
A Built-In Redundancy-Analysis Scheme for RAMs with 2D
Redundancy Using 1D Local Bitmap

Tsu-Wei Tseng, Jin-Fu Li, and Da-Ming Chang
Advanced Reliable Systems (ARES) Laboratory

Department of Electrical Engineering
National Central University

Jhongli, Taiwan 320

Abstract

Built-in self-repair (BISR) technique is gaining popu-
lar for repairing embedded memory cores in system-on-
chips (SOCs). To increase the utilization of memory redun-
dancy, the BISR technique usually needs to perform built-in
redundancy-analysis (BIRA) algorithm for redundancy al-
location. This paper presents an ef£cient BIRA scheme for
embedded memory repair. The BIRA scheme executes the
2D redundancy allocation based on the 1D local bitmap.
This enables that the BIRA circuitry can be implemented
with low area cost. Also, the BIRA algorithm can provide
good repair rate (i.e., the ratio of the number of repaired
memories to the number of defective memories). Exper-
imental results show that the repair rate of the proposed
BIRA scheme approximates to that of the optimal scheme
for the memories with different fault distributions. Also, the
ratio of the analysis time to the test time is small.

1 Introduction

Embedded memories occupy more than 60% chip area
of most today’s system on chip (SOC) designs. Keeping
the memory cores at a reasonable yield level is thus vital
for SOC products. Built-in self-repair (BISR) techniques
have been shown to improve the memory yield from 5% to
20%, such that the net SOC yield increase can range from
2% to 10% [1]. Therefore the BISR technique is gaining
popularity [2]. For a BISR design, however, the redundancy
allocation for a memory with 2D (i.e., spare rows and spare
columns) redundancy is very dif£cult since it is an NP-hard
problem [3].

Many redundancy analysis algorithms for performing
redundancy allocation at automatic test equipment (ATE)
have been proposed, e.g., [3–6]. However, these algo-
rithms are not adopted to be realized in built-in circuitries.
Thus ef£cient built-in redundancy-analysis (BIRA) algo-
rithms which can cost-effectively be realized with built-in
circuitries are required for BISR schemes. In [7], the au-
thors presented a BISR design with a comprehensive real-
time exhaustive search test and analysis (CRESTA) scheme
for bit-oriented memories. This BISR design can achieve
the optimal repair rate (i.e., the ratio of the number of re-
paired memories to the number of defective memories).
However, this scheme is only for bit-oriented memories and
the hardware cost for implementing the CRESTA scheme is

very high. In [8], the authors extend the CRESTA scheme
to support the repair of word-oriented memories. A col-
umn repair vector is used to store information for column
repair temporarily, such that the BIRA design can be exe-
cuted at-speed. Again, the hardware cost of CRESTA in-
creases drastically with the number of spare elements. Al-
though one sequential BIRA scheme was also proposed to
cope with this problem, the test time is increased drasti-
cally. In [9], a BISR scheme using redundant words is pre-
sented. However, redundancy analysis is not required in
this scheme since only 1D redundancy is used. In [10], an
ef£cient BIRA algorithm for word-oriented memories is re-
ported. In this work, if a faulty word has multiple faulty
subwords, it is repaired with an available spare row. This
can reduce the area cost of the corresponding BIRA imple-
mentation. In [11], two ef£cient BIRA algorithms using
2D local bitmap are proposed. However, only the applica-
tions of the two algorithms for bit-oriented memories are
discussed. If the user wants to extend the algorithms to re-
pair word-oriented memories, each bit of 2D local bitmap
needs to be replaced by a word. This results that the area
cost for implementing the local bitmap is large.

This paper presents an ef£cient BIRA scheme for word-
oriented memories with 2D redundancy. The BIRA algo-
rithm can allocate the 2D redundancy based on 1D local
bitmap. This results that the area cost for implementing
the BIRA algorithm is low. Also, the BIRA can provide
high repair rate for the defective word-oriented memories.
The ratio of the analysis time to the test time is also an-
alyzed. Experimental results show that proposed BIRA
scheme can provide good repair rate for memories with dif-
ferent fault distributions. The repair rate of the proposed
BIRA scheme approximates to that of the optimal analysis
algorithm. Also, the ratio of the analysis time to the test
time is only about 3.3% for a 4096×128-bit memory tested
by the March-CW algorithm.

