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Abstract 

In this paper, a wavelet based approach is proposed 
for the model order reduction of linear circuits in time 
domain. Compared with Chebyshev reduction method, the 
wavelet reduction approach can achieve smaller reduced 
order circuits with very high accuracy, especially for those 
circuits with strong singularities. Furthermore, to compute 
the basis function coefficient vectors, a fast Sylvester 
equation solver is proposed, which works more than one 
or two orders faster than the vector equation solver 
employed by Chebyshev reduction method. The proposed 
wavelet method is also compared with the frequency 
domain model reduction method, which may loose 
accuracy in time domain. Both theoretical analysis and 
experiment results have demonstrated the high speed and 
high accuracy of the proposed method. 

1. Introduction 
As ULSI technology steps into the nanometer era, the 

interconnect networks have dominated the performance of 
the whole systems. During the last decade, model order 
reduction (MOR) techniques have become the main stream 
approaches for fast simulation of interconnect networks 
with huge dimensions. Model order reduction can be 
performed either in frequency domain or in time domain. 
For frequency domain approaches, the most classical order 
reduction methods are AWE, PVL and some of the Krylov 
subspace based methods [1,2], which try to get a reduced   
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order system by approximating a certain number of 
moments of the original transfer function. However by 
these methods, the accuracy of the output response of the 
reduced circuits in time domain cannot always be 
guaranteed even if the reduced transfer function can be 
very accurate in frequency domain. 

As operating frequency is continuously increasing, 
signal integrity phenomenon due to magnetic coupling 
effects of interconnects, makes the impulse response of 
interconnects very complicated in waveform [8]. 
Especially, the fast changing nature of the signal 
waveforms poses challenges to obtain the accurate time-
domain response from the reduced model which based on 
the accurate frequency-domain response. To tackle with 
this problem, it is more desirable to do model-order 
reduction directly in the time domain. The time domain 
reduction methods such as Chebyshev [8] and orthonormal 
basis projection [8] directly approximate the state variables 
in time domain by proper basis functions. By computing 
the coefficients of the basis functions, a projection matrix 
is derived by orthonormalization of the coefficient vectors 
and a reduced model thus can be obtained by projection of 
the original circuit. It is shown in [8] that Chebyshev 
reduction method in time domain is very efficient and 
more accurate than the frequency domain reduction 
method [2] when the original system is reduced to the 
same order.  

The accuracy and efficiency of time domain model order 
reduction strongly depends on the approximation 
capability of the basis functions. As mentioned above, the 
fast changing waveform in high speed interconnects 
indicates the singularity of the circuit. To approximate the 
waveforms with strong singularities, the local support basis 
functions such as wavelets will be more efficient than the 
global support functions like Chebyshev functions. 
Motivated by this idea, we propose to use wavelet 
functions to perform model order reduction in time domain. 
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The wavelet collocation method has been applied in 
transient simulation of linear and nonlinear circuits in 
[3,4,6]. Due to the local support and multi-resolution 
property of wavelets, there exists powerful adaptive 
scheme to automatically select higher-level wavelets 
around singularities to meet the required accuracy. 
Moreover the wavelets in [3,4] have h4 convergence rate 
which can use much less number of wavelet basis 
functions to meet the given reduction accuracy 
requirement. Therefore, wavelet reduction method is 
capable of reducing the circuit into much smaller size than 
the Chebyshev approach especially when dealing with 
circuits with strong singularity properties. 

Another problem encountered in the existing time 
domain model order reduction of large-scale circuit is the 
huge amount of computations involved in coefficient 
calculation, if the number of the coefficients is not small. 
For example, in Chebyshev projection order reduction 
method, a number of )1( +× KN Chebyshev coefficients are 
calculated by solving a vector equation with the size of 

)1( +× KN by )1( +× KN , where N is the number of state 
variables and each state variable has a number of K+1 
coefficients. Solving such a vector equation will be very 
time consuming. Therefore Chebyshev order reduction 
will lose efficiency when applied for very large scale 
circuits. 

In this research, we find that the coefficient equations 
no matter employed in wavelet approach or in Chebyshev 
method can be formulated in a matrix equation called 
Sylvester equation. There exist fast Sylvester equation 
solvers like complete Schur decomposition [5,6] and 
Hessenberg Schur decomposition [7], which have proven 
to be much faster than the vector solver. In this paper, by 
making use of the matrix sparsity of real circuit equations 
derived from RLC models of interconnect network, we 
further propose a Partial  Schur decomposition algorithm 
which is even faster than the traditional algorithms in [5,6]. 
Therefore order reduction in time domain can be achieved 
with very cheap computation.   

