
ASIP Design and Synthesis for Non Linear Filtering in Image Processing

L. Fanucci, M. Cassiano, S. Saponara
DIIEIT, University of Pisa,

via G. Caruso, I-56122, Pisa, Italy
l.fanucci @iet.unipi.it

D. Kammler, E. M. Witte, O. Schliebusch,
G. Ascheid, R. Leupers, H. Meyr

ISS, RWTH Aachen University,
Templergraben 55, D-52056, Aachen, Germany

kammler@iss.rwth-aachen.de

Abstract

This paper presents an Application Specific Instruction
Set Processor (ASIP) design for the implementation of a
class of nonlinear image processing algorithms, the
Retinex-like filters. Starting from high level descriptions,
first algorithmic optimization is accomplished. Then a
processor architecture and an instruction set are
customized with special respect to the algorithmic
computations in order to achieve the specified timing at
reasonable complexity. Taking advantage of the
programmability of processor architectures, the
flexibility of the system is increased, involving e.g.
dynamic parameter adjustment and color treatment.
ASIP implementation results in 0.13 µm CMOS
technology are presented.

1. Introduction

In the most recent panorama [1] of digital system
design, ASIPs are gaining ground to fill the gap between
the highly optimized platforms (ASICs) and the more
flexible solutions offered by DSPs. Since ASIPs are
optimized towards certain applications, they combine the
high performance and efficiency of a dedicated solution
with the flexibility of a programmable solution.

ASIPs are flexible within an application domain,
being able to accomplish a group of functionalities using
a set of common operations. Therefore, it makes them
more useful than ASICs in case of applications requiring
a certain degree of programmability. Moreover, since the
customization of the design is focused on the addressed
application domain, they are more specialized and
therefore more optimized than DSPs, being able to
provide the right features in terms of timing
performance, energy consumption and required area.
Architecture Description Languages (ADLs) [2,3,4]
offer the ASIP designer a quick and optimal design
convergence by automatically generating the software
tool-suite as well as the Register Transfer Level (RTL)
description of the processor [5]. Recently, optimization
techniques have been introduced, which make the
generated RTL-code quality comparable to handwritten
code [6]. Of course, while designing an ASIP, it is the
designer’s duty to do the trade-off of performance vs.
flexibility in the most suitable way. Depending on the
application, a more specialized or a more flexible ASIP
may be desired.

ASIPs can be used in various kinds of scenarios like
signal or video processing and in all applications
involving some elaboration kernels that are regularly
repeated, so that it is easier to spot an effective structure
for an instruction set. In particular, in the video field,
both in the en/decoding blocks and in the post-
processing filtering, some innovative algorithms are
spreading involving highly non linear operators [7,8].
This makes the hardware design harder than for the
classical linear counterparts (FIR, IIR). By changing
some algorithmic parameters, the same class of filters
can be used for different application scenarios. For this
goal, dedicated ASIC solutions are not suitable since
they provide only very limited flexibility. In addition to
that, video algorithms usually foresee a repetition of the
same slice of operations for a high number of frames
each composed of large pixel matrixes. Thus, DSP
solutions are not acceptable, because high computational
performance, low energy consumption and low silicon
area are very important specifications in handheld and
mobile scenarios. For the above reasons, the ASIP
concept applies very well to video applications.

In this paper the implementation of the Retinex class
of algorithms [7,8,9] by using an ASIP is presented as
case study. The identification of the operation kernels
and their mapping onto an instruction set are described.
Then some special processor concepts that were used to
achieve a good trade-off between performance and
flexibility are described in more detail, highlighting the
power of ASIPs. In particular, this case study will be
used as a test bench for the ASIP implementation of non
linear operators. The architecture has been developed
using the ADL LISA [2].

Section 2 describes Retinex-like non linear operators
and their implementation and verification. Section 3
presents the ASIP design referring to the features that
make it an application specific design. In Section 4 the
synthesis results and the performance of the system are
shown. We conclude with a summary and an outlook.

