

A 124.8Msps, 15.6mW Field-Programmable Variable-Length Codec for
Multimedia Applications

Chingwei Yeh*
Nat’l Chung-Cheng

University
ieecwy@ccu.edu.tw

Chao-Ching Wang
Nat’l Chung-Cheng

University

Lin-Chi Lee
Nat’l Chung-Cheng

University

Jinn-Shyan Wang
Nat’l Chung-Cheng

University
ieegsw@ccu.edu.tw

Abstract
Variable-length coding is one of the key

compression methods for multimedia bitstreams. To
accommodate new or user-defined variable-length codes
(VLC) for maximal compressions in various applications,
we propose a variable-length codec that supports field
programmability along with very competitive
performance indices. The design has 33% less
transistors than its field-programmable predecessor.
Moreover, measurement on the real chip demonstrates
that the design is capable of processing 124.8
mega-symbols (Msym) per second for MPEG4, while
consuming only 15.6mW at 1.4V. When measured by
µW/Msym, the realized variable-length codec is even 5%
better than the state-of-the-art non-programmable
MPEG2 variable-length decoder that hardwires the
entire design into random logic.

1. Introduction

Variable-length coding is a data compression scheme
originated from [1]. The main idea is to minimize the
average codeword length by exploiting the statistics of
the data. Shorter codewords are assigned to more
frequent data while longer codewords are assigned to
less frequent data. Therefore, minimum average code
length can be achieved. Due to its high compression
efficiency and simple operations, the variable-length
code (VLC) has been adopted as a part of many image
and video coding standards, such as JPEG, MPEG2,
MPEG4, etc. Traditional designs of VLC
encoder/decoders followed [1] by traversing the code
tree [2][3][4], meaning that encoding/decoding time is
proportional to the length of the codeword. Hence, the
scheme is not quite suitable for high-performance
applications, particularly when there are many long
codewords. Also, direct storage of the code table results
in very inefficient memory usage. These drawbacks soon
attracted several research attentions. The major novelties
lay in flattening the sequential, code-dependent search
into parallel pattern-matching [5][6][7], and removing

redundancies in the code space so as to reduce the
memory requirement [8][9]. In these works, hardwired
kernels, e.g., PLA, ROM, random logic, were often the
choice for high speed pattern matching.

Nevertheless, it is aware that new or user-defined
VLC’s may be necessary to maximize compression for
applications that may experience changes or upgrades
during product life cycle. In this case, hardwired tables
become awkward and expensive as they require new
mask preparation and lead-time for each new design.
Also, the hardwired approach lacks the ability to update
the device on-line, which is now an important feature in
a ubiquitous networking environment.

The above problems call for field programmability
that was beyond the capability of hardwired kernels. One
might then think of content-addressable memory (CAM)
to the rescue [10][11]. However, the area and cost
penalty is often too large to be practical. It was not until
[12] that parallel, arithmetic computations on grouped
codewords and their indices were employed to eliminate
content-based searching and to reduce memory size. The
scheme starts by dividing VLC’s into groups according
to code length and code prefix. With such a grouping, the
VLC’s within the same group display a nice property:
their equivalent numerical values are continuous. In
other words, the first VLC in a group and the offset are
sufficient to index all other VLC’s in the same group.
Thus, it is no longer necessary to store all information
pertaining to each VLC, and a smaller RAM instead of
CAM can be used to attain field programmability.

It can be seen that the critical operation in such a
scheme, called group indexing, is identifying the group
to which an input bit string belongs. In [12], this is
accomplished via as many parallel subtractors as the
designated parallelism. Such use of arithmetic
computations results in serious degrades of the design
quality. To solve the problem, we propose a new type of
memory called the Ternary Data-Indexed Memory
(TDIM). The TDIM is used for group indexing as
follows. Each bit of a VLC codeword is treated as a
Boolean bit and so each VLC codeword as a product
term (PT). A group of VLC codewords can then be

3-9810801-0-6/DATE06 © 2006 EDAA

represented as a Boolean function whose ON-set
comprises of the PTs. By storing all PTs in TDIM, group
indexing is achieved via asserting whether a given VLC
codeword matches with (in a ternary sense) the
designated content in TDIM. As will be elaborated in
subsequent sections, the use of a well-designed TDIM
substantiates the power and speed advantage of our
variable-length codec (VLC/D).