In section 2, we first briefly introduce the time domain 
Fast Wavelet Collocation Method [3,4], then propose the 
new wavelet order reduction approach. In section 3, we 
analyze the limitations of the direct vector equation solver 
and the complete Schur algorithm in [5,6]. Then we 
propose a fast Partial Schur algorithm to efficiently solve 
the function coefficients. In section 4, numerical 
experiment results of the fast Partial Schur algorithm and 
wavelet order reduction with comparison of Chebyshev 
reduction method and frequency domain reduction method 
are all presented. Finally we draw conclusions. 

2. Order Reduction by Wavelets 
2.1 FWCM in time domain  

Generally a linear circuit system can be described by  

      )(tBuAx
dt
dx

+=                                             (2.1)   

)()( txCty T=                                                (2.2)    

where T
N txtxtxtx )]()(),([)( 21 L=  is the unknown N 

dimensional state vector and u(t) is the input function. 
y(t )is the unknown output. A, B, C are the system matrixes.  

In FWCM [3, 4], the simulation interval [0, T] in time 
domain is first mapped to the wavelet interval [0, L] by 
conversion of  LlTt /×= , system (2.1) is then 
transformed to (2.3), where ˆ( ) ( / )x l x l T L= × , 
ˆ( ) ( / )u l u l T L= × , ˆ /A A T L= × , ˆ /B B T L= × .                            
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+=                                    (2.3)  

In order to find the solution of the state variables )(ˆ lx , for 
a given wavelet order 0≥J , we expand the state variables 

)(ˆ lx  by (2.4), 
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where H is the MN ×  unknown coefficients matrix, 
[ ]TM llll )(,),(),()( 21 θθθθ L= represents the wavelet basis 

functions, )/()(ˆ LlTxlx ii ×=  (i=1,2,…,N) and M is the 
total number of the basis functions employed for a given 
order J, 32 +×= LM J . By (2.4), if matrix H is solved, the 
solutions of each state variable are also obtained. To solve 
H, substituting )(ˆ lx  in equation (2.3) with equation (2.4), 
we get equation (2.5) as below 

         )(ˆˆ)(ˆ)( luBlHA
dl

ldH += θθ                               (2.5) 

Discretizing equation (2.5) with a number of 
M collocation points [3,4] , we derive equation (2.6) . 
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where 
il  )2,1( Mi K=  are the M collocation points. The 

coefficient matrix H is thus obtained by solving linear 
equation (2.6). 

One of the main advantages of the wavelet collocation 
method is that there exists an adaptive scheme for the 
choice of wavelet basis function in (2.4) based on the 
multi-resolution theory. Using adaptive techniques, those 
wavelet basis functions, which are needed for 
approximating state variables with high accuracy, can be 
employed automatically. The detailed adaptive scheme is 
explained in [4], we here give a simple introduction. The 
B-spline wavelets [4] consist of a closed subspace which 
belongs to the second order integrable Soblev subspace. 
The approximation accuracy depends on the wavelet space 
level. The higher the space level is, the less the error will 
be. The magnitudes of the wavelet coefficients will 
indicate whether a refinement, by increasing the wavelet 
space level, is needed or not. For example, denote ijh the 

coefficient of the wavelet function ijF  in the j-th level 
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subspace jW . For a given error bound of ε , if ε>|ijh|  , 
it means that in the region covered by ijF  , the 

approximation is not accurate enough and wavelet space 
level needs to be increased from j to j+1. Otherwise, it 
means that the current subspace is accurate enough to 
approximate the original system in the region covered 
by ijF . So we don't need to increase j any more.  

2.2 Order reduction by wavelets 
From Equation (2.4), at each point il  of the M 

collocation points },,,{ 21 Mlll K , vector )(ˆ ilx  can be 
approximately represented by the columns 

},...,,,{ 321 Mhhhh  in matrix H. 
                  )(]...[)(ˆ 21 iMi lhhhlx θ=                         (2.7) 

Equation (2.7) means that the vector )(ˆ ilx  is in the 
subspace spanned by },...,,,{ 321 Mhhhh . For large scale 
circuits, )(ˆ ilx  can be approximated accurately only by a 
small number of wavelet basis functions, i.e. M<<N, due 
to the h4  high convergence rate of wavelets [3]. Therefore, 
if M<<N, we can do order reduction on the original 
system (1) by using the subspace spanned by the columns 
of H. The detail is as follows.  

