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Abstract

This paper derives the multi-layer heat conduction
Green’s function, by integrating the eigen-expansion tech-
nique and the classic transmission line theories, and
presents a logarithmic full-chip thermal analysis algo-
rithm, which is verified by comparisons with a computa-
tional fluid dynamics tool (FLUENT). The paper considers
Dirichlet’s and general heat convection boundary con-
ditions at chip surfaces. Experimental results show that
the algorithm offers superior computing speed, com-
pared to FLUENT and traditional Green’s function based
methods. The paper also studies the limitations of the tra-
ditional single-layer thermal model.

1. Introduction

Thermal issue is of paramount importance in chip perfor-
mance and reliability modeling. Chip temperature variation
may cause timing uncertainty and related failures by chang-
ing interconnect resistivity, may increase leakage power
by super-linearly increasing gate sub-threshold current, and
may shorten the mean time to fail of chip by worsening
interconnect electromigration. Accurate thermal analysis is
essential in a thermal-aware chip design flow [1].

Grid-based methods, e.g. finite-difference and finite-
element methods, were successfully used in chip thermal
analysis [2, 3]. They can be accelerated by model order re-
duction techniques [4, 5, 6]; however, grid-based methods
are inefficient in an inner loop, such as in chip floorplan-
ning and placement, compared to Green’s function based
approaches, which reduce thermal simulation time by or-
ders of magnitude [7, 8, 9].

For thermal analysis, [10] considered Green’s function
for various boundary conditions (BCs) and uniform mate-
rials; [7] considered the free-space Green’s function; [8],
the multi-layer Green’s function; and recently [9], the chip
sidewalls. Green’s function has frequently occurred in chip
parasitics exaction (CPE) [11, 12, 13]. However thermal

analysis differs from CPE. For example, in CPE, chip was
often assumed horizontally infinite and vertically imposed
with Neumann’s BCs [13, 14]; however, in thermal analysis,
chip need be considered horizontally finite and vertically
imposed with heat convection BCs. Additionally, numer-
ical stability problem can happen in calculating the same
Green’s function if different formulas are used [12, 15].

To accurately model a chip, horizontally finite and ver-
tically consisting of layered materials, the paper derives
the multi-layer heat conduction Green’s function, by inte-
grating the eigen-expansion technique and the classic trans-
mission line theories. The paper offers a logarithmic algo-
rithm, which significantly accelerates the full-chip thermal
analysis, compared to traditional Green’s function based
methods, which are of quadratic complexity and resemble
a matrix-vector product procedure [7, 8, 9].

The rest of the paper is organized as follows. Section 2
mathematically describes the chip thermal analysis issue.
Section 3 derives the multi-layer heat conduction Green’s
function. Section 4 introduces a logarithmic thermal anal-
ysis algorithm. Section 5 experimentally demonstrates the
accuracy and scalability of the algorithm and discusses the
limitations of the traditional single-layer thermal model.

2. Full-chip thermal analysis based on
Green’s function

Given a chip, described by the multi-layer thermal model
(MLTM) in Fig.1(a), its steady-state temperature distribu-
tion is determined by the 3-D heat conduction equation,
written in Cartesian coordinates as

∇ · [∇k(z)T (x,y,z)] = − f (x,y,z), (1)

where T denotes temperature (in kelvin, or K); f , heat
source power density (in W/m3); and k, material thermal
conductivity (in W/(m K)). k is only z-axis dependent, with
k(z) = km, for zm−1 < z < zm and 1 ≤ m ≤ n.

