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Abstract: This paper presents a domain decomposition (DD)
technique for efficient simulation of large-scale linear circuits such
as power distribution networks. Simulation results show that by inte-
grating the proposed DD framework, existing linear circuit simulators
can be extended to handle otherwise intractable systems.

1. Introduction

With increasing power consumption and faster operating
frequency of microprocessors, the design of effective power
distribution networks has emerged as a critical design chal-
lenge. The parasitics associated with the power distribution
network and time-varying circuit currents induce supply volt-
age variations across the integrated circuit. Such power supply
variations may impact circuit performance and compromise
noise immunity. Extensive simulations are usually performed
to identify and correct such instances during design. The
power distribution network typically has a grid structure and
is commonly referred to as the power grid. The power grid
for a modern integrated circuit may consist of several million
electrical elements, which makes simulation computationally
(time-resource) intensive.

The power grid is traditionally described as a large-scale
linear system. Simulation of power grids usually involves both
DC and transient analysis. DC analysis of the power grid is
used to estimate the IR voltage drop by solving the system
once, whereas transient analysis involves the simulation of the
system at several time instants to estimate the Ldi/dt voltage
drop. Note that an efficient DC analysis technique does not
necessarily translate to efficient transient analysis.

Several simulation techniques have been developed for
power grid simulation and analysis in literature. Since the
computational complexity of direct methods to solve linear
systems of size n is O(n3), sparsity and the grid structure
in the power distribution network are usually exploited to
reduce computational complexity [1], [6], [12], [15]. A pre-
conditioned conjugate gradient iterative method, using in-
complete Cholesky factorization as the pre-conditioner, was
described in [1]. Although this pre-conditioner-based iterative
method reduces the computational complexity of DC analysis
of power grids from O(n3) to O(n2), it is not efficient for
transient analysis since it is not possible leverage previous
simulation runs. A multi-grid approach that also exploits the

grid structure by mapping the original system to a coarsened
grid, solving the coarsened grid, and remapping back to the
original grid was described in [6]. The solution of the original
system through remapping is obtained through an interpolation
procedure. However, in the absence of error bounds, this
method may not always be accurate. Moreover, the effort to
keep track of the geometrical information of the power grid
is expensive, further limiting its applications. Algebraic multi-
grid methods were proposed in [12] and [15] to handle general
network topologies. Algebraic multi-grid methods can be
thought of as iterative solvers that use the multi-grid operator
as a pre-conditioner. In such methods, the computational cost
in each time step of the transient analysis is comparable to that
for DC analysis, making it unsuitable for efficient transient
analysis. Other approaches to power grid analysis include
those based on random walks, model order reduction, and
hierarchical analysis. Statistical techniques based on random
walks [8], [10] are very fast but suffer from accuracy loss
and convergence issues. Model order reduction methods are
inefficient for power grid simulation due to (i) a large number
of external terminals and (ii) the loss of sparsity in the reduced
model [4]. Hierarchical techniques are applicable if the power
grid is not flattened, and macro-models for local grids can be
built to speed up simulation at the global level [7], [14].

In this paper, we present a domain decomposition [11]
approach for power grid analysis. The proposed approach
allows the solution of several sub-circuits sequentially or in
parallel to obtain the solution of the original circuit. Existing
circuit simulators can be used to solve the sub-problems ob-
tained by domain decomposition (DD). This approach achieves
improved performance in comparison to the original circuit
simulator. Simulation results show that by integrating the
proposed DD framework, existing linear circuit simulators
can be extended to handle otherwise intractable systems. The
proposed DD approach can also be parallelized to achieve
performance gains over a serial implementation.

Section 2 presents a background on power grid analysis.
Section 3 descibes the proposed approach based on domain
decomposition. Section 4 includes simulation results and a
discussion. Section 5 is a conclusion.
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2. Background

The power grid can be described using the Modified Nodal
Analysis (MNA) [9] as

Gx(t) + Cẋ(t) = u(t), (1)

where x is a n dimensional real vector of node voltages and
inductor currents, G is a n×n conductance matrix, C denotes
the capacitance and inductance terms, and u(t) includes the
loads and voltage sources. n can be of the order of millions for
reasonable size power grids. By applying the backward-Euler
method to the system of equations in (1), we obtain