Firstly the columns },...,,,{ 321 Mhhhh  are 
orthonormalized to get an orthonormal 
matrix ],,,[ 321 qVVVVV L= , Mq ≤ .Then using V, we make 

projection )()( tVztx ≈ , BVB T=~  and  do congruence 
transformation AVVA T=~ , a reduced system of dimension 
q<<N in (2.8) can be obtained from the original system 
with order N in (2.1) and (2.2). 

)(~)(~)( tuBtzA
dt

tdz
+=                  

)(tVzCy T=                                         (2.8) 

3.  Fast Sylvester Equation Solver 
3.1 Proposed partial Schur method 

From the above analysis, we see that the key step for 
wavelet order reduction is how to calculate matrix H in 
(2.6) efficiently. 

Denote [ ]1 2( ) ( )  ( )Ml l lθ θ θΦ = L , )],(ˆ)(ˆ)(ˆ[ M21 lululuU L=

1−Φ
Φ

=
dl
dZ  and 1ˆ −Φ= UBG , we finally derive the 

Sylvester equation in (3.1) from equation (2.6),  
ˆH AH GΖ− =                                       (3.1) 

where ˆ, , ,M M N N N M N MR A R H R G R× × × ×Ζ ∈ ∈ ∈ ∈ .   
The Sylvester equation in (3.1) is actually a matrix 
equation where the unknown variables are represented by 
matrix H. A direct approach for solving (3.1) is to transfer 
the matrix equation into a vector equation (3.2) by 
reshaping H into a 1MN ×  vector

1 2

TT T T
Mh h h h⎡ ⎤= ⎣ ⎦

% L ,  

Qh r=%                                                 (3.2) 

Vector equation (3.2) can be solved by either direct LU 
factorization or iteration methods like GMRES. 
Unfortunately, (3.2) is too large to be solved efficiently, 
as MNh R∈% . For example, the operation count of Gaussian 
elimination or LU factorization is ))(( 3NMO × . This 
could be prohibitive as N or M increases. 

More efficient method to solve (3.2) is employing 
matrix equation solver, for instance the complete Schur 
decomposition algorithm proposed in [5, 6], which first 
decomposes the two matrices. 

ˆTA P A P= ⋅ ⋅                                             (3.3) 
TQ QΖ = ⋅Ζ ⋅                                             (3.4) 

Both P and Q are orthogonal and A , Z are quasi-triangular 
matrices with possible nonzero 22×  blocks along the 
diagonal only if Â  or Z has complex eigenvalues. 
Substituting (3.3) (3.4) into (3.1), and denoting TB P GQ= , 

TH P HQ= , we get:  
BHAZH =−                                           (3.5)  

As A  and Z  are quasi-triangular, H can be computed 
from the upper-left corner to the bottom-right corner 
successively, solving no more than four elements each 
time. H could easily be obtained from H , that is  

TQHPH = .      
The total computation account of Complete Schur 

method [5] is )(/)( MMMN25MN10 2233 +++ . Obviously, 
the complete Schur method takes less work than the 
director vector equation solver for (3.2).  However, as the 
circuit scale grows, the Schur decomposition will become 
very time consuming. When N M>> , work count of the 
complete Schur method can be approximated as 310N , 
which increases quite fast with N. In section 4.1, 
experimental results prove the above analysis. 
    In the following, we propose a much faster algorithm 
for solving (3.1). Since the number of wavelet basis 
functions M is usually much less than the scale N of the 
original system, then Schur decomposition (3.4) is ready to 
be obtained, and the Schur decomposition of Â  in (3.3) is 
the one really time consuming. However, for practical 
interconnect circuits, A is usually quite sparse, and the 
same is true for Â , because Â  is only a scaling of A. As 
we know, sparsity can often be utilized to achieve great 
savings of computation, but it is spoiled in the above 
complete Schur decomposition method by the 
decomposition of Â  in (3.3), because A  as a result is 
usually a dense matrix.  

In order to make use of sparse of Â , we do not 
decompose Â , and only make a decomposition of Z by 
(3.4). Furthermore if Z is triangular rather than quasi-
triangular, H could be solved column by column (or row 
by row).  A triangular decomposition of Z can be easily 
obtained by the complex Schur decomposition listed in the 
following algorithm. 