2. Retinex-like non linear algorithms

In the Retinex theory, first proposed in [10], an
image is expressed as the pixel-by-pixel product of the
ambient illumination y and the reflectance r of the scene
object. Based on the Retinex theory several non linear
operators have been proposed in literature for image
contrast enhancement, correction of images acquired in
bad lighting conditions, control of dynamic in
logarithmic sensors [7,8,11,12]. All these filters exploit a

3-9810801-0-6/DATE06 © 2006 EDAA

similar structure sketched in Fig. 1: a non linear edge-
preserving low-pass filter F is used to estimate the
illumination y. Then the reflectance information r is
obtained by division. These components are split to
different elaboration chains which operate non linear
point-to-point transformations, e.g. luminance correction
Γ and reflectance enhancement β. After Γ transformation
the illumination component is linearly stretched to
perfectly cover the whole input range (0÷255 in case of
8-bit input pixel). Eventually the two components are
recombined by multiplication. As an example, Fig. 2
shows a portion of an image acquired in bad lighting
conditions (2a). The application of the classical
histogram equalization brings to the result visualized in
Fig. 2b. While trying to get the image clearer, a detail
blurring comes up. The Retinex algorithm, instead,
permits to obtain the effect in Fig. 2c solving the
problems of image contrast and brightness together.

 The description of F, Γ and β blocks in Fig. 1
involves the use of non linear operators reproducing the
non linear behaviour of the human visual system. Here
below, the equations for the Γ and β operators,
depending on the shape parameters γ and b, are reported:







 +⋅γ







⋅=Γ

255
y1

255
y255)y(,

2
1

e1
1)r(rlogb +

+
=β

⋅−
 (1)

The low-pass filter F is based on a recursive
configuration whose coefficients are non linear functions
of the input pixel in(n,m) and its neighbours within
3x3-sample masks. It needs four passes through the
whole image to accomplish to its function.

1SS
)m,n(infSfS

)m,n(y
vo

vvoo

++
+⋅+⋅

= (2)

being: ())m,n(inα1)m,1n(yαfo ⋅−+−⋅= (3)
())m,n(inα1)1m,n(yαf v ⋅−+−⋅= (4)

2

10
5

2

o

1)m,1n(in
1)m,1n(inlog10

10S



















++
+−

+

=
−

−

 (5)

A similar expression is available for Sv, evaluating
the gradient through the m-direction. The α parameter
controls the cut-off frequency of the filter. Non linearity
plays its role both in Γ and β transformations and in the
expressions of filter coefficients.

Dealing with such non linear operators requires to
tailor a design flow to achieve the
area/performance/energy specifications. First, an
optimization stage should be addressed in a C/Matlab
environment, as sketched in Fig. 3. For this purpose
some effective methodologies for bit-true arithmetic
definition and linearization of non linear operators have
been developed requiring some pre-fixed optimization
schemes based on piecewise linear and piecewise
constant. In this stage two criteria are used to minimize
the degree of the approximation: the objective criterion
based on PSNR evaluation and the subjective one based
on visual perception. These optimizations carried out at
algorithmic level have been presented in [9] and are
therefore omitted in this paper. Then the implementation
can be addressed using the favourite approach among the
different implementation methodologies. In Fig. 3 the
ASIP and ASIC approaches are depicted, referring to
their respective class of description languages: ADL and
HDL. In case of ASIP design the HDL netlist is
automatically generated from the LISA description.
Hereafter, we present the implementation steps, choosing
the ASIP path indicated in Fig. 3.