2 Preliminary

Assume that a bit-oriented memory has r spare rows and
c spare columns. If we design a BIRA algorithm based on a
2D local bitmap, the maximum size of the 2D local bitmap
for the memory can be limited to (r(c + 1) + r) × (c(r +
1) + c) [11] as shown in Fig. 1. As Fig. 1 shows, in addi-
tion, each bit of the bitmap needs one 1-bit register to store
the error information, (r(c + 1) + r) row address registers

3-9810801-0-6/DATE06 © 2006 EDAA

(RARs) and (c(r+1)+c) column address registers (CARs)
are needed. The width of each RAR and CAR is equal to
the number of row address bits and column address bits,
respectively. Also, the RARs and CARs must be able to
perform the function of parallel comparison. For brevity, if
we estimate the area of a local bitmap only in terms of reg-
isters, (r(c + 1) + r)× (c(r + 1) + c) + m(c(r + 1) + c) +
n(r(c + 1) + r) registers are needed to implement a local
bitmap for a bit-oriented memory with n-bit row address
and m-bit column address.

(c+(r+1)+c)

(r+(c+1)+r)

CAR

RAR

Figure 1: Local bitmap with maximum size.

In a similar way, a local bitmap for bit-oriented mem-
ories can be extended to a local bitmap for word-oriented
memories by replacing every bit of the local bitmap for bit-
oriented memories with one word. Consider an N×W -bit
memory. For brevity, we assume that N=2u and u=n+m,
where n and m represent the number of row address bits
and column address bits, respectively. If the word-oriented
memory has the same redundancy organization as the case
described above, the number of registers for implementing
the local bitmap is W × (r(c + 1) + r)× (c(r + 1) + c) +
m(c(r +1)+ c)+n(r(c+1)+ r). Therefore, the area cost
of the local bitmap is dominated by the number of spare el-
ements and word width. Note that the area cost is increased
with the number of spare rows and columns in quadratic re-
lation. Thus if only a 1D local bitmap is used for 2D redun-
dancy allocation, the area cost can be reduced drastically.
However, the problem is how to execute a BIRA algorithm
for 2D redundancy allocation in a 1D local bitmap. In the
next section, we present a BIRA scheme for word-oriented
memories with 2D redundancy using 1D local bitmap.

3 Proposed BIRA Scheme

3.1 Block Diagram of the Proposed BIRA

Figure 2 shows the targeted memory architecture. The
memory array is composed of two subarrays and has two
kinds of spare elements: spare rows and spare columns.
The spare row is global redundancy, but the spare column
is local redundancy. That is, a spare row can repair the cor-
responding defective rows in the right and left subarrays.
However, a defective column in right (left) subarray only
can be repaired by the corresponding spare column in the
right (left) subarray.

Figure 3 shows the block diagram of the proposed BIRA
scheme. The BIRA scheme consists of four major blocks:
an FSM, a Bitmap, a CMF Detector, and a Remapping Data

Spare Row

Spare C
olum

n

Spare C
olum

n

Right SubarrayLeft Subarray

Figure 2: The targeted memory redundancy organization.

Register. The FSM executes the analysis procedure of the
proposed BIRA algorithm. The Bitmap stores the faulty
information from the BIST circuitry. Also, it can perform
comparison function, which compares the stored informa-
tion with the incoming information such that the informa-
tion does not be stored repeatedly. The BMF Detector can
detect the column with maximal number of faulty cells
within the Bitmap. The Remapping Data Register stores
the repaired addresses, and these addresses are shifted to the
fuse group of the repaired memory once the BIRA scheme
is completed.

unrepairable

tdo

shift_en

hold_l
FSM

Bitmap

R
em

apping D
ata R

egister

MF

clk

rst

bira_en

fail_h

test_done

syndrome B Detector

Figure 3: Block diagram of the proposed BIRA scheme.