In addition, there are two sets of heat conduction bound-
ary conditions (BCs) specified for the chip: sidewall BCs
and inter-layer BCs.
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Figure 1. The MLTM and the equivalent circuit
for computing Green’s function.

a). Sidewall BCs: The four chip sidewalls are approx-
imately insulated from the ambient, thereby specified with
Neumann’s BCs, i.e. ∂T

∂x

∣∣∣
x=0,X

= 0 and ∂T
∂y

∣∣∣
y=0,Y

= 0, where

X and Y denote the chip x− y dimensions.
b). Inter-layer BCs: At inner interface zm, for 0 < m <

n, BCs are specified to describe the continuity of tem-
perature, i.e. T (x,y,zm+) = T (x,y,zm−) and the continuity
of heat flux through the interface, i.e. k(zm+) ∂T

∂z

∣∣∣
z=zm+

=

k(zm−) ∂T
∂z

∣∣∣
z=zm−; and at the chip top and bottom faces, heat

convection BCs are specified:

k1
∂T
∂z

∣∣∣∣
z=z0

= h
¯

T and −kn
∂T
∂z

∣∣∣∣
z=zn

= h̄T,

where h
¯

(or h̄) is the heat transfer rate from the bottom (or
top) face z0 (or zn) to the ambient, with units W/(m2 K). The
paper chooses the ambient temperature as the reference.

Heat conduction Green’s function G(x,y,z|x′,y′,z′), i.e.
the Green’s function of (1), corresponds to the chip tem-
perature distribution caused by a Dirac delta source δ(x−
x′,y− y′,z− z′) at chip location (x′,y′,z′). It satisfies

∇ · [∇k(z)G(x,y,z|x′,y′,z′)] = −δ(x− x′,y− y′,z− z′) (2)

and the sidewall and inter-layer BCs, in which T need be
replaced by G. Given G(x,y,z|x′,y′,z′), the chip temperature
distribution can be represented by a spatial convolution:

T (x,y,z) =
∫

V
G(x,y,z|x′,y′,z′) f (x′,y′,z′)dx′dy′dz′, (3)

where V denotes the entire volume space of the given chip.
The following section will detail the derivation of the

heat conduction Green’s function for 3-D layered chips.

3. Deriving heat conduction Green’s function

After extended from space V to the entire 3-D space as
an even and periodic function of x of period 2X , as well as

an even and periodic function of y of period 2Y , heat con-
duction Green’s function has an eigen-expansion:

G(x,y,z|x′,y′,z′) =
∞
∑
i=0

∞
∑
j=0

φi j(x,y)Gi j(z|x′,y′,z′), (4)

where eigenfunction φi j(x,y) = cos
(

iπx
X

)
cos

(
jπy
Y

)
. Eigen-

expansion (4) ensures G satisfies the sidewall BCs.
Similarly, the 3-D delta function has an eigen-expansion:

δ(x−x′,y−y′,z−z′)=
∞
∑
i=0

∞
∑
j=0

ci jφi j(x,y)φi j(x
′,y′)δ(z−z′), (5)

where ci j = 2d/XY and d is the dimensionality of φi j: d =
0,1,2 for the three cases that both i and j are zero, only one
of them is zero, and none of them is zero.

Insert (4) and (5) into (2). Then Gi j satisfies

∂2Gi j

∂z2 − γ2
i jGi j = − 1

k(z)
ci jφi j(x

′,y′)δ(z− z′), (6)

where γi j =

√
i2π2

X2 + j2π2

Y 2 . To solve Gi j from (6), the paper

employs the classic transmission line theories.

3.1. Eigen-expansion coefficient Gi j (i = j = 0)

Consider (6). When i = j = 0, γi j becomes 0. To com-
pute G00, the paper constructs a circuit consisting of an
n-section line conductor of per unit-length (PUL) conduc-
tance k(z). The line has a current source input Is of inten-
sity c00φ00(x′,y′) at location z′ and has its two ends termi-
nated by two resistors of resistances R

¯
= 1/h

¯
and R̄ = 1/h̄, as

shown in Fig.1(b).
Compare (6) with the line conductor circuit equations

∂V (z)
∂z =− I(z)

k(z) and ∂2V (z)
∂z2 =− Is

k(z)δ(z−z′), and also heat con-

duction BCs with circuit equations at line section bound-
aries. It is clear that G00 corresponds to the voltage at loca-
tion z in the line conductor. Hence,

G00(z|x′,y′,z′) = c00φ00(x′,y′)H00(z|z′), (7)

where H00 is the line transfer impedance from source z′ to
target z. According to Fig.1(b), assuming that source z′ is in
layer p and target z is in layer q, H00 is derived:

H00(z|z′) =

[
Z
¯ p +Zp(z′ − zp−1)

][
Z̄q +Zq(zq − z)

]
Z
¯ p +Zplp + Z̄q

. (8)

In the paper, for the m-th line section, Z
¯ m denotes the

input impedance seen from its bottom boundary toward
the bottom end of the entire circuit, Z̄m denotes the input
impedance seen from its top boundary toward the top end
of the entire circuit, Zm denotes its characteristic impedance
with Zm = 1/km, and lm is its length.



