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Abstract 
Variable-length coding is one of the key 

compression methods for multimedia bitstreams. To 
accommodate new or user-defined variable-length codes 
(VLC) for maximal compressions in various applications, 
we propose a variable-length codec that supports field 
programmability along with very competitive 
performance indices. The design has 33% less 
transistors than its field-programmable predecessor. 
Moreover, measurement on the real chip demonstrates 
that the design is capable of processing 124.8 
mega-symbols (Msym) per second for MPEG4, while 
consuming only 15.6mW at 1.4V. When measured by 
µW/Msym, the realized variable-length codec is even 5% 
better than the state-of-the-art non-programmable 
MPEG2 variable-length decoder that hardwires the 
entire design into random logic. 

1. Introduction 
 

Variable-length coding is a data compression scheme 
originated from [1]. The main idea is to minimize the 
average codeword length by exploiting the statistics of 
the data. Shorter codewords are assigned to more 
frequent data while longer codewords are assigned to 
less frequent data. Therefore, minimum average code 
length can be achieved. Due to its high compression 
efficiency and simple operations, the variable-length 
code (VLC) has been adopted as a part of many image 
and video coding standards, such as JPEG, MPEG2, 
MPEG4, etc. Traditional designs of VLC 
encoder/decoders followed [1] by traversing the code 
tree [2][3][4], meaning that encoding/decoding time is 
proportional to the length of the codeword. Hence, the 
scheme is not quite suitable for high-performance 
applications, particularly when there are many long 
codewords. Also, direct storage of the code table results 
in very inefficient memory usage. These drawbacks soon 
attracted several research attentions. The major novelties 
lay in flattening the sequential, code-dependent search 
into parallel pattern-matching [5][6][7], and removing 

redundancies in the code space so as to reduce the 
memory requirement [8][9]. In these works, hardwired 
kernels, e.g., PLA, ROM, random logic, were often the 
choice for high speed pattern matching. 

Nevertheless, it is aware that new or user-defined 
VLC’s may be necessary to maximize compression for 
applications that may experience changes or upgrades 
during product life cycle. In this case, hardwired tables 
become awkward and expensive as they require new 
mask preparation and lead-time for each new design. 
Also, the hardwired approach lacks the ability to update 
the device on-line, which is now an important feature in 
a ubiquitous networking environment.  

The above problems call for field programmability 
that was beyond the capability of hardwired kernels. One 
might then think of content-addressable memory (CAM) 
to the rescue [10][11]. However, the area and cost 
penalty is often too large to be practical. It was not until 
[12] that parallel, arithmetic computations on grouped 
codewords and their indices were employed to eliminate 
content-based searching and to reduce memory size. The 
scheme starts by dividing VLC’s into groups according 
to code length and code prefix. With such a grouping, the 
VLC’s within the same group display a nice property: 
their equivalent numerical values are continuous. In 
other words, the first VLC in a group and the offset are 
sufficient to index all other VLC’s in the same group. 
Thus, it is no longer necessary to store all information 
pertaining to each VLC, and a smaller RAM instead of 
CAM can be used to attain field programmability.  

It can be seen that the critical operation in such a 
scheme, called group indexing, is identifying the group 
to which an input bit string belongs. In [12], this is 
accomplished via as many parallel subtractors as the 
designated parallelism. Such use of arithmetic 
computations results in serious degrades of the design 
quality. To solve the problem, we propose a new type of 
memory called the Ternary Data-Indexed Memory 
(TDIM). The TDIM is used for group indexing as 
follows. Each bit of a VLC codeword is treated as a 
Boolean bit and so each VLC codeword as a product 
term (PT). A group of VLC codewords can then be 
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represented as a Boolean function whose ON-set 
comprises of the PTs. By storing all PTs in TDIM, group 
indexing is achieved via asserting whether a given VLC 
codeword matches with (in a ternary sense) the 
designated content in TDIM. As will be elaborated in 
subsequent sections, the use of a well-designed TDIM 
substantiates the power and speed advantage of our 
variable-length codec (VLC/D). 
 
2. System architecture 
 

Fig. 1 shows the VLC/D core architecture proposed 

by [12], with the arithmetic computations replaced with 
TDIM’s. Basically, for encoding, the bit string is checked 
for escape conditions and adapted to fetch the right 
symbol address. The symbol address is used to index the 
TDIM for group indentification. The output of TDIM is 
then used to compile the final VLC. Along the way, the 
amount of shifts to align the input for the next symbol 
processing is computed (shown with multiple additions 
in the figure). The decoding process is similar to the 
encoding and hence is omitted. The readers are referred 
to [12] for detail description of each component. 

 
Fig. 1 VLC/D Architecture [12] adapted with TDIM’s (initial pipeline). 

3. The TDIM design 
 

The functionality of TDIM is realized in three parts 
(Fig. 2): a parallel ternary comparator array (PTCA) 
similar to the matching circuitry of a ternary CAM, a 
pair-wise priority encoder (PWPE), and a binary cell 
array (BCA) that stores the information for subsequent 
processing when the right group has been identified for 
an input bit string. 