(G + C/h)x(t + h) = u(t + h) + Cx(t)/h, (2)

where h is a fixed time step for the transient analysis. The
system of equations (2) can be rewritten as

Ax(t + h) = B, (3)

where A = G + C/h and B = u(t + h) + Cx(t)/h.
Traditional approaches for the solution of (3) require a

single initial factorization of the matrix A, and a substitution
pass at each time step during iteration. Whereas factorization
is significantly more expensive than the substitution pass,
direct factorization of A by LU or Cholesky decomposition
may be justified for use in transient analysis. This is because
the factorization can be re-used in each time step, and the
cost of factorization is negligible when amortized over the
several time steps used in transient analysis. However, direct
factorization of a large matrix A is computationally (CPU
time and memory) intractable with increasing system size.
Pre-conditioner-based iterative methods work around this by
avoiding the initial factorization step. Instead, the system
of equations in (3) is solved at each time step repeatedly
with a time-dependent vector B. However, although iterative
methods save on factorization costs, the cumulative costs over
several time steps during transient analysis may exceed the
cost of direct factorization. In this paper, we propose a divide-
and-conquer approach based upon DD. It can complement
traditional factorization-based as well as pre-conditioner-based
iterative methods, and provide improvements in both runtime
and problem tractability for both classes of approaches.

3. Domain decomposition (DD)

Domain decomposition methods, which are based on the
general concepts of graph partitioning, refer to a technique
of divide-and-conquer that have been primarily developed for
solving partial differential equations [11].

Suppose the power grid described by (3) has been parti-
tioned into m sub-domains Ωi, i = 1, 2, . . . ,m. We defer the
discussion of partitioning to Sec. 3.4 in this paper. Based upon
the partitioning, the nodes in the original system can be clas-
sified into (i) interior nodes of sub-domains and (ii) interface
nodes. Note that interface nodes are not contained in any of
the sub-domains. Based upon this, for a general partitioning of

the original system into m sub-domains, (3) has the following
structure:
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In this system, the matrices A1, A2, . . . , Am correspond to
the m sub-domains, AΓ corresponds to the interface nodes,
and E1, E2, . . . , Em and F1, F2, . . . , Fm are matrices that
capture connectivity information between the interface and
the corresponding sub-domain. Each xi represents the sub-
vector of state variables that are interior to sub-domain Ωi,
and y represents the sub-vector of all interface variables. The
matrices f1, f2, . . . , fm correspond to the loads and voltage
sources contained within the corresponding sub-domain Ωi,
and the matrix g corresponds to the loads and voltage sources
at the interface nodes.

Theorem 3.1: If there is no direct coupling capacitance or
direct mutual inductance between sub-domains, the systems
described by equations (3) and (4) are equivalent.

Proof: When DD is used to partition the original system,
the nodes are classified into either interior nodes or interface
nodes. Cross terms between xi and xj (i �= j) are encountered
during MNA only if coupling capacitances or mutual induc-
tances exist in the system. Since such effects can be negligible
at the interface nodes (see note below), the cross terms are zero
and the two systems are equivalent.

Note that the assumption of Theorem 3.1 is generally
true because mutual inductance effects in the power grid
are still negligible [13]. Furthermore, flip-chip technology
uses C4 bumps that provide a more direct power delivery
path in modern designs, resulting in power grid shells [2].
This property can be exploited to select interface nodes that
naturally isolate the original system into sub-domains.

The following propositions follow directly from the above
theorem:

Proposition 3.1: If A is symmetric and positive definite, Ai

is also symmetric and positive definite with Fi = ET
i .

Proposition 3.2: For an original system with n nodes, the
size of xi is O(n) and the size of y is O(

√
n).

3.1. Schur complement

To simplify notation, (4) can be rewritten as

A

(
x
y

)
=

(
f
g

)
where A =

(
AD E
F AΓ

)
. (5)

Consider the linear system written in (5), in which AD is
assumed to be non-singular. From the first equation, the sub-
domain variables x can be expressed as

x = A−1
D (f − Ey). (6)



Substitution of this form into the second equation yields the
following system of equations:

(AΓ − FA−1
D E)y = g − FA−1

D f. (7)

The matrix
AΓ − FA−1

D E (8)

is called the Schur complement matrix associated with the
interface variables y. Solving equation (6) constitutes the
computational core of the DD technique. A consolidated three-
step procedure to solve the original system is as follows. First
form the Schur complement matrix AΓ−FA−1

D E and the right
hand side of (7). Next, solve equation (7) for the interface
variables y. Finally, by substituting y in equation (6), obtain
a solution for the sub-domain variables x.

