
Supporting Task Migration in Multi-Processor Systems-on-Chip:
A Feasibility Study

Stefano Bertozzi1, Andrea Acquaviva1, Davide Bertozzi2, and Antonio Poggiali3

1ISTI, University of Urbino, 61029 Urbino, Italy
2DIE, University of Ferrara, 44100 Ferrara, Italy

3DEIS, University of Bologna, 40136 Bologna, Italy

Abstract

With the advent of multi-processor systems-on-chip, the inter-
est in process migration is again on the rise both in research and
in product development. New challenges associated with the new
scenario include increased sensitivity to implementation complex-
ity, tight power budgets, requirements on execution predictability,
the lack of virtual memory support in many low-end MPSoCs. As
a consequence, effectiveness and applicability of traditional trans-
parent migration mechanisms are put in discussion in this context.
Our paper proposes a task management software infrastructure
that is well suited for the constraints of single chip multiproces-
sors with distributed operating systems. Load balancing in the
system is maintained by means of intelligent initial placement and
task migration. We propose a user-managed migration scheme
based on code checkpointing and user-level middleware support
as an effective solution for many MPSoC application domains. In
order to prove the practical viability of this scheme, we also pro-
pose a characterization methodology for task migration overhead.
We derive the minimum execution time following a task migration
event during which the system configuration should be frozen to
make up for the migration cost.

1. Introduction and Motivation

Interest in process migration was historically raised by the mas-
sive deployment of distributed systems (and distributed operating
systems in particular) in the parallel computing domain. Run-time
transfer of processes between different machines has always been
viewed as a way to perform dynamic load distribution, ensure fault
resilience, facilitate system administration and enhance data ac-
cess locality [15].

With the advent of multi-processor systems-on-chip, the inter-
est in process migration is again on the rise both in research and in
product development. Beyond traditional objectives, in this new
domain process migration can be effectively deployed to maxi-
mize energy savings of dynamic voltage and frequency scaling
techniques, to facilitate thermal chip management by moving tasks
away from hot processing elements and to balance the workload of
parallel processing elements [7, 9]. However, the distinctive fea-
tures of single-chip multiprocessors pose new challenges to the

implementation of task migration mechanisms, and this explains
why they have not caught on yet in spite of their potential benefits.
This is specially true for no-cache-coherent MPSoCs, where each
core runs its own local copy of the operating system in private
memory [12, 17]. A migration paradigm similar to the one im-
plemented in computer clusters should be considered in this case,
with the addition of a shared memory support for interprocessor
communication.

MPSoCs are resource-constrained systems with tight power
budgets. Therefore, the constraints on implementation complex-
ity already faced in the parallel computing domain are even more
stringent here. Moreover, many embedded applications feature
real-time constraints, and the performance overhead and unpre-
dictability introduced by transparent task migration might lead
to timing violations. Instability conditions related, for instance,
to processes migrating back and forth between nodes may fur-
ther jeopardize execution predictability. For these reasons, less
transparent but more controllable migration techniques may be
deliberately required in this context, such as user-level or even
application-specific migration implementation. Organizing the
migration support in reusable run-time libraries can alleviate the
drawback of this approach. Lower-level migration might involve
intrusive operating system changes and hardware extensions, and
research efforts to understand whether this approach pays off are
still in the early stage.

In addition, many new generation MPSoCs are designed based
on the symmetric multi-processing paradigm [3], where computa-
tion nodes are homogeneous and resources are shared, therefore
conventional techniques leveraging home dependencies [4] might
not simplify task migration. Finally, many embedded system ar-
chitectures do not even provide support for virtual memory, there-
fore many task migration optimization techniques applied to sys-
tems with remote paging support cannot be directly deployed, such
as the eager dirty [1] or the copy-on-reference [18] strategies.

In general, migrating a task in a fully distributed system in-
volves the transfer of processor state (registers), user level and
kernel level context and address space. A process’ address space
usually accounts for a large fraction of the process state, therefore
process migration performance largely depends on the transfer ef-
ficiency of the address space. Although a number of techniques
have been devised to alleviate this migration cost (e.g., lazy state
transfer, precopying, residual dependencies[15]), a frequent num-
ber of migration events might seriously degrade application per-
formance in an MPSoC scenario.

