringent characteristics of on-line testing. We present for 
the first time an enhanced SBST strategy for on-line 
testing of complex pipelined embedded processors. 
Moreover, we address successfully the new test challenges 
related to more advanced processor architectures than the 
publicly available processor benchmarks used so far (e.g. 
[2],[3],[4],[7],[8]). 

3.1 Self-test routine development 
On-line periodic testing is often applied on mobile 

platforms where power consumption is a critical factor. A 
study by Intel [12] shows that a considerable part of the 
total power dissipation concerns the memory system and 
specifically the cache hierarchy system. Furthermore, the 
system’s performance specifications are also an important 
factor, thus special care must be taken so that the overall 
performance is not degraded overmuch due to the 
execution of the test routine. This means that the test 
routine should have the shortest possible test execution 
time (less than a quantum cycle). 

In order to satisfy these requirements, self-test routines 
are developed in a way that they utilize the characteristics 
of temporal and spatial locality. According to this, test 
routines include compact loops that take advantage of 
temporal locality and data structured in arrays that exploit 
spatial locality. In addition, references to the data memory 
should be kept to a minimum. This was achieved by the 
use of a software MISR routine that performs compaction 
of the test responses so that only a single signature per 
component is written in the data cache, keeping cache 
references that result in cache miss overhead and increase 
in power consumption to a minimum. 

Since on-line testing is performed in-field at the normal 
operational environment and under the restrictions of the 
operating system, on-line embedded processor testing is 
much more challenging than off-line testing. For example, 

only a limited part of memory hierarchy can be accessed 
in normal mode of operation, thus resulting in lower fault 
coverage in certain processor units like the instruction 
fetch unit and other address related units. However, these 
faults should be considered as functionally untestable. In 
addition, self-test code that minimizes references to 
memory hierarchy including stack memory imposes 
increased test challenges for certain processor units.  

3.2 Self-test program enhancement 
Modern embedded systems include complex high 

performance embedded processors that can handle real 
time applications with hard deadlines and increased 
throughput needs. Those requirements are satisfied by the 
use of advanced ISAs with characteristics like Instruction-
Level Parallelism, system coprocessors support, etc. 
Multi-stage pipeline and exception support systems are 
very common in the embedded processors. Consequently, 
SBST should target those units in order to guarantee 
higher fault coverage and thus more reliable real time 
operation.  

The goal of achieving high fault coverage in complex 
pipeline systems comprises several challenges that must 
be addressed. The unique character of the processor 
pipeline as a performance increase mechanism not visible 
to the assembly programmer, leads to reduced 
controllability and observability restrictions in some of its 
subcomponents. Specifically: 

• Hazard Detection unit is a control component with 
limited visibility to assembly programmers resulting 
in reduced controllability and observability. 

• Pipeline control is a control component that decodes 
the processor instruction at the instruction fetch 
pipeline stage producing the appropriate control 
signals for the subsequent pipeline stages. This 
implies limited observability. 

• Pipeline registers are not directly visible to the 
assembly programmer. However, the Data part is 
much more testable than the Address part. Moreover, 
limited access to the memory hierarchy in normal 
mode operation imposed by the operating system, 
results in low fault coverage in the high order bits of 
the pipeline address registers. Faults in such pipeline 
register logic should be considered functionally 
untestable during on-line SBST. The same reasoning 
is valid for the instruction fetch unit. 

• Forwarding logic implemented by forwarding 
multiplexers is not visible. Despite the fact that the 
controllability and observability is limited, 
forwarding multiplexers are functional components 
that can be targeted effectively by deterministic test 
routines that apply regular test patterns and 
guarantee very high fault coverage. 

The role of the exception support system to interrupt 
the normal mode operation of a processor differentiates 
the challenges related to its on-line periodic testing. 



 

   

Specifically: 
• The part of the exception register that holds the 

address where the exception occurred and the 
exception controller, provides reduced controllability 
and observability. 

• Exceptions that are generated by the ISA can be 
triggered by the SBST routine. On the other hand, 
exceptions triggered by external interrupts cannot be 
triggered by the SBST routine, thus resulting in part of 
the exception control to be SBST untestable. 

We enhanced the on-line self-test program of [8] by 
adding self-test routines that target pipeline and exception 
logic using a deterministic approach for the functional 
units and a functional testing approach for the control 
units. Forwarding logic implemented by forwarding 
multiplexers is targeted by deterministic tests applied by 
proper instruction sequences and propagated to fully 
observable GPRs. The data part of the pipeline registers 
was targeted by deterministic test patterns. The address 
part was also targeted deterministically and special care 
was taken so that all address logic test responses are 
propagated to the processor data bus, since the data 
memory is the processor primary output where test 
response capturing can take place. The test routine 
targeting the exception register that holds the address 
where the exception occurred, follows a similar approach. 

All the pipeline and exception control logic are targeted 
using standard verification-based functional testing 
techniques with test development performed at high-level 
as in [7]. Use of high-level RTL verification metrics 
supported by industry standard simulation tools like RTL 
statement, branch, condition and expression coverage, 
helps to improve verification manual effort. In many 
practical cases, verification-based test routines are 
developed at the design verification phase. Test code can 
be reused for the testing of control and hidden 
components with no additional manual effort involved or 
in the worst case substantially alleviating any manual self-
test routine development effort.  
4. Experimental results 

In this section, the effectiveness of the SBST strategy 
for on-line periodic testing is demonstrated by its 
application to a complex fully pipelined processor. Athena 
is an in-house developed processor designed to fulfill the 
requirements of a fully functional complex processor 
benchmark. It is a 32-bit embedded RISC processor core 
that implements a 5-stage pipeline with hazard detection 
and forwarding mechanisms [13]. Athena implements the 
full MIPS-I ISA with the sole exception of the unaligned 
load and store operations that are patented. The processor 
core is enhanced with a fast parallel multiplier [14] and 
exception handling mechanisms that supports four types 
of exceptions: unknown command, external interrupt, 
ALU overflow and commands that cause exception 
(Syscall or Break in MIPS-I ISA). The RTL processor 

model was synthesized targeting a 0.18um technology 
library. Synthesis was optimized for area and the netlist 
gate-count was 26,432 gates with 1518 FFs. The design 
runs at a clock frequency of 89 MHz. A Test Evaluation 
Framework using commercial tools was used for VHDL 
synthesis, functional and fault simulation. 