A high-level DD algorithm DOMAIN-DECOMPOSITION-
SOLVER that takes as inputs AD, AΓ, E, F , f and returns
the solution for the interface variables y and the sub-domain
variables x is as follows.

1) Solve ADP = E for P , i.e., obtain P = A−1
D E

2) Form the Schur complement matrix S = AΓ − FP
3) Solve ADq = f for q, i.e., obtain q = A−1

D f
4) Calculate g′ = g − Fq
5) Solve the equation Sy = g′ for interface variables y
6) Solve x = q − Py for the sub-domain variables x

There are three opportunities for parallelization in the above
algorithm, all of which exploit the block diagonal structure of
matrix AD. They are in (i) step 1 where the equation ADP =
E is solved, (ii) step 3 where the equation ADq = f is solved,
and (iii) step 6 where the equation x = q − Py is solved.

3.2. An example of two sub-domains

An example based on two sub-domains to illustrate the
above algorithm is as follows. With two sub-domains, equa-
tion (3) has the following form:
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where x1, x2, and y are the vectors of node voltage and induc-
tor current in sub-domain 1, sub-domain 2, and the interface
respectively. For this system (9), the Schur complement matrix
is

S = AΓ − F1A
−1
1 E1 − F2A

−1
2 E2. (10)

The interface variable y can be obtained by solving the
equation

Sy = g − F1A
−1
1 b1 − F2A

−1
2 b2. (11)

Finally, x1 and x2 can be obtained by

x1 = A−1
1 b1 − A−1

1 E1y, (12)

x2 = A−1
2 b2 − A−1

2 E2y. (13)

Suppose that the inverse operator A−1
i is implemented by

LU factorization. For the example above, the LU factorization
is performed for A1 and A2. If Ai is half the size of the

original matrix A, the total factorization cost for A1 and A2

is less than the factorization cost of A. Note that A−1
1 E1 and

A−1
2 E2 are computed by solving the equations AiPi = Ei

for Pi, and that the Ei are sparse matrices. Once the Schur
complement matrix S given by

S = AΓ − F1P1 − F2P2 (14)

is obtained, the equations Aiqi = bi are solved for qi. The
qi are easy to compute, since the LU factorizations for the
Ai can be reused. The interface variables can be computed
by solving Sy = g − F1q1 − F2q2. Here, S is a small matrix
in comparison to A. Finally, the sub-domain variables xi are
obtained by solving the equation

xi = qi − Piy. (15)

3.3. Complexity analysis

Without loss of generality, assume that a circuit with n
nodes is partitioned into m equal sub-circuits. Then, each sub-
domain approximately has n/m nodes. Suppose that solving a
linear system by direct or iterative methods has a complexity
of O(np), where n is the size of the linear system and
p ≥ 1. Using the proposed DD technique, the computational
cost of solving a single sub-system is O((n/m)p). Multi-
plying by m, the complexity of the solution for the entire
system is O((np)/(mp−1)). Note that this only occurs in
the theoretically ideal case. For most practical cases, it is
essential to factor in auxiliary computations in DD algorithms,
such as addition, multiplication, the formation of the Schur
complement matrix (which is much smaller than the sub-
domain matrices), and the cost for solving the interface. Based
on this, it is reasonable to expect that a parallel version of the
DD algorithm will achieve speed-up over the serial case for
large n.

3.4. Circuit partitioning

It is well known that general graph partitioning is a NP-
hard problem. The proposed DD technique uses an efficient
but sub-optimal algorithm to partition the circuit into nearly
balanced sub-domains.

Consider a circuit that needs to be partitioned into m sub-
domains. Begin by selecting a subset of m nodes in the
circuit such that the pairwise distance between them is nearly
equal. The distance between two nodes is defined in a graph-
theoretic sense, and is measured in terms of the length of the
shortest path needed to reach one node from the other. Such
nodes are termed the cores of the sub-domains. The expansion
starts from the core of a sub-domain. At every step, each
core incorporates the nodes that are closest to it in terms of
distance. The sub-domains thus grow larger and larger during
the expansion. A node can be incorporated exactly once into
exactly one sub-domain. The expansion stops when all the
nodes are incorporated into a sub-domain. Those nodes whose
neighbors belong to other domains are marked as the interface
nodes and are removed from their domains. In this manner,
the entire circuit is partitioned into m sub-domains and the
interface.