In addition to the clock and reset signals (clk and rst), the
BIRA has four input signals: bira en, fail h, test done, and
syndrome. The signals fail h, test done, and syndrome are
from the BIST circuitry. As soon as the BIST detects a fault,
the BIST is frozen. Also, the fail h signal is asserted and
the corresponding faulty information (faulty address and
hamming syndrome) is exported to the BIRA through the
bus—syndrome. The hamming syndrome is de£ned as the
modulo-2 sum of the expected (fault-free) data output vec-
tor and the output vector from the memory under test, for
word-oriented RAMs [12]. On the other hand, the BIRA
has four output signals: hold l, shift en, unrepairable, and
tdo. The hold l is used to awake the BIST circuitry. If
the BIRA completes the redundancy analysis of the current
fault pattern in the Bitmap, the BIRA sets the hold l to logic
high and the BIST continues to perform the testing process.
The unrepairable signal is asserted once the spare elements
are exhausted and there is faulty information in the Bitmap.
Otherwise, when the BIST and BIRA have been completed,
the repaired information stored in the Remapping Data Reg-
ister is shifted to the fuse group by asserting the shift en to

high and exporting the data from tdo. In this paper we only
focus on the discussion of the proposed BIRA algorithm
and 1D bitmap.

3.2 1D Local Bitmap

Figure 4 shows the proposed 1D local bitmap. As the
£gure shows, the bitmap has x rows and each row is com-
posed of four £elds: a one-bit valid ¤ag (VF), a row ad-
dress register (RAR), a column address register (CAR), and
a hamming syndrome register (HSR). If a row stores valid
information, the bitmap sets the corresponding VF to logic
1. The RAR and CAR store the faulty address of the de-
tected faulty word. Also, the HSR stores the corresponding
hamming syndrome of the faulty word. Therefore, the BIST
circuitry exports the faulty information to the bitmap while
it detects a fault. The faulty information includes a fail ¤ag,
a faulty address (including row and column addresses), and
a hamming syndrome. The size of the local bitmap can be
limited to (r + c) × (1 + n + m + W). Since the memory
under test is unrepairable if the maximal number of orthog-
onal faulty cells (a faulty cell which does not share any row
or column with any other faulty cell is referred to as an or-
thogonal faulty cell [11]) is larger than the number of spare
elements. Note that the selection of the value of x is de-
pendent on the trade-off between the area cost and repair
rate.

CAR0

CAR1

RARiVFi CARi HSRi

RARx−1 CARx−1x−1VF HSRx−1

0RAR

1RARVF

VF0

1 1HSR

HSR0

Figure 4: Organization of the 1D local bitmap.

3.3 BIRA Algorithm

Before the description of the proposed BIRA algorithm,
we £rst de£ne the notations used in the BIRA algorithm
as follows: (1) NASR—number of available spare rows; (2)
LNASC (RNASC)—number of available spare columns in
left (right) subarray; (3) NFR—number of faulty rows in
the half Bitmap in which the number of available spare
columns is exhausted; (4) GMC—the group has maximal
number of rows with the same column address in the
Bitmap; (5) BMF—the bit position in the HSRs within
the GMC has the largest number of faults; (6) RA—row
address of the fault currently detected by the BIST; (7)
CA—column address of the fault currently detected by the
BIST; (8) <RAR>—valid addresses stored in RAR of the
Bitmap; (9) <CAR>—valid addresses stored in CAR of
the Bitmap; (10) NVRAR—number of RARs storing valid
row addresses; (11) NVCAR—number of CARs storing valid
column addresses.

Subsequently, examples are illustrated to further explain
the notations: GMC, BMF, and NFR. Consider a Bitmap with
four entries as shown in Fig. 5. Assume that data width of

the memory under test is 6. Also, let NASR=1, LNASC=1,
and RNASC=1. As Fig. 5(a) shows, all entries of the Bitmap
store valid addresses. Also, the column addresses stored in
the £rst three entries all are the same. Therefore, the group
of entry 0, entry 1, and entry 2 (E0, E1, and E2) is called
GMC (marked with the box in dash line). The B1 is called
BMF since the number of faults in it is the largest within
the GMC. If multiple bits within the GMC have the same
number of faults and the number of faults is the largest, the
LSB is selected as the BMF. Assume that LNASC=0 and the
content of the Bitmap is shown as Fig. 5(b). That is, the
spare column of the left subarray (i.e., the range of B0, B1,
and B2) is exhausted. As Fig. 5(b) shows, therefore, the
number of faulty rows in the left subarray is 2, i.e., NFR=2.