3. ASIP implementation for the algorithm

domain based on Retinex
The Retinex algorithm presented in Section 2 is a

flexible framework that can be applied to a large number
of operations in the multimedia scenario [7,8,11,12]. The
filter F in Fig. 1 can be programmed by tuning its

Figure 3. Optimization flow
Figure 2. a) Original image, b) Histogram

equalization, c) Retinex algorithm

Figure 1. Block diagram of Retinex-based operators

bandwidth or varying the number of passes through the
image the filter will execute. The shape of the Γ and β
transformations in equation (1) can be adjusted to
achieve different image processing effects. Furthermore,
the application can be switched between a linear and a
logarithmic domain in which the multiplication/division
operators are replaced with addition/subtraction
operators [12]. The treatment of colored image by using
the Retinex algorithm is still an open issue, but some
intuitive solutions have been proposed according to the
colour space. For instance, a possible procedure for RGB
images is the parallel elaboration of the three
components. For the YCrCb or YUV spaces, the Y
component is processed while letting the others pass
unchanged. Also the colour space conversion should be
pursued as a capability of the system to be designed in
order to cope with different input video sources.

These flexibility requirements make a programmable
solution indispensable. But the demand for low
elaboration time, low silicon area and high energy
efficiency, as required in many applications like mobile
devices or single-chip embedded systems in multimedia
scenarios, forces to keep the advantages of a dedicated
design. For these reasons, ASIPs offer an excellent trade-
off, since the most repeated application kernels can be
grouped in optimized hardware units, while keeping the
activation of those hardware accelerators at a software
level by the definition of a suitable instruction set for the
ASIP programming.

3.1. A memory-dominated design
Like most multimedia applications, the design of

video filtering architectures is dominated by the memory
size and data transfer rate [13]. For example, an 8-bit per
pixel VGA frame (640x480) needs 300 Kbytes. In case
of video processing, it is often necessary to store more
than one image since the previous frames are needed in
elaboration (e.g. temporal filtering). Moreover, 8 bits are
not sufficient to correctly represent the intermediate
processing results: Extra bits are needed also for the
fractional part [9]. Eventually, it can be the case that the
image processing is split over several pipeline stages in
order to increase the information throughput (see Section
3.2). To determine the required memory size to store the
intermediate images, the memory size has to be
multiplied with the number of used pipeline stages.
Referring to VGA format, a worst case evaluation leads
to a memory requirement of 10 Mbytes [14],
unacceptable for systems designed for a single die. To
reduce the memory amount, one way was pursued in the
C/Matlab optimization step [9], by playing on the
number of precision bits the trade-off between
algorithmic performance and required memory. But
lowering the number of fractional bits below the found
optimum value can lead to a great worsening of the
algorithmic performance. An effective way is to remove
the pipelining at a frame level. This solution is based on
a re-utilization of the same memory to store the
intermediate data concerning the partially elaborated
frames. The main drawback is, of course, the worsening

of the throughput of the information, which is a critical
specification item. Actually, real-time applications
require a high throughput. Because of the trade-off
between memory resources and data throughput, we
decided to use two frame memories. This solution allows
to keep a slight parallelism in the elaboration, since it is
possible, for instance, performing the Γ and β
transformations at the same time, without increasing the
memory requirements too much compared to the
simplest solution involving a single frame memory. In
the case study, we used 8 integer bits and 6 fractional
bits for data representation. Therefore, the total required
memory for VGA format processing is 1.03 Mbytes.
Moreover, there is a highly effective methodology to
improve timing performance keeping the benefits of this
memory organization. This is achieved by re-introducing
a pipelining of the elaboration moving it from the frame
level to the pixel level, which is more efficient in terms
of memory usage. That allows for parallel elaboration of
several pixels making the architecture timing efficient as
well. Entering in more details about memory architecture
implementation, Synchronous SRAM memories have
been used for data storage. The two RAMs have been
named X RAM and Y RAM. They are read scanning the
whole image in order to produce the illumination
component (y) according to the F filter functionality.
This process requires four passes of the whole image and
the intermediate results are stored in the Y RAM, while
the X RAM contains the input image. After that both
RAMs are further scanned and the reflectance
component (r) evaluation is performed by division. Also
the Γ and β transformations are performed. Then the Γ
output is stored in the Y RAM, while the β output is
stored in X RAM. In the end, a further scan of the two
RAMs is required for the component recombination
leading to the output image, which is finally stored in the
X RAM. In all frame processing stages, a pipelining of
subsequent pixels is used to speed up the architecture.
Both, the particular memory organization and the data
pipelining are important hardware customizations
applying to the case study application. These sorts of
customizations of memory and pipeline architecture are
major advantages of ASIPs. Other resources utilized in
the processor arithmetic can be customized according to
the application needs, too. In the case study, 16 general
purpose 32-bit registers have been instantiated. Some
additional dedicated registers have been used for the
storage of processing parameters which can be easily
used during the elaboration. A fixed point arithmetic has
been used for data representation and instructions have
been coded using 32-bit instruction words.