3.2. Eigen-expansion coefficient Gi j (i+ j > 0)

When i + j > 0, an equivalent transmission line (TL)
circuit can be constructed. Compare (6) to TL equations
∂V
∂z = −(R + sL)I and ∂I

∂z = −(G + sC)V + Isδ(z− z′), or in the

form of ∂2V
∂z2 −γ2V =−γZIsδ(z− z′), where γ is the TL propa-

gation constant given by γ =
√

(R+ sL)(G+ sC), and Z is the
characteristic impedance given by Z =

√
(R+ sL)/(G+ sC).

Evidently, Gi j corresponds to the voltage at location z in
an n-section nonuniform TL of γ = γi j and Z = 1/k(z), with

a current source input Is =
ci j
γi j

φi j(x′,y′) at location z′. For

the m-th TL section, its PUL parameters satisfy
√

RG = γi j,√
R/G = Zm = 1/km, and L = C = 0. The two ends of the TL

are terminated by two resistors: R
¯

= γ/h
¯

and R̄ = γ/h̄. The
equivalent circuit is illustrated by Fig.1(b) as well.

Based on the figure, Gi j is derived and given by

Gi j(z|x′,y′,z′) = ci jφi j(x
′,y′)Hi j(z|z′), (9)

where Hi j is the normalized TL transfer impedance from
location z′ to location z by propagation constant γ, with

γ =

√
i2π2

X2 + j2π2

Y 2 . Assuming that source z′ is in layer p and

target z is in layer q, Hi j is derived as the following:

Hi j(z|z′)=
ξ(Z

¯ p coshγl
¯
+Zp sinhγl

¯
)(Z̄q coshγl̄+Zq sinhγl̄)

Zp(Z
¯ p + Z̄p)coshγlp +(Z2

p +Z
¯ pZ̄p)sinhγlp

, (10)

where l
¯
= z′ − zp−1, l̄ = zq − z, and ξ is given by

ξ =
Zp ∏q−1

m=p Z̄m

γ∏q
m=p+1(Z̄m coshγlm +Zm sinhγlm)

.

Input impedances Z
¯

’s or Z̄’s have recurrence formulas:
for one TL section, its input impedance at its one bound-
ary, Zin is given by Zin = ZC ZL+ZC tanhγL

ZC+ZL tanhγL , where ZL is the
load impedance at its other boundary; ZC, the section char-
acteristic impedance; and L, the section length.

The paper has derived closed formulas for the multi-
layer heat conduction Green’s function, by integrating the
eigen-expansion technique and the classic transmission line
theories. For other types of sidewall BCs than Neumann’s
BCs, the previous derivation can still be applied. For exam-
ple, if Dirichlet BCs are imposed on chip sidewalls, i.e. as-
sume the sidewall temperatures are same as the ambient, Gi j
can be obtained by following the previous derivation, after
changing the eigenfunction to φi j(x,y) = sin

(
iπx
X

)
sin

(
jπy
Y

)
.

In addition, relating Gi j to circuit transfer functions in the
closed formulas can overcome numerical problems. For ex-
ample, when heat transfer rate h

¯
or h̄ is zero or closed to

zero, the loading impedances for the equivalent circuits be-
come infinite or extremely large; therefore, instead of using
impedance formulations, using admittance formulations for
Gi j can avoid numerical overflows.
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Figure 2. Heat source model: (a) source and tar-
get regions z ∈ [zp1,zp2] and z ∈ [zq1,zq2]; (b) and
(c) discretization of source and target layers.