E0

E1

E2

E3

VF RAR CAR B0 B1 B2 B3 B4 B5
2

2

2

34

3

2

11

1

1

1

0 0 0 0

0
0

0

0
0

0

0
0

00
0

0 0 0

1

1

HSR

E0

E1

E2

E3

VF RAR CAR B0 B1 B2 B3 B4 B5
2

2

2

34

3

2

11

1

1

1

10 0 0 0 0

0
0

0

0
0

0

0
0

00
0

0 0 0

1
1

1

HSR

(a)

0

1

0

0

1

(b)

Figure 5: (a) Example for GMC and BMF. (b) Example for
NFR.

Algorithm 1 summarizes the redundancy-analysis pro-
cedure of the proposed BIRA algorithm. Assume that the
number of entries of the Bitmap is X. In Phase-1 analysis
procedure, the BIRA performs redundancy allocation while
the BIST detects a fault. If the address of the detected fault
is the same as the ith faulty address stored in the Bitmap
(i.e., RA∈<RAR> and CA∈<CAR>), the hamming syn-
drome of the detected fault is stored in HSRi. Also, the con-
tent of the HSRi is updated to the content which is obtained
by performing the bit-wise OR operation of the original
content and the hamming syndrome of the detected fault.
If the row address of the detected fault is the same as one of
row addresses stored in the Bitmap and the column address
of the detected fault is different from all the column ad-
dresses stored in the Bitmap, the BIRA algorithm allocates
an available spare row to repair the corresponding faulty
row. Then the Bitmap is updated and the BIRA awakes the
frozen BIST circuitry. However, if the number of available
spare rows is exhausted, the memory is unrepairable. If
the address of the detected fault does not belong to the two
cases mentioned above, the BIRA stores the faulty address
in an empty entry of the Bitmap. Then the BIRA checks
whether NARAR or/and NACAR is full or not. If both the two
registers are not full, the BIRA issues a commend to resume

the BIST circuitry. Otherwise, the BIRA goes to execute the
analysis procedure of Subroutine.

The Phase-2 analysis procedure is executed while the
memory BIST is completed. The BIRA £rst checks
whether the Bitmap has valid information or not. If the
Bitmap is not empty, the BIRA performs the analysis pro-
cedure of the Subroutine. Otherwise, the spare allocation is
completed and the memory is repairable.

Algorithm 1 Pseudo code of the BIRA algorithm.
Phase-1: during BIST

1: FOREACH (Detected fault){
2: IF (RA∈<RAR> and CA∈<CAR>){
3: HSRi=HSRi | hamming syndrome;
4: Update Bitmap and return to perform BIST;}
5: ELSE IF (RA∈<RAR> and CA�<CAR>){
6: IF (NASR!=0){
7: Allocate a spare row to repair the faulty row;
8: Update Bitmap and return to perform BIST;}
9: ELSE{

10: Memory is unrepairable;}}
11: ELSE {
12: Store the fault in an empty entry of the Bitmap;
13: IF (NARAR<X and NACAR<X){
14: Return to perform BIST;}
15: ELSE {
16: Go to Subroutine;}}}
Phase-2: BIST is completed

1: IF (NARAR �=0 or NACAR �=0){
2: Go to Subroutine;}
3: ELSE {
4: Memory is repairable;}

Subroutine

1: IF (LNASC!=0 or RNASC!=0){
2: IF (LNASC=0/RNASC=0 and left/right bitmap isn’t empty){
3: If (NFR in the left or right subarray<NASR){
4: Repair all faulty rows with spare rows;
5: Update Bitmap and return to perform BIST;}
6: ELSE {
7: Memory is unrepairable;}}
8: ELSE{
9: Repair the column with BMF with a spare column;