3.2 Task concurrency: a pipelined architecture
As mentioned in the previous subsection, the pixel

elaboration has been split over a pipelined architecture.
This choice has the benefit of increasing the architecture
parallelism and to shorten the critical path. This property
of pipelined systems leads to an increased data
throughput, which is highly desirable in our case.
However, this strategy can have some drawbacks due to

increased latencies, silicon area overhead, e.g. by
pipeline control and registers, and dependencies in the
pipeline. Data dependencies can exist between
neighbored instructions, that is, a result produced by an
instruction may be used as an operand by the following
instructions. Mechanisms to cope with data dependency
problems are discussed in the next section.

Using ADLs, the design space is fully explorable
with no restriction given by pre-designed parts or
templates. Nevertheless, templates can be used as a first
starting point, but the designer is not limited by that.
Customizations of pipeline structure and memory
architecture are presented in the following.

In the case study, seven pipeline stages have been
introduced. After design space exploration this pipeline
organization resulted as the best trade-off between
throughput increase and complexity considering that the
higher is the number of pipeline stages, the higher is the
throughput but also the higher is the complexity and the
risk of inter-dependencies and hence of pipeline stalls.
Particularly, to understand why such a pipeline structure
has been used we have to refer to a repeated optimization
technique used all over the design: the piecewise
approximation of non linear operators. Since this is a
widely utilized functional kernel in the optimized
application, some particular attention was paid to its
implementation. As example, let us consider the
piecewise linear technique used to approximate the Γ
transformation in Fig. 4.

Since the throughput is a pressing specification, it is
desirable having an instruction able to load an operand
from the data memory, to perform the Γ transformation
in the piecewise linear form and to store the result back
to the data memory. The designed pipeline allows for the
processing of such an instruction, using the following
stages (Fig. 5):
- FE: the fetch stage in which the instruction is fetched

from the program memory.
- DC: the decode stage in which the instruction is

decoded, producing the control signals for the
operating part.

- LD: the load stage in which the operand is loaded from
the data memory.

- CMP: the comparison stage where the loaded operand
is compared to the edges on the abscissa axis in order
to identify the correct approximation interval.

- ROM: the ROM stage in which the result of the
previous comparison is used to address a ROM from
which to fetch the parameters (offset Q and slope K) of
the correct piecewise segment.

- ARITH: the arithmetical stage in which the fetched
parameters are used to calculate the output according
to piecewise segment expression K x IN + Q.

- WB: the write-back stage in which the output is stored
back to the data memory.

The names assigned to each stage are mnemonical names
applying to the presented particular case. Depending on
the instruction, different operations can be executed in
the stages, meaning e.g. the ROM stage is not used for
ROM accesses exclusively.

The piecewise linear approach allows also for the
implementation of the division operation with a through-
put of one division per cycle, which is a great advantage
for the system performance. Obviously, the performed
division is a customized operation leading to acceptable
results only operating on inputs in the working range.
Otherwise the approximation introduced by our
procedure would compromise the result. Nevertheless
the LUT technique used for our customized division
shows satisfactory results. In the division instruction, the
LD stage is used to load the denominator from the data
memory, the CMP stage is used to load the numerator
and the WB stage to write the computed ratio back to the
data memory (see memory accesses in Fig. 5).