In this work we present a lightweight migration mechanism
based on code checkpointing and user-level middleware, providing
support for a number of load information management strategies

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



and migration activation policies. Our approach to task migration
is aware of the potentially high sensitivity of application-perceived
performance to task migration overhead and tries to overcome the
lack of consolidated architectural support and optimization tech-
niques to alleviate it in the context of MPSoCs. Leveraging our
implementation, we characterize the overhead incurred by a user-
driven migration strategy and determine the break-even points for
the migration to bring benefits to system performance. Finally, we
show in a practical case study that a user-driven approach can pay
off in terms of reduced state transfers and low-overhead migration.

Our work is structured as follows. Section 2 introduces our
hardware/software architecture, while migration methodologies in
multiprocessor systems are described in Section 3. Section 4
presents our task migration support and 5 presents experimental
results.

2. Hardware/Software Architecture

Depending on the coupling of processors and memory, multi-
processors may be broadly divided into two major categories.

Shared Memory Multiprocessors. In a shared memory mul-
tiprocessors, all main memory is accessible to and shared by all
processors. The cost for accessing shared memory is the same
for all processors, therefore these systems are usually called UMA
(Uniform Memory Access) systems. A common communication
medium links several memory modules to computational modules
consisting of a cache and one or more processor elements, and I/O
devices are attached directly to it. In tightly coupled shared mem-
ory SMP (Symmetric Multi-Processor) systems, which belong to
this category, all the processors run a single copy of an operating
system that coordinates global activities [5]. Synchronization is
maintained through a cache-coherent low-latency shared memory.
A particular category of shared memory multiprocessors is Non-
Uniform Memory Access (NUMA). In a NUMA architecture, all
physical memory in the system is partitioned into modules, each
of which is local to and associated with a specific processor. As a
result, access time to local memory is lower than that to non-local
memory. NUMA machines may use an interconnection network
to connect all processors to memory units, or use cache-based al-
gorithms and a hierarchical set of buses for connecting processors
to memory units. In both kinds of machines, I/O devices can be
attached to individual processor modules or can be shared.

Distributed Multi-Processors. The individual processing
units reside as separate nodes. Each processor runs its own operat-
ing system and synchronizes with other processors using messages
or semaphores over an interconnect. From a memory access view-
point, each processor has its own local memory that is not shared
by other processors in the system (NO Remote Memory Access -
NORMA - Multiprocessors). Computer clusters (CC) are exam-
ples of non-shared memory multiprocessors. Workstation clusters
usually do not offer specialized hardware for low-latency inter-
machine communication and also for implementation of selected
global operations like global synchronization or broadcast. In gen-
eral, NORMA machines do not support cache or main memory
consistency on different processors’ memory modules. Such con-
sistency is guaranteed only for local memory and caches (i.e., for
non-shared memory), or it must be explicitly enforced for shared
memory by user- or compiler-generated code.

Embedded MPSoCs. Modern Multiprocessor Systems-on-
Chip are usually equipped with local and shared memory, so the
access is non-uniform (NUMA). In this work, we target MPSoCs
where cache-coherency is guaranteed on private memories where a
local copy of the operating system runs for each core (distributed
operating system). The system runs a distributed version of the
uClinux operating system [16]. On the same on-chip bus, a non-
coherent shared memory can be accessed, thus providing support
for interprocessor communication. Hardware semaphores can be
exploited to implement synchronized accesses to shared resources.

The contributions of this paper can be summarized as follows:
(i) we propose a combined approach to load balancing leveraging
intelligent process initial placement and task migration.
(ii) We show the practical viability of a user-managed migration
mechanism in MPSoCs, where the lack of transparency may be a
desired feature instead of a drawback.

(iii) the overhead of our infrastructure for migration support is
accurately assessed via functional simulation, and the break-even
points determined so that parameters (e.g., time-outs, thresholds)
of different task migration policies can be set to amortize the cost
of task migration. To our knowledge, this work is the first to
present a detailed implementation of migration mechanisms in the
MPSoC domain, going beyond the traditional description of mi-
gration proof-of-concept setups.

3. Migration Methodology

Migration has been traditionally studied in both distributed and
shared memory multiprocessor systems with the purpose of ad-
dressing load sharing problems. When the operating system runs
in shared memory, the implicit cost of migrating a task is much
lower because process address space is not to be moved. Costs
of migration are related to the efficiency of the load sharing pol-
icy with respect to resource contention, which is critical in this
kind of systems [14]. Migration decisions are taken by looking at
OS-maintained process queues in shared memory. Efficient mul-
tiprocessor scheduling has been implemented in general purpose
OS like Linux 2.6 [8] and has been investigated also for embedded
MPSoCs [9, 7, 13].