Step 1. Complex Schur decomposition for Z, while leaving 
Â  intact, i.e. UZUZ T=~ , Z%  is a complex upper triangular 
matrix  whose elements are complex numbers i.e. 

ij CΖ ∈% , 
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U is an orthogonal matrix, U means the conjugate matrix 
of U. 
Step 2. Substitute this decomposition into (3.1), 
denote UHHUGB ==

~,~ , we have BHAZH ~~ˆ~~ =−   .                               
Step 3. Expand both sides of the above equation, we 
obtain,                  

∑
=

=−
M

j
kkjjk bhAhZ

1

~~ˆ~~  , for k=1,2,…M. where 
kj bh ~,~  are the 

columns in BH ~,~ . Because Z%  is upper triangular, 

Mhhh ~,,~,~
21 L can be solved successively by 

                     ∑
−

=

−=−
1k

1j
jjkkkNkk hZbhAIZ ~~~~)ˆ~(         (3.6) 

Step 4. Get H from )~( TVHrealH = . 
The function real (x) that extracts the real part of x is 

necessary, as round-off errors during operations might 
introduce a very small complex part in TVH~ , which should 
be neglected because all the known matrices in (3.1) are 
real. Note that the coefficient matrix )ˆ~( AIZ Nkk −  in (3.6) is 
nearly as sparse as Â . Equation (3.6) can be solved by 
many fast algorithms dealing with large-scale sparse 
matrix problems such as preconditioned GMRES. We call 
the proposed algorithm the Partial Schur decomposition 
algorithm since only one Schur decomposition is done. 

For partial Schur decomposition method, Schur 
decomposition is done only on the small matrix MMRZ ×∈ , 
the computation account in step 1 is only )( 3MO , which 
is much less than the complete Schur decomposition in  [5, 
6]. 
3. 2 Comparison with Chebyshev order reduction 
method 

Both wavelet order reduction method and Chebyshev 
projection order reduction method [8] are based on the 
same principle of approximating the state variable in time 
domain and making use of function coefficient vectors to 
construct the projection space. However, the wavelet 
reduction method outperforms the Chebyshev approach in 
the following aspects. 

Firstly, let’s compare the computation cost of the two 
methods. In Chebyshev order reduction, to calculate the 
Chebyshev coefficients, the original system was 
discretized into equation (4.35) in paper [8] at a number of 
K time points (0 )it i K≤ <  , which is rewritten in the 
following. 

0

( ) ( ) 0
K

ik k i
k

M d x t Nx t
=

+ =∑% %% %                 (3.7) 

where ( )x t%  is transformation of state variables x(t) in the 
domain of Chebyshev functions. ( )ix t%  is the value of ( )ix t%  
at time point (0 )it i K≤ < . ,M N% %  are system matrices and 

ikd is the k-th expansion coefficient of the derivative of 

( )x t% at time point 
it . In order to solve ( )ix t% , equation (3.7) 

was formulated as a vector equation in equation (4.36) in 
[8] with dimension of )1( +× KN  by )1( +× KN . As 
illustrated in Section 3.1, solving large scale vector 

equation will be very time consuming. Fortunately, we 
find that by following the same procedure as we use to 
develop wavelet coefficient equation in (2.6), we can 
reformulate (3.7) into a Sylvester equation in (3.8), where 

0[ ,... ,..., ]i KD d d d= ,
0 1[ ,..., ,..., ]T

i i i iKd d d d= . 
1

1 1[ ( ), ( ),..., ( )] [ ( ), ( ),..., ( )] 0i K i Kx t x t x t D M N x t x t x t−+ =% %% % % % % %   (3.8) 
We can see that the function coefficient equations (2.6) 

in wavelet method or (3.8) in Chebyshev method can all 
be formulated as a Sylvester equation and be solved by the 
proposed Partial Schur Decomposition method. However, 
in Chebyshev method, the coefficients are computed by 
expensive vector equation solver.  