2. System architecture

Fig. 1 shows the VLC/D core architecture proposed

by [12], with the arithmetic computations replaced with
TDIM’s. Basically, for encoding, the bit string is checked
for escape conditions and adapted to fetch the right
symbol address. The symbol address is used to index the
TDIM for group indentification. The output of TDIM is
then used to compile the final VLC. Along the way, the
amount of shifts to align the input for the next symbol
processing is computed (shown with multiple additions
in the figure). The decoding process is similar to the
encoding and hence is omitted. The readers are referred
to [12] for detail description of each component.

Fig. 1 VLC/D Architecture [12] adapted with TDIM’s (initial pipeline).

3. The TDIM design

The functionality of TDIM is realized in three parts
(Fig. 2): a parallel ternary comparator array (PTCA)
similar to the matching circuitry of a ternary CAM, a
pair-wise priority encoder (PWPE), and a binary cell
array (BCA) that stores the information for subsequent
processing when the right group has been identified for
an input bit string.

Fig. 2 Block diagram of TDIM

The PTCA is the critical part of TDIM as it consumes
the most time and power. In contrast to recent works on
CAM that focused on reducing the power of NOR-type
matching circuits, the PTCA employ cascaded domino
AND gates to quickly compute the bit-wise comparison
results from the 9-transistor comparator cell. The design
not only takes advantage of the inherent
low-switching-activity in the AND circuitry as in [13],
but also achieves much less comparison time via
pseudo-footless clock-and-data precharged dynamic
(PF-CDPD) circuitry [13].

To see how the PF-CDPD scheme contributes to
search speed, use Fig. 3 as the example. The slowest case
happens when the input data matches with the stored
data. In this case, all NMOS transistors in the pull-down
networks (PDNs) receive logic 1 during pre-charge and
their drain nodes are being pulled to the ground level.
This results in pseudo ground during evaluation, and the
PF-CDPD behaves much like a series of inverters.
Therefore, propagation time of the AND gates is greatly
reduced. A 2-stage PF-CDPD circuit, with a fan-in of

four for the first stage and five for the second stage, has
been empirically determined to offer the best operating
speed.

 Fig. 3 PF-CDPD Circuits for the PTCA in TDIM

In addition to high speed, the PF-CDPD match circuit
also results in low power for the following reasons.
Firstly, the match circuit has inherently a low switching
activity due to AND configuration. Secondly, due to the
CDPD scheme, the evaluation of the second stage
depends on the result of the first stage. In other words,
partial mismatch in any bit of a VLC codeword
immediately turns off the matching for subsequent bits.
Since the VLC codewords are distinguishable in
big-endian order, such a conditional matching offers
dramatic power saving. Lastly, the pesudo-footless
scheme reduces the charging/discharging capacitance

and again contributes to low power.
Since the number of PTs is directly related to the size

of TDIM, typical logic minimization serves as the first,
necessary procedure. Still, further minimization is
possible by adding proper dummy PTs into the Boolean
function of a group. This is where the PWPE at the
PTCA outputs come into play—solving the aliasing
problems between adjacent groups. Taking the MPEG4
AC tables as an example, logic minimization with the
dummy PTs successfully reduces the number of PTs
from 103 to 21.