In distributed systems without shared memory support, like
computer clusters, migration policy must be coordinated using
messages among nodes. In addition, the implicit cost of migra-
tion is larger due to the need of moving the process context over a
slower (w.r.t. on-chip or on-board links) communication medium.
Finally, the resource management problem is much more complex
because resources available in the original node may not be avail-
able on the remote node. Examples of such resources are local
files and peripherals, that are accessed by processes through sys-
tem calls. The MOSIX solution [1] is a well known load balancing
infrastructure for CCs. From a migration perspective, a MOSIX
process has two contexts. A user context (called the remote) con-
tains program code, stack, data, memory maps and registers of
the process. A system context (called deputy) contains description
of resources opened by the process. Only the remote is migrated
while the deputy represents the so called home node - UHN. When
a request for a home resource is made by the migrated process, a
link layer in the remote node takes care of forwarding that request
to the UHN and returns the corresponding results. This abstrac-
tion layer is required to provide transparency of migration from the
programmer’s viewpoint. This approach is impractical for embed-
ded MPSoCs where predictability and controllability are critical
issues.

For the embedded MPSoC architecture we target in this work,
a new migration paradigm should be explored. In fact, compared
to CCs, we can exploit the advantage of the shared memory
support to maintain global state information on the processes
running on each core by implementing a process migration table.
However, compared to shared SMP multiprocessors, we pay a
higher cost for migration, since process context must be moved.
This cost could be critical in an embedded MPSoC system,
specially if it is not predictable. For this reason, we propose a
lightweight migration support that is more suitable to embedded
systems. By following a common programming methodology
used in embedded systems, we reduce abstraction layers to
increase predictability and reduce migration overheads.

The system is organized with a master processor and an ar-
bitrary number of slave processors. The master core performs ad-
mission control and initial process placement on the different slave
processors, aiming at an equal distribution of the workload among
the slave cores. In our view, this centralized scheduling scheme is
viable for on-chip multiprocessors, allows a globally coordinated
and hence more efficient placement mechanism and is well suited
for many MPSoC architectures where one processor core plays the
role of global controller. We developed a user level middleware on
top of the uClinux operating system [16], composed by a daemon
running on each core and a messaging library providing task termi-
nation and remote invocation capability. Processes communicate
with the underlaying middleware by means of a library of func-
tions. The migration library allows to implement migration points



through code checkpointing. The programmer explicitly specifies
the state information (context sensitive data) needed to restart the
process on another machine. The middleware library allows to
selectively store the logical task state and to restore it at the des-
tination processor. On one hand, only those variables needed to
resume execution at the remote site have to be saved and trans-
ferred. On the other hand, the user has to explicitly manage the
migration process, and must identify the minimum task state to be
saved at each migration point.

In this work, we make use of a standard migration initiation
mechanism. We assume that when tasks reach candidate migra-
tion points, they check whether a migration request has been trig-
gered by the master processor. In practice, a proper field in shared
memory is checked. The time between the migration request as-
sertion and the migration point determines a large fraction of the
so-called reaction time, which is the migration overhead from the
performance viewpoint. Of course, as pointed out in [11], this
mechanism gives also rise to a run-time overhead when there is
no pending migration request (normal execution) due to the need
to check for pending requests. This overhead could be especially
noticeable since a task may require frequent migration points in or-
der to reduce the reaction time. However, a number of techniques
have been proposed to relieve this overhead, like for instance us-
ing debug registers present on most modern processing elements.
As proved in the Experimental Results section, in our implemen-
tation the run-time checkpointing overhead is negligible because
it involves just a few accesses to shared memory.

4. Task Migration Support

In this section we describe the migration support layer that can
be used to implement load balancing and task allocation strate-
gies. The support relies upon two main components: i) message
passing interface (MPI) and ii) process context save-restore mech-
anism. Message passing is used to initiate migration requests and
to transfer process context, which is saved and restored by means
of user level functions. Being completely developed by means
of a user level library, the message passing support we developed
shows a negligible overhead, thus allowing an efficient migration
mechanism. However, any kind of standard MPI support can be
used to implement our migration mechanism.