Secondly, we compare the accuracy of the two order 
reduction methods. The key feature of the wavelet-balance 
method is the fact that wavelet basis has local support in 
time domain, whereas the Chebyshev function has a global 
support. Hence, the wavelet functions will be more 
powerful than Chebyshev functions to approximate the 
fast changing waveforms. Especially the wavelet bases 
employed here have a fourth-order convergence rate [4], 
resulting in low computational complexity.  Furthermore, 
by making use of multi-resolution analysis in wavelet 
theory [4], an adaptive technique exists for automatically 
selecting proper wavelet basis functions needed at a given 
accuracy. Consequently, high order wavelet basis 
functions are only employed near fast changing parts of 
the waveform. However, there is no such an elegant 
adaptive scheme for choosing Chebyshev basis. Moreover, 
because of their global support, Chebyshev basis functions 
will lose efficiency to capture the fast changing waveforms, 
as demonstrated in experiment results. Actually, the 
response of high speed interconnect circuits with magnetic 
coupling will exhibit localized singularities, which can be 
easily captured by the wavelet approach through adaptive 
Scheme. 

4.  Numerical Experiments 
In this section, we will examine the proposed wavelet 

model order reduction method by testing a clock tree 
circuit [6] and a 4-bit bus line circuit with 16 RLC 
segments. A step signal with 2ps rise time is applied as 
input. The simulation time interval is set as 0~1ns. We 
first demonstrate the efficiency of the Partial Schur 
algorithm for coefficient calculation by comparison with 
the traditional vector equation algorithm and complete 
Schur algorithm. Then we compare the wavelet order 
reduction with Chebyshev reduction and frequency 
domain order reduction.  

4.1 Comparison between partial Schur algorithm 
and traditional algorithms 

By testing clock tree circuits with different state 
variable number, we obtain in Tab. 1 the comparison 
results of the three Sylvester equation solvers. Simulation 
error of each algorithm is described by 22 ||||/|||| yyy − , 
where y is the solution of (3.1) by the function in Matlab, 
which we assume as the exact solution. y  is the solution 
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of each of the three algorithms concerned. The tests are 
run on a PIV 1.7G PC with 256M RAM.  

Numerical results in Tab.1 show that solving H by 
vector equation method (V.E.) for circuit with 56 state 
variables will cost more than 1000 seconds and it is 
impossible to obtain the results for the other large 
dimension circuits due to memory limitation. This 
confirms that solving vector equation is definitely time and 
memory consuming and cannot be applied to large circuits. 
For all of the testing examples, both partial Schur (P.S.) 
and complete Schur (C.S.) method in [5,6] can obtain very 
accurate results. Under the same simulation accuracy, the 
partial Schur method is almost one order faster than the 
complete Schur method. Moreover, as the circuit scale 
increases, the simulation time of the complete Schur 
method will increase in an ultra-linear way, while the 
simulation time of partial Schur increases almost linearly 
with the circuit size. 

Tab. 1:  Comparison of different Syvester 
equation solvers. 

State 
variable
number 

Method Time(s) Error 

V. E. >1e+003 ---- 
C. S. 2.156000e+000 2.27e-00556 
P. S. 1.812000e+000 2.27e-005
V. E. Out of Memory ---- 
C. S. 1.515700e+001 5.65e-005504 
P. S. 3.968000e+000 5.65e-005
V. E. Out of Memory ---- 
C. S. 7.695000e+002 1.10e-0042040 
P. S. 1.279700e+001 1.10e-004

4.2 Comparison with Chebyshev order reduction 
and frequency domain order reduction 

In this subsection, we compare wavelet order reduction 
method with the Chebyshev order reduction method. The 
error measurement is the mean square error defined 
by 22 ||||/|||| yyyr − , where y is the exact output response 
of the original system (2.1) and ry  is the output response 
of the reduced system, as listed in Tab.2 and Tab.3.  

The first example has a slow changing waveform (Fig. 
1) at the output of a 120-order clock tree circuit. The 
waveforms of the 33th wavelet reduced model and the 
30th Chebyshev reduced model are so close to each other 
and cannot be distinguished from the exact solution. 

More comparison results of different size clock tree 
circuits are listed in Tab.2. We can see that when the size 
of the circuit is small, both the Chebyshev method and the 
wavelet method are accurate. However, when the circuit 
size goes up to 1016 and beyond, Chebyshev method 
cannot obtain the reduced model because the vector 
equation for the coefficients is too large to be solved. On 
the contrary, the wavelet method can treat circuits with 
size up to 24556 within several minutes with very high 
accuracy.  

This experiment shows that for slow changing 
waveform, both the two reduction methods work well with 

moderate size circuits. When the circuit size becomes large, 
Chebyshev reduction method will fail, whereas wavelet 
method still keeps enough efficiency and accuracy. 