3.3 Data dependencies: the bypass mechanisms
Data dependencies are a problem related to the

pipeline architecture. A 7-stage pipeline obviously leads
to the following disadvantage of data hazards: in the LD
stage an instruction (“consumer”) may read from a
shared storage (a general purpose register or a memory
location), which is expected to be written by a previous
instruction (“producer”). If the producer instruction has
not yet reached the WB stage in which the final result is
stored in the shared storage, the consumer instruction
will load an outdated value. That will cause a completely
wrong result. There are two standard solutions for this
issue: pipeline interlocking and bypassing. Using
interlocking, the instructions trying to access data, that
has not yet been written back, causes the pipeline to be
stalled partially. This causes unacceptable throughput
degradation, especially in performance critical loops.

Figure 4. Γ transformation (straight line) and its

piecewise linear approximation (dashed line)

Figure 5. Pipeline structure and memory accesses

FE DC LD CMP ROM ARITH WB

X RAM Y RAM PROGR ROM

This drawback can be solved by instruction rescheduling
– either by the processor or by the compiler. This
approach is usually strongly limited by the data and
control flow. A more efficient way of resolving the data
dependencies is to implement bypasses. Bypasses
forward data immediately from a pipeline stage back to a
previous stage. In the case study the majority of the
instructions can provide the final result not before the
ARITH stage. Therefore, two kinds of bypasses were
implemented depending on the starting point of the
bypass path: bypasses from the ARITH stage or bypasses
from the WB stage. In both cases, more than one path
was implemented depending on the end point of the
bypass. They include: bypasses to the LD stage, the
CMP stage, the ROM stage and the ARITH stage (Fig.
6). Most of the implemented bypasses are extensively
used e.g. in the non linear filter F (Fig. 1), which
implements one of the key elaboration steps of our case
application.

3.4. Customized Instruction Set
One of the most important advantages of ASIPs is the

fact that the instruction set can be customized according
to the requirements of the application. This enables a
trade-off between computational performance, silicon
area and energy consumption. In order to increase the
architecture efficiency it can be beneficial to implement
complex pipelined instructions. This shortens the length
of the final assembly program that is in our case study
strictly related to the number of clock cycles needed for
the complete elaboration.

Since the specific scenario is image/video processing,
it is important to notice that there will be a portion of the
assembly program (referred to as main loop) that has to
be repeated a large number of times according to the
image size (one iteration per pixel), typically in the order
of hundreds of thousands of times. That means that a
particular attention has to be paid to the number of
program lines setting up the main loop, in order to avoid
any waste of cycles and to maximize the throughput. In
particular we show this for our case study in the
following after giving a list of the most important
instruction set customizations:

- Single instruction non linear transformations
- Automatic address calculation
- Zero overhead loops
For example, considering the address generation for

the data memory, from the algorithmic specifications it
can be noticed that some pre-fixed patterns are
established iterating over the image. Thus an Address

Generation Unit (AGU) calculating the next address for
the data memory by incrementing the pixel pointer can
be implemented in hardware. This is reflected in the
syntax of several instructions by a short extension. Thus
the address update is performed in parallel without the
need of wasting cycles just to do the data address update.

Another observation is, that in conventional loop
implementations comparisons and conditional branches
create a significant instruction overhead and, even
worse, cause pipeline control hazards. They lead to
pipeline stalls and flushes. These problems can be
avoided by implementing a loop mechanism in
hardware. This is possible for loops being executed a
pre-calculated number of times (equal to the image size).
In this case it is enough to have a loop-parameter
initialization before entering the loop and to manage the
loop jumps by the hardware. This technique is known as
zero-overhead loop implementation. With these
implementation strategies, the programming is made
easier and pipeline stalls and flushes resulting from
control hazards can be eliminated.