  

Fig. 2 Block diagram of TDIM 

The PTCA is the critical part of TDIM as it consumes 
the most time and power. In contrast to recent works on 
CAM that focused on reducing the power of NOR-type 
matching circuits, the PTCA employ cascaded domino 
AND gates to quickly compute the bit-wise comparison 
results from the 9-transistor comparator cell. The design 
not only takes advantage of the inherent 
low-switching-activity in the AND circuitry as in [13], 
but also achieves much less comparison time via 
pseudo-footless clock-and-data precharged dynamic 
(PF-CDPD) circuitry [13]. 

To see how the PF-CDPD scheme contributes to 
search speed, use Fig. 3 as the example. The slowest case 
happens when the input data matches with the stored 
data. In this case, all NMOS transistors in the pull-down 
networks (PDNs) receive logic 1 during pre-charge and 
their drain nodes are being pulled to the ground level. 
This results in pseudo ground during evaluation, and the 
PF-CDPD behaves much like a series of inverters. 
Therefore, propagation time of the AND gates is greatly 
reduced. A 2-stage PF-CDPD circuit, with a fan-in of 



four for the first stage and five for the second stage, has 
been empirically determined to offer the best operating 
speed. 

 Fig. 3 PF-CDPD Circuits for the PTCA in TDIM 
 

In addition to high speed, the PF-CDPD match circuit 
also results in low power for the following reasons. 
Firstly, the match circuit has inherently a low switching 
activity due to AND configuration. Secondly, due to the 
CDPD scheme, the evaluation of the second stage 
depends on the result of the first stage. In other words, 
partial mismatch in any bit of a VLC codeword 
immediately turns off the matching for subsequent bits. 
Since the VLC codewords are distinguishable in 
big-endian order, such a conditional matching offers 
dramatic power saving. Lastly, the pesudo-footless 
scheme reduces the charging/discharging capacitance 

and again contributes to low power. 
Since the number of PTs is directly related to the size 

of TDIM, typical logic minimization serves as the first, 
necessary procedure. Still, further minimization is 
possible by adding proper dummy PTs into the Boolean 
function of a group. This is where the PWPE at the 
PTCA outputs come into play—solving the aliasing 
problems between adjacent groups. Taking the MPEG4 
AC tables as an example, logic minimization with the 
dummy PTs successfully reduces the number of PTs 
from 103 to 21. 
 
4. Retiming for speed and power tradeoff 
 

The architectural simplicity of using TDIM in VLC/D 
also motivated us to think of reducing cycle time via 
retiming. Referring to Fig. 1, it can be seen that cycle 
time can be reduced only by moving adders A, B, C, and 
their multiplexer outside the current TDIM cycle. 
However, the data dependency problem, shown in the 
feedback path within the TDIM cycle, precludes 
straightforward retiming. We therefore resort to 
algorithmic features and add one register for moving 
adder A, one Barrel shifter for moving adder B. Once 
adders A, B have been moved, the remaining 
components can be moved, too. Fig. 4 shows the 
resultant, complete VLC/D for MPEG4 (the VLC/D for 
MPEG2 is the same in architecture but different in 
memory configuration and escape handling). 
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Fig. 4 Retimed VLC/D of [12] with TDIM’s 



5. Results and conclusions 
 

The proposed VLC/D for MPEG4 is designed and 
fabricated in CMOS 0.18µm technology. For comparison, 
we also built a pre-layout version for MPEG2 based on 
the same TDIM architecture. The results are shown in 
Table 1.  Compared to previously reported 
field-programmable work for MPEG2 [12], our design 
offers 33% reduction in transistor count and has much 
less layout complexity due to the use of TDIM. Thus, it 
is conceivably that our design would have very favorable 
post-layout result compared to [12]. Moreover, when 
measured by power consumption (µW) per mega 
symbols, our MPEG4 VLC/D is even 5% better 
(124.80µW/Msym versus 131.21µW/Msym) than the 
state-of-the-art low-power MPEG2 VLD (decoder only) 
[9] which hardwires the entire design into random logic. 
The measurement plots are shown in Fig. 5. The chip 
micrograph is shown in Fig. 6 with a VCO embedded for 
generating the on-chip clock. 

  
(a) 

 
(b) 

Fig. 5 Measurement results, (a) logic analyzer, (b) scope 

4 SRAMs

6 TDIMs VCO

1175 m

 
Fig. 6 Die Photo 

 

 
Table 1 Comparison of Different VLC/Ds and VLDs 

Programmability None (Hardwired) Field-Programmable VLC/D 
Function Decoder Only Encoder & Decoder 

References 
[8] 

(Redesign by [9]) 
[9] [12] 

This Work 
(Pre-layout) 

This Work 
(Measured ) 

Standard MPEG2 MPEG2 MPEG4 
Technology 0.35µm 0.6µm 0.18µm 0.18µm 

Transistor Count - - 
110K 

(with mem ) 

74K 
(with mem. ) 

200.6K 
(with mem.) 

Area (mm2) - - 22.5 - 1.38 
VDD - - 5.0V - 1.4V 

Frequency - - 100MHz - 125MHz 
Throughput 
(sym/cycle) 

0.56 
(avg) 

0.63 
(avg) 

1 - 1 

Power metric 
(µW/Msym) 

204.48 131.21 N.A. - 124.80 
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