4. A logarithmic thermal analysis algorithm

Based on the derived multi-layer heat conduction
Green’s function, this section introduces a logarithmic al-
gorithm for full-chip thermal analysis.

Consider the heat source model. The paper discretizes
the heat sources in a layer, e.g. the p-th layer, into A×B uni-
form cells, each being X

A × Y
B × (zp2− zp1) and having a uni-

form power density, as shown in Fig.2(a) and (b). In a given
layer, the paper names cell (a,b) after the cell that is the
(a + 1)-th in the x direction and the (b + 1)-th in the y direc-
tion, where 0 ≤ a ≤ A−1 and 0 ≤ b ≤ B−1. For cell (a,b), its
power density is denoted by fab, and its temperature is de-
noted by Tab.

The temperature distribution of a given target layer, e.g.
layer q, can be obtained by superposing the temperature dis-
tribution raised by each layer of heat sources. Therefore, the
paper considers the evaluation of temperature distribution at
layer q, raised by the heat sources at a single layer, e.g. layer
p. Target layer q is illustrated in Fig.2(a) and (c). To com-
pute the temperature distribution in layer q caused by heat
source layer p, traditional Green’s function based methods
used a simple matrix-vector product like procedure and re-
quired O

(
A2B2

)
computations [7, 8, 9]. Compared to tradi-

tional methods, the algorithm presented in the following is
of logarithmic complexity O(AB log(AB)).

4.1. Temperature distribution caused by layer p

Refer to Fig.2(b). Insert eigen-expansion (4) into (3) and
integrate with heat source power densities for layer p. Then
the temperature at location (x,y,z), T (x,y,z) is derived:

T (x,y,z) =
∞
∑
i=0

∞
∑
j=0

ci jφi j(x,y)·
∫ X

0

∫ Y

0

∫ zp2

zp1
φi j(x

′,y′)Hi j(z|z′) f (x′,y′,z′)dx′dy′dz′

=
∞
∑
i=0

∞
∑
j=0

2d sin iπ
2A sin jπ

2B
i jπ2 Fi jφi j(x,y)

∫ zp2

zp1
Hi j(z|z′)dz′, (11)



where

Fi j =
∫ X

0

∫ Y

0

i jπ2

XY
csc

iπ
2A

csc
jπ
2B

φi j(x
′,y′) f (x′,y′,z′)dx′dy′

=
A−1

∑
a=0

B−1

∑
b=0

4 fab cos
iπ(2a+1)

2A
cos

jπ(2b+1)
2B

. (12)

Fi j is the two-dimensional discrete cosine transform (2-
D DCT) of fab. Therefore all Fi j, for 0 ≤ i ≤ A − 1 and
0 ≤ j ≤ B−1, can be computed in O(AB log(AB)). For i, j out-
side that range, by exploiting the periodicity of Fi j, the re-
quired values can be conveniently obtained.

4.2. A logarithmic thermal analysis algorithm

Refer to Fig.2(c). For cell (a,b) in target layer q, its aver-
age temperature Tab can be obtained by integrating T (x,y,z)
in (11) over cell (a,b):

Tab =
∞
∑
i=0

∞
∑
j=0

Fi j
2dABsin iπ

2A sin jπ
2B

i jXY π2(zq2 − zq1)

∫ zq2

zq1

∫ zp2

zp1
Hi j(z|z′)dz′dz·

∫ (a+1)X/A

aX/A

∫ (b+1)X/B

bX/B
φi j(x,y)dxdy

=
∞
∑
i=0

∞
∑
j=0

2d−2Fi jIHi j cos
iπ(2a+1)

2A
cos

jπ(2b+1)
2B

, (13)

where IHi j is given by

IHi j =
16ABsin2 iπ

2A sin2 jπ
2B

i2 j2π4(zq2 − zq1)

∫ zq2

zq1

∫ zp2

zp1
Hi j(z|z′)dz′dz. (14)

Then the series representation of Tab in (13) is truncated:

Tab ≈
A−1

∑
i=0

B−1

∑
j=0

2d−2Fi jIHi j cos
iπ(2a+1)

2A
cos

jπ(2b+1)
2B

, (15)

which is the two-dimensional inverse discrete cosine trans-
form (2-D IDCT) of Fi jIHi j. Note that to improve accu-
racy, higher order coefficients Fi jIHi j can be added to their
lower order companions, by exploiting the periodicity of

cos iπ(2a+1)
2A cos jπ(2b+1)

2B ; however, later experiments show
that (15) is already sufficiently accurate.