10: Update Bitmap;
11: IF (Bitmap is full){
12: Go to Subroutine;}
13: ELSE {
14: Return to perform BIST;}}
15: ELSE {
16: IF (NASR!=0){
17: Allocate a spare row to repair one row in the Bitmap;
18: Update Bitmap and return to perform BIST;}
19: ELSE {
20: Memory is unrepairable;}}

The analysis procedure of the Subroutine is performed
when the Bitmap is full or the memory BIST is completed
and the Bitmap is not empty. The Subroutine £rst checks
whether the available spare columns in the left or/and right
subarrays are exhausted or not. If either LNASC or RNASC
is exhausted, the BIRA checks whether the corresponding
left-half bitmap or right-half bitmap is empty or not. If

LNASC=0 (RNASC) and the left-half (right-half) bitmap is
not empty, the Subroutine checks whether the value of NFR
in the left subarray or the right subarray is larger than the
number of available spare rows. If the value of NFR is less
than that of NASR, all the corresponding faulty rows in the
left or the right subarray are replaced with the correspond-
ing spare rows. On the contrary, if the NFR is larger than
the NASR, the memory is unrepairable. Otherwise, if both
the BIRA identi£es the BMF within a GMC and the BMF is re-
placed with an available corresponding spare column. Then
the Bitmap is updated and the BIRA checks whether the
Bitmap is full or not. If the Bitmap still is full, the BIRA ex-
ecutes the Subroutine again. Otherwise, the BIRA resumes
the BIST circuitry. Finally, if both LNASC and RNASC are
exhausted, the BIRA allocates an available spare row to re-
pair one faulty row in the Bitmap. Then the Bitmap is up-
dated and the BIRA resumes the BIST circuitry. However,
if the available spare rows are exhausted, the memory is
unrepairable.

An example is illustrated to explain the Algorithm 1 fur-
ther. Consider a memory under repair has two spare rows
and two spare columns (one is in the left subarray and the
other is in the right subarray). Also, the word width of the
memory is 6 and the number of entires of Bitmap is 4. As-
sume that the Bitmap is full and the fault pattern is shown as
Fig. 6(a). Note that B0, B1, and B2 (B3, B4, and B5) belong
to left (right) subarray region. As Fig. 6(a) shows, the four
faults detected do not have the same row addresses. Thus no
spare row allocation is done before the Bitmap is full. Once
the Bitmap is full, the BIRA algorithm goes to execute the
Subroutine. Because all the spare elements are not used, the
Subroutine will allocate a spare column to replace the faulty
bit with the largest number of faults, i.e., BMF. In this case,
the £rst three entries has the same column addresses. Thus
they are the GMC. Also, the B0, B1, and B2 all have 1 faulty
bit. Since the LSB bit position has the highest priority, the
B0 is selected as the BMF. Thus B0 is replaced by the spare
column in the left subarray. After the B0 is replaced, the
left-half Bitmap is not empty and LNASC=0. Because NFR
in the left-half bitmap is 2, the BIRA allocates two spare
rows to repair the row 1 and row 2. Then the Bitmap is
updated and the BIRA informs the BIST to test the mem-
ory. Assume that no other fault is detected when BIST is
completed, the BIRA executes the Subroutine again. Since
RNARAR �= 0 and right-half bitmap is not empty, the BIRA
searches the BMF. Since the B3 is BMF, the B3 is replaced
by the spare column at the right subarray. Finally, the mem-
ory is repairable and the redundancy allocation is shown in
Fig. 6(b).

4 Experimental Results

We implement a simulator to evaluate the proposed
BIRA algorithm. The simulator is implemented according
to the approach reported in [13]. The repair ef£ciency is
estimated by the parameter repair rate. Repair rate is de-
£ned as the ratio of the number of repaired memories to
the number of defective memories [11]. In our analysis,
we simulated a total of 500 memory cores with a core size
of 8192×64 bits. Different types of faults are injected into
each memory cores. In this paper, we show the simulation
results for two different cases. For Case 1, only single-cell