4. Retiming for speed and power tradeoff

The architectural simplicity of using TDIM in VLC/D
also motivated us to think of reducing cycle time via
retiming. Referring to Fig. 1, it can be seen that cycle
time can be reduced only by moving adders A, B, C, and
their multiplexer outside the current TDIM cycle.
However, the data dependency problem, shown in the
feedback path within the TDIM cycle, precludes
straightforward retiming. We therefore resort to
algorithmic features and add one register for moving
adder A, one Barrel shifter for moving adder B. Once
adders A, B have been moved, the remaining
components can be moved, too. Fig. 4 shows the
resultant, complete VLC/D for MPEG4 (the VLC/D for
MPEG2 is the same in architecture but different in
memory configuration and escape handling).

TDIM-Based VLC Decoder

Symbol
RecoverterDecoded

Symbol

M
S

B
 32'b

reg

Comparator

[31:16]

LS
B

 32'b
reg[22:7]

[22:7]

[23:8]

2

MSB 9
16

B
arrel Shifter

23b =
{16'b bit_stream, 7'b0 }

+

LS
B

 4bits = {C
ode Length}

MSB
8bits

MSB 9

Escape_codeword

12

FIFO

Input
bitstream

en
en

MSB 8

TDIM
21x9x12

8bits=
{Sym_addr}

00
01

10
11

1011242

11 10 01 00

B
arrel S

hifter

B
arrel Shifter

B
arrel S

hifter

B
arrel Shifter

AB
+

+

32

CL
acc
reg-

+

C

1
0

+

sign

TDIM
31x9x20

Sym_addr

{1'b0, Last, Run, Level}

0
1

CL
acc
reg

+ +

0
1

Shift
out

+
+

+

FI
FO

 1
6b

 to
 3

2b

M
S

B
 3

2'
b

re
g

LS
B

 3
2'

b
re

g

en

0
1

B
ar

re
l S

hi
fte

r32
-

+

+
-

47

1
0

+

14

LSB 4bits =
 {Code Length}

MSB 16bits =
 {Codeword}

enB
ar

re
l S

hi
fte

r

{3
2'

b0
, 3

2b
1,

 3
2b

0}

Short

{Short&~esc_RUN&~esc_LEVEL}

Output
bitstream

Escape
Table

TDIM
31x9x6

TDIM
31x9x6

3bits = {short, esc_run, esc_leves}

sign_b

1
0

Symbol
Input

TDIM-Based VLC Encoder

Symbol
Converter

TDIM
31x9x6

TDIM
31x9x6

Escape
Table

CBS-LUT

SRAM
256x8

SRAM
256x8

Symbol
Address
Memory

SRAM
256x8

32 -

21011241

00
0

00
1

01
0

01
1

10
0

9

16

Symbol
Memory

SRAM
256x8

21

Extra pipeline stage

Extra pipeline stage

: Extra blocks

Fig. 4 Retimed VLC/D of [12] with TDIM’s

5. Results and conclusions

The proposed VLC/D for MPEG4 is designed and
fabricated in CMOS 0.18µm technology. For comparison,
we also built a pre-layout version for MPEG2 based on
the same TDIM architecture. The results are shown in
Table 1. Compared to previously reported
field-programmable work for MPEG2 [12], our design
offers 33% reduction in transistor count and has much
less layout complexity due to the use of TDIM. Thus, it
is conceivably that our design would have very favorable
post-layout result compared to [12]. Moreover, when
measured by power consumption (µW) per mega
symbols, our MPEG4 VLC/D is even 5% better
(124.80µW/Msym versus 131.21µW/Msym) than the
state-of-the-art low-power MPEG2 VLD (decoder only)
[9] which hardwires the entire design into random logic.
The measurement plots are shown in Fig. 5. The chip
micrograph is shown in Fig. 6 with a VCO embedded for
generating the on-chip clock.