Migration is achieved through a dedicated middleware. An
admission control and task allocation daemon (master daemon,
M daemon) is running on the master core. It is responsible of
handling task creation requests. The daemon also keeps track of
processes born as children of already admitted processes. Master
daemon implements also the load balancing strategy and controls
migration events in a centralized fashion. It stores the current allo-
cation of processes to cores into a process migration table in shared
memory. The load balancing algorithm looks at this table to make
migration decisions.

A slave migration daemon (S daemon) is running on each
slave processor. It is responsible to create processes on the lo-
cal processor upon creation requests generated by the master dae-
mon through messages. Migration is the result of collaboration
between master and slave daemons, as shown in Figure 1. When a
migration is to be done, the master daemon sets a bit in the migra-
tion table corresponding to the selected process entry. When the
selected process reaches a migration point, it acknowledges the
migration request by clearing the bit. As a consequence, the mas-
ter daemon triggers the creation of the new process by sending a
message to the slave daemon of the destination core. In the experi-
mental results section, we prove the effectiveness of this technique
in reducing migration overhead.

In our distributed system architecture, a process always re-
mains within its address space; communication among pro-
cesses happens through message transfer via a communication
channel. When a process in one address space requests a
service from another address space, it creates a message de-
scribing its requirements, and sends it to the target address
space. A process in the target address space receives the mes-
sage, interprets it and services the request. We implemented a
lightweight message passing scheme that exploits shared mem-
ory space to implement ingoing mailboxes for each processor

Master CPU

Kernel

M_daemon

interconnect

CPU #1
Private
Memory

CPU #N
Private
Memory

…

Shared
Memory

Other CPUs

Kernel

S_daemon
…

Context Saving
Area

P P P

Migration table

P

Figure 1. Illustration of the software/hardware
organization.

core. We defined a user-level library of functions to be in-
cluded in the main program that each process can use to perform
blocking write (MPI sendmsg(dst port, buf, size)) and read
(MPI recvmsg(src port, buf, size)) of data buffers (buf ) on
the mailbox. We defined a mailbox for each core and not for each
process to avoid allocation/deallocation of mailboxes depending
on process lifetime. It must be noted that the library manages
the shared memory completely at the user level. This is obtained
through a direct mapping of the shared memory to the process ad-
dress space.

4.1 Checkpointing-Based Migration

As previously mentioned, migration techniques involve saving
and restoring the context of a process so that it can be safely exe-
cuted on a new core. Both in computer cluster and shared memory
environments only the user context is migrated. System context is
kept either on the home node or in shared memory. We follow the
same approach in our migration framework, but in our case system
context is destroyed in the starting core (the core where the process
was running before migration) and rebuilt on the new core. This
allows to avoid the implementation of a link layer (like in Mosix)
that impacts predictability and performance of the migrated pro-
cess, which in our system does not have the notion of home node
(UHN [1]).

This is possible only adopting a suitable checkpointing strat-
egy. In fact, by destroying all system context information, also the
information concerning opened resources (such as I/O peripher-
als) in the starting node are lost. As a consequence, the program-
mer must take care of this by carefully selecting migration points
or eventually re-opening resources left open in the previous pro-
cess life. In this case, a more complex programming paradigm is
traded-off with efficiency and predictability of the migration pro-
cess, as will be showd in the results section. This approach is much
more suitable for an embedded context, where controllability and
predictability are key issues.

Given that, process migration involves the following steps: i)
saving migrating process user context; ii) killing the process; iii)
transferring the context to the target processor; iv) launching a
replica of the process in the new processor and v) restoring the
context.

Checkpointing-based migration technique relies upon modifi-
cations of the user program to explicitly define migration and re-
store points, the advantage being i) the absence of operating sys-
tem modification and thus a complete portability; ii) predictabil-
ity and controllability of the migration process. User level check-
pointing and restore for migration has been studied in the past for
computer clusters [2]. Migration support functions have been im-



migration point {
save data;
save mg_id;}

end.To resume natural end

begin

#include “tmigration.h”

#include “des.h”

XXX plain_buffer, cipher_buffer, key;

main() {
/* restore variables and status */

mg_id=restore(context);
if (mg_id!=0) goto resume;

/* end restore */

while(1) {
if(wait_new_plain()==BREAK) break;
migration_point(mg_id,context );

resume: read_data(plain_buffer,key);
cipher_buffer=do_des(plain_buffer,key);
write_data(cipher_buffer);

}
}

Figure 2. Example usage of the migration li-
brary.

plemented in a migration library. An example of utilization of
these functions is shown in Figure 2.