E0

E1

E2

E3

VF RAR CAR B0 B1 B2 B3 B4 B5
2

2

2

34

3

2

11

1

1

1

0 0

0
0

0

0
0

0

00
0

0 0 0 1

HSR

E0

E1

E2

E3

VF RAR CAR B0 B1 B2 B3 B4 B5
2

2

2

34

3

2

11

1

1

1

0 0 0

0
0

0

0
0

0

00
0

0 0 0 1

HSR

(a)

0

0

0

1

(b)

1 0

1 0

1

10

1

1

1

0
0 1

Figure 6: An example of the redundancy analysis: (a)before
analysis; (b)after analysis.

faults are injected into each memory core at random loca-
tions. Table 1 summarizes the repair rates of the optimal
analysis algorithm and our BIRA algorithm for Case 1. In
the table, the r and c denote the number of spare rows and
spare columns. Note that the spare columns are evenly di-
vided in left and right subarrays. That is, if c=2, one is for
the left subarray and the other is for the right subarray. As
Table 1 shows, the repair rate of the proposed BIRA algo-
rithm can achieve very good repair rate. For all the simu-
lated redundancy con£gurations, the repair rates of our al-
gorithm approximate to those of the optimal algorithm. For
Case 2, 40% single-cell faults, 20% row twin-bit faults (i.e.,
two adjacent bits in a row are faulty), 20% column twin-bit
faults (two adjacent bits in a column are faulty), and 20%
cluster faults (the cluster size is 2×2) are injected into each
memory core at random locations. Table 2 summarizes the
repair rates of the optimal analysis algorithm and our BIRA
algorithm for Case 2. As the table shows, we see that the re-
pair rate of the proposed BIRA algorithm is still very good
for a memory with different fault types.

Table 1: Repair rates of the optimal algorithm and our
BIRA algorithm for Case 1.

(r,c) Opt. Ours (r,c) Opt. Ours
(0,2) 27.6% 27.6% (2,4) 96.0% 96.0%
(0,4) 65.6% 65.4% (3,0) 62.0% 62.0%
(1,0) 12.4% 12.4% (3,2) 93.2% 93.2%
(1,2) 57.4% 57.4% (3,4) 99.2% 99.2%
(1,4) 85.4% 83.4% (4,0) 87.0% 87.0%
(2,0) 44.4% 44.4% (4,2) 97.4% 97.2%
(2,2) 83.8% 83.8% (4,4) 99.8% 99.8%

Subsequently, we describe the simulation results of the
hardware implementation for the proposed BIRA algo-
rithm. We used UMC 0.13µm technology to implement
BIRA circuitries for different memory sizes with various
redundancy con£gurations. Also, the number of entries of

Table 2: Repair rates of the optimal algorithm and our
BIRA algorithm for Case 2.

(r,c) Opt. Ours (r,c) Opt. Ours
(0,2) 27.6% 27.6% (2,4) 95.4% 93.0%
(0,4) 66.4% 66.4% (3,0) 62.0% 62.0%
(1,0) 12.6% 12.6% (3,2) 92.2% 91.0%
(1,2) 57.8% 57.8% (3,4) 98.4% 96.6%
(1,4) 87.4% 85.6% (4,0) 86.8% 86.8%
(2,0) 44.2% 44.2% (4,2) 95.6% 94.2%
(2,2) 84.4% 84.4% (4,4) 99.8% 99.4%

Bitmap in the implemented BIRA circuities is four. Table 3
summarizes the simulation results of BIRA circuitries for
three different memory sizes with 1 spare row and 2 spare
columns. The second row of the table shows the area cost
of the proposed BIRA scheme. Apparently, the area cost is
heavily related to the word width since the width of the HSR
of Bitmap is the same as the word width. The worst cy-
cle time for the 2048×256-bit memory is only about 2.5ns.
We also estimated the analysis time of the proposed BIRA
scheme. We simulated 250 memory cores with injected
faults for each memory con£gurations. The total analysis
time (TAT) for the the 8192×64-bit, 4096×128-bit, and
2048×256-bit memories is 5882 cycles, 6071 cycles, and
6364 cycles, respectively. Assume that the memories are
tested by the March-CW [14] test algorithm and the Read
or Write operation of the memories consumes 1 clock cy-
cles. The testing time for these three memories is 327680
cycles, 184320 cycles, and 102400 cycles. Therefore, the
ratio of the analysis time to the test time for the three mem-
ories is about 1.8%, 3.3%, and 6.2%, respectively. Thus the
test time overhead caused by the proposed BIRA scheme is
small. The average analysis time (AAT) for each detected
fault is also shown in the table. The AAT is obtained by
the ratio of TAT to the number of total detected faults. The
last row of the table shows the critical analysis time (CAT)
for the proposed BIRA scheme. The CAT is obtained ac-
cording to the longest path in the state diagram of the £nite
state machine which is implemented to control the algo-
rithm analysis procedure.