(a)

(b)

Fig. 5 Measurement results, (a) logic analyzer, (b) scope

4 SRAMs

6 TDIMs VCO

1175 m

Fig. 6 Die Photo

Table 1 Comparison of Different VLC/Ds and VLDs

Programmability None (Hardwired) Field-Programmable VLC/D
Function Decoder Only Encoder & Decoder

References
[8]

(Redesign by [9])
[9] [12]

This Work
(Pre-layout)

This Work
(Measured)

Standard MPEG2 MPEG2 MPEG4
Technology 0.35µm 0.6µm 0.18µm 0.18µm

Transistor Count - -
110K

(with mem)

74K
(with mem.)

200.6K
(with mem.)

Area (mm2) - - 22.5 - 1.38
VDD - - 5.0V - 1.4V

Frequency - - 100MHz - 125MHz
Throughput
(sym/cycle)

0.56
(avg)

0.63
(avg)

1 - 1

Power metric
(µW/Msym)

204.48 131.21 N.A. - 124.80

References

 [1] A. Huffman, “A method for the construction of

minimum–redundancy codes,” Proc. IRE, vol. 40, pp.
1098–1101, Sept. 1952.

[2] Mukherjee, N. Ranganathan, J. W. Flieder, and T. Acharya,
“MARVLE: A VLSI chip for data compression using
tree-based codes,” IEEE Trans. VLSI Syst., vol. 1, pp.
203–213, June 1993.

[3] Y. Ooi, A. Taniguchi, and S. Demura, “A 162 Mbits/s
variable length decoding circuit using an adaptive tree
search technique,” in Proc. IEEE Custom Integrated
Circuits Conf., 1994, pp. 107–110.

[4] R. Hashemian, “Design and hardware implementation of a
memory efficient Huffman decoding,” IEEE Trans.
Consumer Electron., vol. 40, pp. 345–352, Aug. 1994.

[5] S.M. Lei and M.T. Sun, “An entropy coding system for
digital HDTV applications,” IEEE Trans. Circuits Syst.
Video Technol., vol. 1, pp. 147–155, Mar. 1991.

[6] S.F. Chang and D.G. Messerschmitt, “Designing a
high-throughput VLC decoder, Part I-Concurrent VLSI
architectures,“ IEEE Trans. Circuits Syst. for Video Tech.,
vol. 2, pp.187-196, June 1992; Also in: H.D. Lin and D.G.
Messerschmitt, “Designing a high-throughput VLC
decoder Part II—Parallel decoding methods,” IEEE Trans.
Circuits Syst. Video Tech., vol. 2, pp. 197–206, June
1992.

[7] B.W.Y. Wei and T.H. Meng, “A parallel decoder of
programmable Huffman codes,” IEEE Trans. Circuits Syst.
Video Techn., vol. 5, pp.175–178, Apr. 1995.

[8] S.H. Cho, et. al., "A low power variable length decoder
for MPEG-2 based on nonuniform fine-grain table
partitioning," IEEE Trans. VLSI Syst., 7(2), pp.249-257,
June 1999.

[9] S.W. Lee and I.C. Park, "A Low-Power Variable Length
Decoder for MPEG-2 Based on Successive Decoding of
Short Codewords," IEEE Trans. CAS-II: Analog and
Digital Signal Processing, 50(2), Feb. 2003, pp. 73-82.

[10] L.Y. Liu, J.F. Wang, and J.Y. Lee, “CAM-based VLSI
architecture for dynamic Huffman coding,” IEEE Trans.
Consumer Electron., vol. 40, no. 3, pp. 282–289, Aug.
1994.

[11] C.T. Hsieh and S. P. Kim, “A Concurrent
Memory-Efficient VLC Decoder for MPEG
Applications,” IEEE Trans. Consumer Electron., vol.42,
pp. 439–446, Aug. 1996.

[12] B.J. Shieh, et. al., "A New Approach of Group-Based
VLC Codec System with Full Table Programmability,"
IEEE Trans. CAS for Video Tech., 11(2), Feb. 2001, pp.
210-221.

[13] J.-S. Wang, et al., “An AND type match-line scheme for
energy efficient content addressable memories” IEEE Int.
Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2005,
pp. 464–465.

	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06