When a process reaches a migration point it checks in the pro-
cess migration table into the shared memory whether there is a
migration request issued by the master daemon for the current
process. If so, the process stores context sensitive variables, ac-
knowledges the migration by resetting the migration request bit in
the shared memory and kills itself. The user explicitly manages a
data buffer by taking into account data type and size for a correct
restore. The example showed in Figure 2 shows the checkpointed
code of a DES (Data Encryption System) application. The appli-
cation reads plaintext and key from shared memory, copying
them into local buffers, performs encryption in a local memory
buffer and finally writes ciphered text back to shared memory.

As the process begins its execution, a restore (TM restore())
function is called. This function checks if the current process
comes from a migration point or not. If yes, it returns the migra-
tion point identifier (mg id) so that the user process can jump to
the corresponding checkpoint. The checkpoint identifier has been
saved at the migration point in the previous process life. Clearly,
it is the responsibility of the user to restore saved data before the
jump. This may include also data allocated in the heap. A ded-
icated function of the migration library can be used to perform
allocation and copy of saved data in the newly allocated memory
space.

This approach allows the user to migrate only context sensitive
variables, instead of migrating the whole context. Although this
programming paradigm requires modification of user programs as
shown in Figure 2, it may reduce migration overhead and improve
controllability and predictability, which are desirable features for
embedded time-constrained systems.

5. Experimental Results

We carried out our analysis within the framework of the
SystemC-based MPARM simulation platform [10]. Figure 3
shows a pictorial overview of the simulated architecture. It con-
sists of a configurable number of 32-bit ARMv7 processors. Each
processor core has its own private memory, and a shared mem-
ory is used for inter-processor communication. Synchronization
among the cores is provided by hardware semaphores implement-
ing the test-and-set operation. The system interconnect is a shared
bus.

The software environment consists of the uClinux operating
system that we ported to the multiprocessor virtual platform. The
operating system image is the Linux 2.6 kernel, patched for no-
mmu architectures and a rom filesystem. Each system image (one
for each processor) is loaded before the starting of the simula-
tion in the private memory. This way each processor has its own
filesystem. Although the romfs should be installed in a non-
volatile shared memory, we decided to have a distributed file sys-
tem for simplicity of porting. By replicating user-level programs

ARM
#0

priv
mem
#0

shared
mem

int
slave

semaphore
mem

ARM
#1

ARM
#2

ARM
#3

priv
mem
#1

priv
mem
#2

priv
mem
#3

INTERCONNECT

Figure 3. MPSoC platform.

checkpoint frequency task slow down
1 (1 call every ms) 0,2%

0,2 (1 call every 5 ms) 0,04%
0,1 (1 call every 10 ms) 0,02%

0,05 (1 call every 20 ms) 0,01%

Table 1. Checkpoint overhead

in each private memory we can avoid to transfer the code during
migrations. In a shared file system implementation, program code
would not have to be moved as well. Since uClinux is natively de-
signed to run in a single-processor environment, we added the sup-
port for interprocessor communication through the message pass-
ing library. We also implemented the support for interprocessor
interrupts.

In order to measure performance of our system and character-
ize migration costs we performed several tests. The first test aimed
at evaluating the perturbing impact of the support for migration on
the system running processes. Results are shown in Table 1.

Moving a task in our migration infrastructure requires to mod-
ify its code adding checkpoint API invocations. In order to eval-
uate how checkpoint API calls affect task speed in normal execu-
tion, we experimentally measured the execution time of a synthetic
task with and without checkpoints. Obviously, we assumed there
were no pending migration requests to account for the run-time
checkpointing overhead. We measured about 2 µs of CPU time to
process a checkpoint, and the relative impact on execution speed
of the task was calculated based on the checkpoint frequency. We
can observe that even with very high and not realistic checkpoint
frequencies, the overhead is negligible.

In our framework, there is a daemon process running on each
CPU, which periodically wakes up and tests if there are migration
requests of tasks to its local processor core. In this case, the dae-
mon forks and generates a new instance of the migrating process.
In order to evaluate the leakage of CPU time caused by the daemon
execution we experimentally measured the non-forking execution
time of the daemon, that is the time used by the daemon to wake
up, check that there are no tasks to move and go back to sleep.
Non-forking daemons waste about 10 µs of CPU time. The per-
centage of wasted CPU time with respect to the daemon activation
frequency is reported in Table 2, where we assume a 20 ms time-
slice under the uClinux kernel.