Table 3: Simulation results of the BIRA implementation for
memories with 1 spare row and 2 spare columns.

Memory size 8192×64 4096×128 2048×256
Area 43169µm2 71565µm2 132709µm2

Cycle Time 1.8ns 2.1ns 2.5ns
TAT 5882 cycles 6071 cycles 6364 cycles
AAT 25.57 cycles 26.4 cycles 27.67 cycles
CAT 39 cycles 39 cycles 39 cycles

Table 4 shows the simulation results of the BIRA im-
plementation for memories with 2 spare rows and 2 spare
columns. Compared with Table 3, the difference is that
the memories are equipped with 2 spare rows and 2 spare
columns. According to Table 4, we see that all the param-
eters are increased slightly. That is, the proposed BIRA
scheme is slightly affected by the number of spare elements.

Finally, we compare the hardware cost for implementing
the bitmap in terms of the number of required registers. As

Table 4: Simulation results of the BIRA implementation for
memories with 2 spare rows and 2 spare columns.

Memory Size 8192×64 4096×128 2048×256
Area 43523µm2 74880µm2 135425µm2

Cycle Time 1.8ns 2.2ns 2.5ns
TAT 6368 cycles 6242 cycles 6294 cycles
AAT 27.69 cycles 27.14 cycles 27.37 cycles
CAT 39 cycles 39 cycles 39 cycles

Sec. 2 and Sec. 3.2 show, the size of a 2D and a 1D bitmaps
can be limited to W×(r(c+1)+r)×(c(r+1)+c)+m(c(r+
1) + c) + n(r(c + 1) + r) and (r + c)× (1 + n + m + W),
where W , r, c, n, and m represent the word width, the num-
ber of spare rows, the number of spare columns, the number
of row address bits, and the number of column address bits
of the memory under test, respectively. Table 5 summa-
rizes the comparison results of hardware cost between the
2D and 1D bitmaps for a memory with n = 7, m = 6,
and W = 32. As the table shows, the hardware cost of
1D bitmap is much smaller than that of 2D bitmap for vari-
ous redundancy con£gurations. Note that the hardware cost
of 2D bitmap is heavily affected by the redundancy con-
£gurations. However, the hardware cost of 1D bitmap is
slightly affected by the redundancy con£gurations. The ra-
tio of the hardware cost of 1D bitmap to the hardware cost
of 2D bitmap is only about 8.6% for (r, c) = (2, 2).

Table 5: Comparison of hardware cost for 2D and 1D
bitmaps.

n = 7 and m = 6 2D Bitmap 1D Bitmap (B/A)%
W = 32 (A) (B)

(r, c)=(1,1) 327 regs. 92 regs. 28.1%
(r, c)=(1,2) 832 regs. 138 regs. 16.6%
(r, c)=(1,3) 1529 regs. 184 regs. 12.0%
(r, c)=(2,1) 834 regs. 138 regs. 16.6%
(r, c)=(2,2) 2152 regs. 184 regs. 8.6%
(r, c)=(2,3) 3982 regs. 230 regs. 5.8%
(r, c)=(3,1) 1533 regs. 184 regs. 12.0%
(r, c)=(3,2) 3984 regs. 230 regs. 5.8%
(r, c)=(3,3) 7395 regs. 276 regs. 3.7%

5 Conclusions

In this paper we have presented a BIRA scheme for allo-
cating 2D redundancy using 1D local bitmap. The BIRA al-
gorithm is designed based on the memory with global spare
rows and local spare columns (i.e., spare columns in the
left (right) subarray only can replace the faulty columns in
the left (right) subarray). We also have realized the pro-
posed BIRA scheme in hardware for different sizes of mem-
ories with various redundancy con£gurations. Experimen-
tal results show that the repair rate of the proposed BIRA
scheme approximates to that of the optimal analysis algo-
rithm. Also, the ratio of the analysis time to the test time
is only about 3.3% for a 4096×128-bit memory tested by
the March-CW test algorithm. Analysis results show that
the hardware cost of 1D bitmap is much smaller than that
of 2D bitmap.