Based on (12) and (15), a logarithmic algorithm is pro-
posed for computing the temperature at layer q caused by
heat sources in layer p. The algorithm is in O(AB log(AB))
and shown in Fig.3.

4.3. The pre-characterization of IHi j

For a given chip, IHi j’s need be pre-characterized
only once. The following details the computing of
IHi j. Let Ĥi j denote the integral term in (14), i.e.

Ĥi j =
∫ zq2
zq1

∫ zp2
zp1 Hi j(z|z′)dz′dz. Note that for Hi j given in (8)

and (10), the paper has assumed that either layer p is lower

Begin

1. Compute IHi j’s based on (14) if they are not pre-calculated.
In pre-calculating IHi j , (16) and (17) need be used.

2. Given one layer of heat sources, whose power densities form
a 2-D array made of fab’s, compute the 2-D DCT of fab to
obtain Fi j, based on (12).

3. Form an array made of Fi jIHi j, then compute the array’s 2-D
IDCT to obtain Tab, based on(15).

End

Figure 3. The logarithmic chip-level thermal
analysis algorithm.

than layer q, or both p = q and z′ < z. When the assumption
is not satisfied, Hi j can be obtained by exploiting the reci-
procity of transfer impedances: if p = q and z′ > z, Hi j can
be obtained by exchanging z and z′ in (8) and (10); other-
wise, if p > q, Hi j can be obtained by exchanging subscripts
p and q, as well as z and z′ in (8) and (10). Therefore the pa-
per considers three cases.

a). The case p = q: From (8) and (10), Ĥi j is obtained as
follows:

Ĥi j =




αl2pv

[(Z
¯ p

Zp
+

2zp1 + zp2

3
− zp−1

)

·
(

Z̄q

Zq
+ zq −

2zq2 + zq1

3

)
− l2qv

36

] i = j = 0

[
D
¯ i j

(
e−γl2c−e−γl1c

)2 + D̄i j(e
γl1c−eγl2c)2

+2D
¯ i jD̄i je

−γlq
(
eγlqv − γlqv −1

)
+ 2eγlp

(
e−γlpv + γlpv −1

)]
Ei j,

i+ j > 0

(16)
where l1c = zp1 −

zp+zp−1
2 , l2c = zp2 −

zp+zp−1
2 , lpv = zp2 −

zp1, and lqv = zq2 − zq1.

b). The case p < q: From (8) and (10), Ĥi j is obtained:

Ĥi j =




αlpvlqv

(Z
¯ p

Zp
+

zp1 + zp2

2
− zp−1

)

·
(

Z̄q

Zq
+ zq −

zq1 + zq2

2

) i = j = 0

Ei j

[
D
¯ i j

(
e−γl

¯p1 − e−γl
¯p2

)
+ eγl

¯p2 − eγl
¯p1

]
·
[
D̄i j

(
e−γl̄q2 − e−γl̄q1

)
+ eγl̄q1 − eγl̄q2

] i+ j > 0

(17)
where l

¯ p1,2 = zp1,2 − zp−1 and l̄q1,2 = zq − zq1,2.

c). The case p > q: Ĥi j is similar to (17). Ĥi j can be ob-
tained by exchanging the subscripts p and q in (17), as well



(b) Heat source placement.
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Figure 4. The simulated 3-layer chip example.

as p and q in the coefficients α, D
¯ i j, D̄i j, and Ei j, where

α =
ZpZq

Z
¯ p +Zplp + Z̄q

,

D
¯ i j =

Z
¯ p −Zp

Z
¯ p +Zp

, D̄i j =
Z̄q −Zq

Z̄q +Zq
,

Ei j =
χpq

4γ2

(Z
¯ p +Zp)(Z̄q +Zq)

Zp(Z
¯ p + Z̄p)coshγlp +(Z2

p +Z
¯ pZ̄p)sinhγlp

.