Again, the impact of daemon execution on system performance
is negligible. Referring to Figure 4, we call T migration the
time elapsed between the call of a taken checkpoint and the end
of the process restore at its destination site. T migration con-
sists of the following components: (i) the time used by the check-
point API to check for migration request, to save the context and

Daemon activation frequency wasted CPU time
1 (1 call every 1 timeslice) 0,05%

0,2 (1 call every 5 timeslices) 0,01%
0,1 (1 call every 10 timeslices) 0,005%
0,05 (1 call every 20 timeslices) 0,0025%

Table 2. Migration daemon overhead



state size time time/size
(Kb) (ms) (ms/Kb)

1 0,0565 0,0565
8 0,4471 0,0559

16 0,9231 0,0577
32 1,8131 0,0567
64 3,6136 0,0565

Table 3. Migration time overhead

exit (T shutdown); (ii) the time elapsed waiting for the daemon
wakeup (T activation); (iii) the time needed to rebuild the mi-
grated task, T reboot.

Figure 4. Timeline of the migration mecha-
nism.

T activation depends on daemon activation frequency and
scheduler behavior, and is therefore not precisely predictable, al-
though it can be assumed to typically vary between 0 and the dae-
mon activation period. T shutdown and T reboot more directly
measure the efficiency of our migration implementation, therefore
several tests to characterize them have been performed, assuming
different state sizes. Results are reported in Table 3, where the sum
of these two times is reported.

Experimental results shows that there is a good linear corre-
lation between times. This means that the time needed to move
task state heavily dominates the time needed to fork, exec, and re-
store the migrated process. Please note that the transfer time of
state information is spent partly during T shutdown (writes to
shared memory) and partly during T reboot (reads from shared
memory).

Finally, we built a set of experiments to characterize the effec-
tiveness of migration. We took a characterization approach similar
to [14]. The objective is to determine the time after which the mi-
gration cost is compensated by a speed-up in system performance.
We considered a migration taking place between two processors
(CPU A and B). The system starts in an unbalanced state since
CPU A executes three processes while CPU B only one. Processes
are obtained as instances of the same synthetic program and are
therefore independent. At time zero of our experiment the mas-
ter processor, which is in charge of detecting load unbalances and
of managing migration events to balance the system, triggers the
transfer of one process running on CPU A to CPU B.

Since load balancing policies are not the focus of this work,
we implemented a load balancing policy that quantifies CPU load
in terms of number of processes running on a certain CPU and
migrates processes away from the overloaded node to a less busy
one. More in general, any kind of load balancing policy could be
used, such as CPU and memory utilization, open resources, etc.,
and our infrastructure is in principle able to support all of them. In
our experiments, we set the daemon activation period to 1 ms, the
checkpoint period to 15 ms and varied the task state size from 0 to
512 kByte.

In Figure 5 we represent the time needed by a single task to get
a certain amount of CPU time in four scenarios: i) the task runs
standalone on a CPU; ii) the task shares the CPU with another
task; iii) the task shares the CPU with other two tasks; iv) the task
moves from condition iii) to condition ii), which is the migration
case. x-axys values indicate the effective CPU time obtained by

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140
Tcpu(ms)

T
(m

s)

standalone 2 tasks 3 tasks

migration 0Kb migration 128 Kb migration 256 Kb

Figure 5. Execution time as a function of CPU
time for a single task.

a task, while the y-axys represents the elapsed time needed to get
that effective CPU time.

Let us follow the curve referred to migration with zero state.
Before migrating, the task executes up to the first checkpoint in an
unbalanced context, and might take up to 55 ms to realize that it
has to migrate. Then the task is moved to CPU B with a negligible
migration overhead, and starts executing in a balanced scenario.
Therefore, the relative curve in the plot starts with a slope which is
intermediate with respect to the (3,1) and (2,2) curves. Then, be-
tween 55 and 100 ms (on the y-axys) the curve has a slope change
and tends to almost overlap with the balanced (2,2) curve. Actu-
ally, the two curves should not be completely overlapped, because
the migration-related curve has to pay the price for starting in an
unbalanced scenario. The state to transfer being null, the offset
between the curves is minimal, and in the plot it is below the mea-
surement noise.