According to [7], [8] the processor units that have the 
highest priority for on-line periodic testing are the 
functional Data-Visible Components [8] (parallel 
multiplier, register file, ALU, shifter and sign extension 
unit), which occupy the 77.8% of the processor area. 
Targeting only these functional components results to 
acceptably high total fault coverage of 89.4% due to 
collateral coverage. The enhanced test program increases 
the fault coverage to 96.67% as a result of targeting 
explicitly the pipeline and exception logic. It should be 
clarified that a large number of the undetected faults are 
functionally untestable using processor instruction at the 
normal mode of in-field operation. However, currently 
there is no tool available for systematic extraction of such 
functionally untestable faults. 

The derived self-test program for on-line periodic 
testing has the required stringent characteristics: 

• Small code of only 3025 words, that takes 
advantage of temporal locality and spatial locality.  

• A small number of only 42 memory data references 
(19 stores and 23 loads) that imposes very few data 
cache misses.  

• A short CPU execution time of 23,337 clock cycles 
and an absolute time of 260us, which is much less 
than a quantum time cycle.   

For every self-test routine, a test signature is derived 
after compaction of all responses by using a shared 
software MISR subroutine of only eight words. At the end 
of periodic testing, nine signatures one for every CUT 
plus one for the functional test are stored to data memory. 

Table 2 presents the component gate count, self-test 
program statistics (program size in words, CPU clock 
cycles and data memory references – loads and stores), 
along with the achieved single stuck-at fault coverage and 
the percentage of the processor overall fault coverage 
which is missing from each of the processor components. 

As in previous work [7], [8] the attained fault coverage 
for the processor functional units is almost complete. 
Deterministic tests, which utilize the inherent regularity 
that characterizes the architecture of several processor 
functional components, are applied by compact self-test 
routines with high structural test coverage for any gate-
level implementation. This inherent regularity is not 
exploited either by pseudorandom test development or by 
ATPG-based test development approaches.  

Processor components related to address logic, called 
Address-Visible Components [8] have reasonably high 
fault coverage, considering that the high order bits of the 
address bus are functionally untestable during periodic on-
line testing. 



 

   

Control components have fairly low fault coverage due 
to poor controllability and observability characteristics. 
However, these components are very small in comparison 
to the functional components, resulting in satisfactory 
fault coverage for the entire processor. Verification-based 
functional testing of these components was performed 
according to [7] by taking advantage of existing software 
platforms. Through re-usability, any manual self-test 
routine development effort is substantially alleviated. 
Athena Processor Verification Suite (APVS) was 
developed at the design phase of Athena and produces 
automatically verification-based functional test code.  

The improvement in fault coverage achieved by the 
enhanced test program specifically in the pipeline parts is 
depicted in Table 3. 

Pipeline Parts 
[7], [8] 

FC   
(%) 

Miss. FC 
over All 

(%) 

Enhanced 
FC  
(%) 

Miss. FC 
over All 

(%) 

Pipe Control 64.7 0.44 83.2 0.32 
Pipe Reg. Data 74.6 1.07 96.8 0.16 
Pipe Reg. Addr. 62.9 0.41 78.8 0.25 
Forward. MUXs 85.9 0.31 100.0 0.00 
Hazard Detect. 54.6 0.23 92.5 0.08 
Total Pipeline 73.5 2.46 92.9 0.56 

Table 3 Fault coverage for pipeline components  

5. Conclusions 
The contribution of the paper is twofold: First, we have 

presented a reliability analysis of intermittent faults using 
probabilistic modeling and we have introduced a novel 
cost function in order to minimize the test cost incurred by 
the execution of SBST programs for on-line periodic 
testing of embedded processors. Secondly, we have 
presented for the first time an enhanced SBST strategy for 
on-line periodic testing of embedded processors with 
more advanced ISA than the publicly available processor 
benchmarks used so far (e.g. [2],[3],[4],[7],[8]). We have 
demonstrated the effectiveness of the proposed optimal 
periodic SBST strategy by applying it to a fully-pipelined 
RISC embedded processor and providing a set of 
experimental results. 
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Component Gate Count  
(gates) 

[7], [8] Fault   
coverage (%) 

New Fault   
coverage (%) 

Size 
(words) 

Clock 
Cycles 

Data 
References 

Missing FC   
over All (%) 

Parallel Mult. 8,746 98.3 98.3 113 9,469 1 0.82 
Register File 9,669 99.9 99.9 1,408 4,224 1 0.03 
Shifter 861 100.0 100.0 190 721 1 0.00 
ALU 579 98.2 98.4 178 1,533 1 0.06 
Control Logic 457 62.1 76.6 596 5,492 8 0.44 
Pipeline 3676 73.5 92.9 412 1,399 5 0.56 
Exception Unit 574 31.2 83.3 31 244 4 0.09 
Sign Extension Unit 176 100.0 100.0 68 131 17 0.00 
Instruction Fetch Unit 1078 58.1 80.7 29 124 4 0.86 
Remaining (not target) 616      0.47 
Total 26,432 89.4 96.67 3,025 23,337 42 3.33 

Table 2 Test statistics for processor targeted components 
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