The following algorithm DOMAIN-PARTITION takes as in-
put a circuit with n nodes and m core nodes v1, v2, . . . , vm,
and returns m sub-domains as the output.

1) Assign default color 0 to all the nodes,
for (i = 1: 1: m) do color(vi) = i

2) define node-set = {vi : 1 ≤ i ≤ m}
interface = ∅, nNodes = m

3) while (nNodes ≤ n) do
• for vi ∈ node-set do

– for every neighbor of vi, say vj , do
∗ if color(vj) == 0

· color(vj) = color(vi)
· nNodes = nNodes + 1
· node-set = node-set ∪ {vj}

∗ else
· interface = interface ∪ {vj}
· color(vi) = m+1

∗ end
– end

• end

This algorithm is a simple solution to partition a circuit into
sub-circuits. There are no common nodes between different
domains. Fig. 1 shows an example, in which the matrix A
was partitioned into four small domains and the interface. The
sparse structure of A was preserved in the sub-domains. The
interface nodes account for a small fraction of all nodes and
this proportion decreases as the problem size increases.

3.5. Sub-domain solvers

The different implementations of DD are characterized by
their sub-domain solvers, which has a profound impact on the
performance in terms of CPU time and memory requirements.
In general, there are two kinds of solvers, direct solvers and
iterative solvers.

Direct solvers perform a factorization such as Gaussian
elimination on the matrix A to get lower and upper triangular
matrices L and U . The system is then solved using forward and
backward substitution on the vector B. After factorization, di-
rect solvers are usually much faster than iterative solvers. The
primary drawbacks of direct methods are memory requirement
and fill-in.

Iterative methods [11] use simple matrix operations to
avoid the costs of direct factorization. Two of the most com-
mon computational kernels are matrix-vector multiplication
or transpose matrix-vector multiplication. The pre-conditioned
iterative solvers can be very fast when solving a system a few
times. However, as the number of simulation steps increase,
the iterative solver is rendered inefficient due to the similar
workload at each time step.

A good pre-conditioner is necessary for most iterative
solvers. Pre-conditioning is a kind of modification of the
original problem that accelerates the iterative methods. For
example, in solving a linear system Ax = B, an explicit or
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Fig. 1. This figures illustrates circuit partitioning with four domains and
a single interface. The sparse structure of the original matrix A (top-half of
the figure) was preserved in each of the sub-domains Ai (bottom-half of the
figure). The matrices Ei, Fi, and AΓ are also circled for illustration in the
bottom-half of the figure.

implicit operator M−1 such that M ≈ A is sought to solve
M−1Ax = M−1B efficiently. The pre-conditioners used in
this paper are based on incomplete factorization and algebraic
multi-grid methods. For a sparse matrix A, the incomplete
factorization computes a sparse lower triangular matrix L and
a sparse upper triangular matrix U . The purpose is to make the
residual R = A−LU satisfy some constraints. The basic idea
of multi-grid pre-conditioning is to approximate the original
system by interpolations of a smaller system on coarse grids.

4. Results
The proposed domain decomposition method has been im-

plemented and integrated into a linear simulator written in
C++. Mesh networks were used to model the upper-two global
power grids, which consist of RLC wires, voltage sources,
current sources, and decoupling capacitors. The interface
nodes are approximately (m/2)

√
n, where m is the number

of domains and n is the total number of nodes in the network.
Fig. 2 shows a part of a grid model used in our experiments.

4.1. Simulation environment

• CPU: AMD AthlonXP 2600+ (1.9GHz)
• Memory: 2.0 GB
• OS: Red Hat Enterprise Linux
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Fig. 2. This figure illustrates a small portion of the power grids used for
the simulations. Since the matrix A for such systems has a sparse symmetric
positive definite structure [1], the conjugate gradient algorithm can be used
for simulation.

• Compilers: GNU g++
• Packages: Trilinos 5.0 [5], UMFPACK 4.4 [3]

4.2. Simulation results

The simulation results for four circuits, A with 10 K nodes,
B with 250 K nodes, C with 1 M nodes, and D with 4 M nodes
are presented here. Circuits A, B, and C were partitioned into
four domains. Circuit D was partitioned into sixteen domains.