This is not the case for the migration curves with non-
negligible state, which requires a certain amount of time to be
transferred to the destination node. These curves end up being
parallel, and not overlapped, with the fully balanced (2,2) curve.
Moreover, a break-even point does exist between the migration
curves and the unbalanced curve where the task runs with other
two tasks without migrating. Should the migrating task complete
before the break-even time, the migration cost would not be amor-
tized and it would have completed in less time by staying in the
original unbalanced configuration. With a 256 kByte state size,
the break-even time is about 100 ms (5 uClinux time slices), while
with zero state the benefit for task performance is immediate. Such
information could be considered by a smart load balancing policy,
which could compare the break-even time with the remaining ex-
ecution time of the task to migrate.

In Figure 6 we repeated the same experiment but we considered
the average time needed by all of the four tasks in the system to get
a certain amount of CPU time in three cases: i) leaving the system
unbalanced (one CPU with 3 tasks and one CPU with one task);
ii) leaving the system balanced (2 tasks on each CPU); iii) using
migration to balance the system. The interest for this plot stems
from the fact that when a migration event takes place, two non-
migrating processes start immediately speeding-up, while another
one, which was running alone, starts slowing down although it had
made more progress. We want to assess how these facts combine
together to determine average system performance.

Looking at Figure 6, it is possible to see that migration allows
the system to change the slope of its curve, moving to the one
of the balanced system. More interestingly, this slope tends to
diverge with respect to the curve of the unbalanced system, in-
dicating that migration benefits are more and more significant as
the system remains in the new configuration. Although the curves
confirm the trend already observed in Figure 5, there is one main
difference: for a given state to transfer, the system break-even time
(actual CPU time on the x-axys) is lower than the break-even point



0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140

Tcpu(ms)

T
(m

s)

balanced unbalanced migration 0Kb migration 256Kb migration 512Kb

Figure 6. Average execution time as a func-
tion of average CPU time for all 4 tasks.

of the migrating task. This a system level effect, due to the fact that
when a task migrates in the considered scenario, two tasks can run
immediately at a higher speed, while another task slows down to
the same speed featured by tasks in a balanced (2,2) scenario. On
average, the system is able to amortize the migration cost more
rapidly than the specific migrating task does, because it can rely
on the compensating effect of multiple tasks, from a performance
viewpoint.

Analyzing data collected by means of multiple simulation runs,
an analytical model of the migration-capable system has been de-
veloped. The analytical model uses three input parameter: the
frequency of the chekpoints in the task code, the daemon activa-
tion frequency and the size of the task state. By a point-to-point
comparison of the migration curves obtained with the analytical
model with those obtained through simulation in Figure 6, we de-
rived for each curve an average error always lower than 2.3% and
a maximum standard deviation of 2.44, thus proving the accuracy
of the derived model.

We deployed the analytical model to determine the system con-
figuration freezing time. Freezing time is the time needed by the
new configuration (following a migration event) to start providing
performance benefits with respect to the unbalanced configuration.
This time depends on the implementation efficiency of the migra-
tion infrastructure, since it is tightly related to the migration cost.
The freezing time could be used to set the parameters of a load
balancing policy, which could prevent changes in the system con-
figuration or new migration requests before the cost for the pre-
vious migration event has been amortized. We report in Figure 7
the freezing time for different state sizes, analytically derived for
the usual system which moves from a (3,1) to a (2,2) task map-
ping configuration. The freezing time is expressed as number of
scheduler time slices and corresponds to the break-even point be-
tween theoretically derived migration curves and unbalanced sys-
tem curve. The plot points out a linear increase of the freezing
time as the state size increases. The distribution of the break-even
points around the imaginary straight line is due to the discretiza-
tion effect of the scheduler, which schedules processes on a time-
slice basis.