The second example has a fast changing waveform 
(the solid line in Fig.2) at the output of a 147th order 
coupling bus line circuit. For this fast changing circuit, 
Chebyshev method reach a 10th order reduced model with 
16.18% error after using k=30 basis functions. This error 
has little change when the number of basis functions is 
increased to k=160. The corresponding results have been 
plotted respectively in dotted and dashed lines in Fig.2. 
This example shows that even by increasing the number of 
Chebyshev basis functions, the waveform computed from 
the reduced model still fails to catch the fast changing part 
of the waveform. The dashed line with triangles describes 
the result by wavelet order reduction.  The error of the 
13th reduced model is below 10-7. This result demonstrates 
the superiority of wavelet method for model order 
reduction of circuit with strong singularities. 

 

 
Fig.1: Comparison between wavelet method and 
Chebyshev method for the clock tree example. 

For the second circuit example, Fig.3 depicts the 
distribution of the wavelets over the whole simulation 
interval from which we can see the local support feature of 
the wavelet. It is very interesting that more number of 
wavelets and higher order wavelets are employed to 
approximate the left part of the waveform which changes 
faster than the right part, where smaller number of wavelet 
and lower order wavelets are chosen. This example exactly 
demonstrates the capability of adaptive scheme to 
automatically choose wavelets to meet the required 
accuracy. It also shows that wavelet basis functions can 
easily catch the fast changing part of the waveform 
because of their local support. 

Tab. 2: Comparison between wavelet method 
and Chebyshev method. 

Original 
order 

Wavelet 
order 

Cheby. 
order  

Wavelet 
Error 

Cheby. 
Error 

120 33 30 1.07e-14  3.57e-9 

504 47 49 1.32e-7   4.65e-3 

1016 56 ------ 1.87e-7   ------ 

6134 54 ------ 9.60e-4 ------ 

12278 58 ------ 1.25e-2  ------ 

24556 61 ------ 2.91e-2  ------ 
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In the following, we compare the wavelet order 
reduction method with the frequency domain order 
reduction method PRIMA [2] by testing the clock tree 
circuits in [6]. The listed simulation results in Tab.3 
represent the best reduction results of PRIMA, which 
means that the reduction errors can not be further reduced 
even if the order of the reduced system is further increased. 

 

Fig. 2: Comparison between Wavelet method 
and Chebyshev method for the 4-bit bus line 

circuit example. 
 

 
Fig. 3: Distribution of wavelets. 

 

Tab. 3: Comparison between Wavelet method 
and frequency domain method PRIMA 

Origina
l order 

Reduced 
order 

Error of 
PRIMA 

 Error of 
Wavelet MOR

504 47 0.0039 1.2568e-007 

2040 60 0.0090 4.3939e-006 

6134 54 0.2487 9.6041e-004 

12278 58 0.1565 0.0125 

It shows that frequency domain method PRIMA results 
in very large error for time domain response. For instance, 
the maximum error of PRIMA can get to around 25%, 
which is not acceptable for timing analysis and circuit 
simulation. We notice that this large error comes from the 
problem of choosing proper expansion points for  transfer 
function, which is still a relatively open problem and is not 
completely solved [1]. However, the proposed wavelet 
model order reduction depends on strong mathematic 
theory such as adaptive algorithm to automatically choose 
the wavelet functions to meet the reduction error 
requirement. We also notice that the wavelet method may 

cost more computation time than the frequency domain 
method during the model reduction process. However this 
extra cost is deserved if accurate time domain circuit 
response is more desired than frequency domain response. 
Furthermore, the reduced order system by wavelet method 
is rather small, which can greatly save the simulation time 
after the reduced model is embedded in the whole circuit 
simulation. 

5.  Conclusions 
We present an order reduction approach using wavelet 

basis function to approximate the state variables in time 
domain. By orthorgonalizing the wavelet coefficient 
vectors, a projection space can be constructed and thus 
applied to project the original system to a lower order 
system. To fast calculate the wavelet coefficients, a Partial 
Schur decomposition algorithm is proposed to directly 
solve the Sylvester equation rather than solve the vector 
equation. The local support property of wavelets makes 
them capable of approximating fast changing waveforms 
very well. This is the main advantage of wavelets over 
Chebyshev functions when dealing with fast changing 
waveforms. Detailed theoretical analysis and experimental 
comparison with Chebyshev order reduction method and 
frequency domain order reduction method demonstrate 
that the time domain wavelet order reduction method is 
very efficient and accurate for time domain model order 
reduction, especially when dealing with very large scale 
interconnect circuits with singularities.  
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