Tables 1 and 2 report the average CPU time in seconds for
DC and 20-step transient simulations of the four circuits re-
spectively. Note that “–” indicates that the algorithm either ran
out of memory or that it could not finish in a reasonable time
allowed for completion. The different power grid simulation
frameworks that were implemented (or used) are summarized
below.

• SPICE: the general circuit simulator
• LU: computing Cholesky factorization, solving the linear

system k times by forward and backward solvers;
• IF: generating incomplete Cholesky factorization pre-

conditioner (IF) with drop tolerance 0.001, solving the
linear system k times by conjugate gradient method with
IF pre-conditioner;

• MG: generating one-level multi-grid pre-conditioner
(MG) with direct solver on coarse grid and Gauss-Seidel
prior/post smoothers, solving the linear system k times
by conjugate gradient method with MG pre-conditioner;

• DD+LU: DD method solving the linear system k times
with direct solver (LU) for sub-domain problems;

• DD+IF: DD method solving the linear system k times
with iterative solver (IF pre-conditioner) for sub-domain
problems;

• DD+MG: DD method solving the linear system k times
with iterative solver (MG pre-conditioner) for sub-domain
problems.

From these simulation results, it is possible to draw the
following conclusions:

Table 1

Runtimes for DC simulation (secs)

Circuit A B C D
No. nodes 10 K 250 K 1 M 4 M

No. sub-domains 4 4 4 16
SPICE 64 — — —

LU 0.25 46 450 —
IF 0.14 22 51 —

MG 0.60 20 88 —
DD+LU 0.70 38 291 —
DD+IF 0.76 64 352 1644

DD+MG 0.94 45 320 1477

Table 2

Runtimes for transient simulation with 20 time steps (secs)

Circuit A B C D
No. nodes 10 K 250 K 1 M 4 M

No. sub-domains 4 4 4 16
SPICE 133 — — —

LU 0.80 66 540 —
IF 2.26 429 953 —

MG 5.78 192 763 —
DD+LU 1.09 54 365 —
DD+IF 2.23 590 1597 7271

DD+MG 5.81 204 948 3928

• DC simulations: If sufficient memory to generate the
incomplete factorization pre-conditioner is available, the
iterative solver with IF pre-conditioner is the fastest
method. Otherwise, DD with iterative solvers (with IF
or MG pre-conditioners) on sub-domain problems can
handle extra large size problems;

• Transient simulations: If sufficient memory for direct
solvers on sub-domains is available, DD+LU is the fastest
method. Otherwise, DD+MG is the best method, espe-
cially for extra large size problems.

In Table 1, in the DC simulation of Circuit C with 1 M
nodes, the IF method is faster than the DD+IF method. This
is because the computational cost of solving the interface
nodes through a dense Schur complement matrix S defined
by equation 8 may be higher than the gain from solving sub-
domains. Our simulations use very tightly connected power
grids. As a result, the interface nodes constitute a large fraction
of the total number of nodes and this leads to a large dense
Schur complement matrix. This observation is true of other
runs on circuits A, B, and C as well. In some designs, the
number of interface nodes may be much smaller than the
square root of the total number of nodes. For instance, a
large memory array with three local metal layers may have
several millions of nodes but only a few hundred interface
nodes connected to the upper global grid [14]. In such cases,
the Schur complement matrix is small and does not affect
performance even if it is dense.

Note that the Trilinos [5] package we used for computation
has already been well optimized for large scale sparse com-
puting. The direct solver that was used, UMFPACK [3], for



LU or Cholesky factorization is also one of the best available
packages. Our DD-based approach has shown that it is possible
to improve the performance of existing algorithms for power
grid analysis. The improvement will predictably be greater
for a parallel implementation since the decoupled structures
obtained by DD can be simulated independently of each other
with cheap synchronization steps.

5. Conclusion
This paper described an efficient domain decomposition

framework for large-scale power grid simulation. Simulation
results indicate that this approach can be used to extend ex-
isting linear circuit simulators to handle otherwise intractable
systems. Further, although the simulation runs were performed
serially on a single machine for fair comparison, the special
structure that arises from the use of domain decomposition is
amenable to parallelization and further performance gains.
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