Finally, we tested our migration system on a real application.
We considered a task that performs a DES ECB encryption and
modified it in order to be able to use our migration support (as
shown in Figure 2). As the task receives plain data and sends ci-
pher data to a collector task, our checkpointing policy allows to
migrate the task with an empty task state at the beginning or at the
end of its execution. This is definitely less than the data section of
the DES task binary executable, that amounts to about 5 KByte.
The zero task state is due to the fact that before and after execu-
tion the only state the task needs to keep consists of the pointers
to the shared memory queues. However, such queues have been

2

2,5

3

3,5

4

4,5

5

5,5

6

6,5

0 50 100 150 200 250 300 350 400 450 500 550

Task State Size(Kb)

S
ch

ed
ul

er
 T

im
e 

sl
ic

es

Figure 7. Time needed to amortize the migra-
tion overhead.

statically allocated, therefore their location for the task is hard-
wired in the code. Migration during task computation does not
seem a good option here, since the computation is very short and
this would imply to transfer some state variables, which are how-
ever of small size although not always easy to determine. This is a
typical situation where a user-level technique allows a process to
migrate by moving to the destination CPU a lower amount of data
with respect to kernel-level techniques.

6. Conclusions

In this work we presented a lightweight migration mechanism
based on code checkpointing and user-level middleware. We char-
acterized the overhead of this approach via functional simulation
and proved its viability in the context of distributed OS MPSoCs.

7. REFERENCES
[1] Barak A., La’adan O. and Shiloh A., ”‘Scalable Cluster Computing with

MOSIX for Linux,”’ Proc. Linux Expo ’99, pp. 95-100, 1999.
[2] P. E. Chung, Y. Huang, S. Yajnik, G. Fowler, K. P. Vo, and Y. M. Wang,

Checkpointing in CosMiC: a User-level Process Migration Environment,”
Proceedings of Pacific Rim International Symposium on Fault-Tolerant Systems,
1997.

[3] D. Pham et al. “The design and implementation of a first generation CELL
processor”. IEEE/ACM ISSCC, pp.184–186, 2005. July 2003.

[4] F. Douglis and J. Ousterhout, ”’Transparent Process Migration: Design
Alternatives and the Sprite Implementation,”’ Software-Practice and
Experience, 21(8):757-785, August 1991.

[5] S. Dharmasanam, ”‘Multiprocessing with real-time operating systems,”’
http://www.embedded.com/story/OEG20030512S0080

[6] Intel, ”‘MultiProcessor Specification,”’
http://www.intel.com/design/pentium/datashts/242016.htm

[7] F. Li and M. Kandemir, ”‘Locality-conscious workload assignment for
array-based computations in MPSOC architectures,”’ Proceedings of the 42nd
annual conference on Design automation, pp. 95–100, 2005.

[8] ARM Limited, ”‘MPCore Linux 2.6 SMP kernel and tools,”’
www.arm.com/products/CPUs/linux2 6 smp.html

[9] M.T. Kandemir, G. Chen, ”‘Locality-Aware Process Scheduling for Embedded
MPSoCs,”’ Proceedings of DATE, pp. 870–875, 2005.

[10] MPARM, http://www-micrel.deis.unibo.it/sitonew/research/mparm.html
[11] V. Nollet, P. Avasare, J. Mignolet, D. Verkest, ”‘Low Cost Task Migration

Initiation in a Heterogeneous MP-SoC,”’ DATE, pp. 252–253, 2005.
[12] L. Friebe, H.-J. Stolberg, M. Berekovic, S. Moch, M. B. Kulaczewski, A.

Dehnhardt, P. Pirsch, ”HiBRID-SoC: A System-on-Chip Architecture with Two
Multimedia DSPs and a RISC Core,” IEEE International SOC Conference,
September 2003, pp. 85-88.

[13] P. Schaumont, Bo. Lai, W. Qin, I. Verbauwhede, ”‘Cooperative multithreading
on 3mbedded multiprocessor architectures enables energy-scalable design,”’
DAC, pp. 27–30, 2005.

[14] R. D. Nelson, M. S. Squillante, ”‘Modeling and Analysis of Task Migration in
Shared-Memory Computer Systems,”’, MASCOTS, pp. 261–266, 1996.

[15] D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, S. Zhou, Process
Migration Survey, ACM Computing Surveys, September 2000.

[16] uClinux, ”‘Embedded Linux Microcontroller Project,”’ www.uclinux.org/
[17] P. van der Wolf, E. de Kock, T. Henriksson, W. Kruijtzer, G. Essink, ”‘Design

and programming of embedded multiprocessors: an interface-centric
approach,”’ CODES+ISSS, pp. 206–217, 2004.

[18] E. Zayas, ”‘Attacking the process migration bottleneck,”’ Proceedings of the
eleventh ACM Symposium on Operating systems principles, pp. 13–24, 1987.


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