The designed Instruction Set includes 42 instructions.
They can be categorized in the following groups: non
linear transformations (9), arithmetical computations
(11), space colour conversions (6), memory accesses (9),
processor initialization (6) and loop control (1).

4. Synthesis and performance

After the ASIP design has been fully carried out and
its behaviour has been verified, a synthesis has been
performed by means of Synopsys Design Compiler using
a standard-cell CMOS 0.13 µm technology library with
1.2 V supply voltage. The requirements concerning the
minimum clock frequency of the system are listed in
Table 1 for the real time elaboration of YUV video
sequences with a frame frequency of 24 Hz. The
synthesis results show a 6.5 ns critical path located in the
ARITH stage. That means that the maximum ASIP clock
frequency is 154 MHz and this matches with real-time
processing of CIF video formats up to 28 Hz. This is a
satisfactory result considering that we moved to a
programmable implementation approach (opposed to an
ASIC) and that we were able to make the processor
flexible but also efficient enough to allow for the outer
control of elaboration parameters, output dynamic and
for processing of coloured images represented in RGB,
HLS, YCrCb or YUV spaces. The matching degree to
the original algorithm is demonstrated by a PSNR of
30.7 dB. A speedup of a factor 1.8 can be achieved by
performing only two passes of the filter F in Fig. 1
instead of four. This way real-time processing of 50 Hz
CIF and 18 Hz VGA videos is allowed while the visual
quality reduction is limited (e.g. 0.1 dB PSNR reduction
for the image in Fig. 2). As far as the circuit complexity
of the ASIP processing core is concerned, the synthesis
results led to a complexity of 109 Kgates. A power
simulation has been performed on gate level resulting in
an average power consumption of 0.32 mW/MHz which
corresponds to roughly 17 nJ/pixel. This number varies
slightly with image size and aspect ratio. The ASIP

Figure 6. Implemented bypasses

FE DC LD CMP ROM ARITH WB

performs well comparing the synthesis results with state-
of-art implementations of similar non linear video
filtering algorithms on DSP [15] or dedicated VLSI cells
[16]. DSP-based implementations have been proposed in
the literature for the real time elaboration of up to CIF
videos but their power cost is in the order of watts, more
than one order of magnitude higher than the ASIP power
consumption. With respect to dedicated VLSI
macrocells the ASIP stands for its higher flexibility
while synthesis results are comparable.

The design has been also mapped on a DN6000K10s
prototyping board equipped with a Xilinx Virtex-II Pro
FPGA. Since the speed of the FPGA emulation is much
higher than the speed of any RTL simulation we were
able to process more test data (pictures) in a short time
than we would have been using RTL simulations. This
enabled us to carry out a complete life demonstration of
the effects introduced by the algorithm on still images.

5. Conclusion

A complete ASIP design has been presented in this
paper. The design process has been split over two steps:
an algorithmic optimization step referred in Section 2
and a processor design detailed in Section 3. The main
considerations that led to the designed architecture have
been listed, leading from the memory organization to the
architecture pipelining and, eventually, to the further
customization of the architecture by the addition of some
hardware features like bypasses, AGU and special
structures for hardware looping. During the whole design
the basic idea of the Instruction Set has been kept in
mind as a guide for the hardware design. The synthesis
performed on CMOS 0.13 µm technology showed that
the ASIP performances are better than the results that
could be obtained by a DSP implementation. Moreover,
the processor architecture allows for a certain degree of
flexibility compared to ASICs, involving the setting up
of several parameters and the colour treatment.

Acknowledgements

This work has been partially funded by the European
Commission through the Network of Excellence in
Wireless COMmunications (Newcom).

References

[1] H. Peters, R. Sethuraman, A. Beric, P. Meuwissen, S.