According to Fig.1(b), D
¯ i j is the reflection coefficient of

the p-th TL section, seen from its bottom boundary toward
the bottom end of the entire circuit, and D̄i j is the reflection
coefficient of the q-th TL section, seen from its top bound-
ary toward the top end of the entire circuit. Since the coef-
ficients D

¯ i j, D̄i j, and Ei j depend upon only a single param-
eter γ, they can be pre-characterized into one-dimensional
lookup tables to facilitate the pre-characterization of IHi j.

5. Experimental results

The logarithmic algorithm shown in Fig.3 has been ver-
ified by comparisons with a computational fluid dynamics
tool (FLUENT). Fig.4(a) shows a simulated chip example
of three layers. The top heat transfer rate h̄ = 0, and the bot-
tom heat transfer rate h

¯
= 9000 W/(m2 K). Six heat sources

are in the 5 µm thick heat source region, and the position
and the power of each heat source are in Fig.4(b).

In using the algorithm, A and B were set to 40. However
it is recommended that A and B be the powers of 2, to facil-
itate the DCT/IDCT. The results are shown in Fig.5, where
the left graphs give the temperature distributions obtained
from the algorithm, and the right graphs show the relative
temperature differences from FLUENT in percentages. The
temperature deviations between the two methods are within
1.13% for the heat source region and within 0.07% for the
chip bottom. The pre-characterization of IHi j took 1.265 s,
and temperature evaluation after pre-characterization took
only 8 ms; however, using FLUENT took 112 s to obtain the
temperature distribution. The CPU usages were taken from
a SUN Blade 1500 machine. Note that in practice, A and B
can be doubled to verify the convergence of the algorithm.
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Figure 5. Comparisons between the algorithm
and FLUENT.
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Figure 6. Scalability of the proposed algorithm.

5.1. Scalability of the proposed algorithm

Fig.6 shows the calculated heat source region tempera-
ture distribution by the proposed algorithm, for the chip in
Fig.4(a), under a randomly generated power density func-
tion f . For comparison, a simple matrix-vector product pro-
cedure was implemented to simulate the traditional meth-
ods [7, 8, 9], The table in Fig.6 shows the CPU usages
of the proposed algorithm (excluding the time for pre-
characterization, as it need be done only once) and the tra-
ditional methods, when A× B was increased from 40× 40
to 120× 120. Evidently, the proposed algorithm has supe-
rior speed due to its logarithmic complexity, compared to
the traditional methods, whose complexities are quadratic.
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Figure 7. Single-layer thermal model, and its ac-
curacy versus effective thermal thickness.

5.2. Limitations of the single-layer thermal model

Traditionally, a single-layer thermal model (SLTM) was
used to describe a multi-layer chip [7, 9]. Fig.7(a) shows
such a single-layer thermal model, where h

¯ e is the effective
heat transfer rate that can be determined by the approach in
[2], and ET T is named the effective thermal thickness.

Using the chip in Fig.4, the paper employed the proposed
algorithm to analyze the average temperature distribution of
the heat source region, by using the SLTM. Fig.7(b) plots
the maximum errors of the calculated temperature distribu-
tion based on the SLTM, when ET T was varied. The fig-
ure shows that the accuracy of the SLTM was very sensitive
to ET T . For the chip in Fig.4, to ensure the temperature er-
rors within 1.97%, both the bulk and solder regions need be
modeled, which is, however, beyond the capability of the
SLTM. Hence, there are obstacles in using the SLTM for
3-D ICs [16].

6. Conclusions

By integrating the eigen-expansion technique and the
transmission line theories, the paper derived the multi-layer
heat conduction Green’s function, based on which a loga-
rithmic full-chip thermal analysis algorithm was introduced.
Experiments demonstrated that the algorithm was very ac-
curate and well-scalable, compared to FLUENT and tradi-
tional Green’s function based methods. In addition, the pa-
per discussed the limitations of the traditional single-layer
thermal model.
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