Acknowledgement

This work was supported in part by National Science
Council, R. O. C., under Contract NSC 94-2215-E-008-
021. We also appreciate that Faraday Technology Corpo-
ration (FTC) provides partial support in design.

References

[1] R. Rajsuman, “Design and test of large embedded memories:
an overview,” IEEE Design & Test of Computers, vol. 18,
no. 3, pp. 16–27, May 2001.

[2] Y. Zorian, “Embedded memory test & repair: infrastructure
IP for SOC yield,” in Proc. Int. Test Conf. (ITC), Baltmore,
Oct. 2002, pp. 340–349.

[3] S.-Y. Kuo and W. K. Fuchs, “Ef£cient spare allocation in
recon£gurable arrays,” IEEE Design & Test of Computers,
vol. 4, no. 1, pp. 24–31, Feb. 1987.

[4] J. R. Day, “A fault-driven, comprehensive redundancy algo-
rithm,” in IEEE Design & Test of Computers, vol. 2, June
1985, pp. 35–44.

[5] C.-L. Wey and F. Lombardi, “On the repair of redundant
RAM’s,” IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 6, no. 3, pp. 222–231, Mar. 1987.

[6] W.-K. Huang, Y.-N. Shen, and F. Lombardi, “New ap-
proaches for the repair of memories with redundancy by
row/column deletion for yield enhancement,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems,
vol. 9, no. 3, pp. 323–328, Mar. 1990.

[7] T. Kawagoe, J. Ohtani, M. Niiro, T. Ooishi, M. Hamada,
and H. Hidaka, “A built-in self-repair analyzer (CRESTA)
for embedded DRAMs,” in Proc. Int. Test Conf. (ITC), 2000,
pp. 567–574.

[8] D. Xiaogang, S. M. Reddy, W.-T. Cheng, J. Rayhawk, and
N. Mukherjee, “At-speed built-in self-repair analyzer for em-
bedded word-oriented memories,” in International Confer-
ence on VLSI Design, 2004, pp. 895–900.

[9] V. Schober, S. Paul, and O. Picot, “Memory built-in self-
repair using redundant words,” in Proc. Int. Test Conf. (ITC),
Baltimore, Oct. 2001, pp. 995–1001.

[10] J.-F. Li, J.-C. Yeh, R.-F. Huang, and C.-W. Wu, “A built-in
self-repair design for RAMs with 2-D redundancies,” IEEE
Trans. VLSI Systems, vol. 13, no. 6, pp. 742–745, June 2005.

[11] C.-T. Huang, C.-F. Wu, J.-F. Li, and C.-W. Wu, “Built-in
redundancy analysis for memory yield improvement,” IEEE
Trans. Reliability, vol. 52, no. 4, pp. 386–399, Dec. 2003.

[12] J.-F. Li and C.-W. Wu, “Memory fault diagnosis by syn-
drome compression,” in Proc. Design, Automation and Test
in Europe (DATE), Munich, Mar. 2001, pp. 97–101.

[13] R.-F. Huang, J.-F. Li, J.-C. Yeh, and C.-W. Wu, “A simulator
for evaluating redundancy analysis algorithms of repairable
embedded memories,” in Proc. IEEE Int. Workshop on Mem-
ory Technology, Design and Testing (MTDT), Isle of Bendor,
France, July 2002, pp. 68–73.

[14] C.-F. Wu, C.-T. Huang, and C.-W. Wu, “RAMSES: a fast
memory fault simulator,” in Proc. IEEE Int. Symp. Defect
and Fault Tolerance in VLSI Systems (DFT), Albuquerque,
Nov. 1999, pp. 165–173.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