Balakrishnan, C. Pinto, W. Kruijtzer, F. Ernst, G. Alkadi,
J. van Meerbergen, G. de Haan, “Application specific
instruction-set processor template for motion estimation
in video applications”, IEEE Tran. on Circuits and
System for Video Tech., vol. 15, April 2005, pp. 508-527

[2] A. Hoffmann, H. Meyr, R. Leupers, Architecture
Exploration for Embedded Processors with LISA. Kluwer
Academic Publishers, 2002

[3] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, A.
Nicolau, “EXPRESSION: A Language for Architecture
Exploration through Compiler/Simulator Retargetability”.
Proc DATE’99, Mar. 1999

[4] A. Fauth et al., “Describing Instruction Set Processors
Using nML”. Proc. of the European Design and Test
Conference (ED&TC), 1995

[5] O. Schliebusch, A. Chattopadhyay, D. Kammler, G.
Ascheid, R. Leupers, H. Meyr, T. Kogel, "A Framework
for Automated and Optimized ASIP Implementation
Supporting Multiple Hardware Description Languages".
Proc. ASP-DAC, Shanghai, China, Jan 2005

[6] O. Schliebusch, A. Chattopadhyay, E. Witte, D. Kammler,
G. Ascheid, R. Leupers, H. Meyr, "Optimization
Techniques for ADL-driven RTL Processor Synthesis",
Proc. IEEE Workshop on Rapid System Prototyping
(RSP), Montreal, Canada, June 2005

[7] G. Orsini, G. Ramponi, P. Carrai, R. Di Federico, “A
modified retinex for image contrast enhancement and
dynamic control”, Proc.IEEE ICIP03, Sept.03, pp.393-396

[8] S. Marsi, G. Ramponi, S. Carrato, “Image contrast
enhancement using a recursive rational filter”, Proc. IEEE
IST04, Stresa, Italy, May 2004, pp. 29-34

[9] S. Saponara, M. Cassiano, L. Fanucci, “Cost-effective
VLSI Design of Non Linear Image Processing Filters”,
Proc. DSD Euromicro 2005, Porto, Sept. 2005

[10] E. Land, J. McCann, “Lightness and retinex theory”
Journ. of the Opt. Soc. of America, vol. 61, pp. 1-11, 1971

[11] M. Ogata, T. Tsuchiya, T. Kubozono, K. Ueda,“Dynamic
range compression based on illumination compensation”,
IEEE Trans. Cons. Electr., vol. 47, n.3, pp. 548-558, 2001

[12] S. Marsi, S. Carrato, G. Ramponi, B. Crespi, “Video
dynamic range compression for logarithmic CMOS
imagers”, Proc. COST 276 Workshop, Thessaloniki,
Greece, May 2004

[13] F. Chatthoor, S. Wuytack, E. De Greef, F. Balasa,
L. Nachtergaele, A. Vandecapelle, Custom Memory
Management Methodology: Exploration of Memory
Organisation for Embedded Multimedia Design, Kluwer
Academic, Boston, Mass, USA, 1998

[14] M. Cassiano, “Design of VLSI architectures for image
quality improvements”, Master Thesis, University of Pisa,
Italy, Dec. 2004

[15] L. Tenze, S. Carrato, C. Alessandretti, S. Olivieri, “Design
and real-time implementation of a low cost noise
reduction video system”, Proc. COST 254 Workshop,
Neuchatel, CH, pp. 36-40, May 1999

[16] S. Saponara, L. Fanucci, P. Terreni, “Design of a low-
power VLSI macrocells for nonlinear adaptive video noise
reduction”, Journal on Applied Signal Processing, n. 12,
Sept. 2004, pp.1921-1930

Format fclock - MHz RAM - KB

QCIF (176×144) 32 86
CIF (352×288) 129 347

VGA (640×480) 391 1050

Table 1. Clock frequency and RAM to process
different video formats (at 24 frames/s) in real time

	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06

