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Abstract 
 
This paper presents an Application Specific Instruction 
Set Processor (ASIP) design for the implementation of a 
class of nonlinear image processing algorithms, the 
Retinex-like filters. Starting from high level descriptions, 
first algorithmic optimization is accomplished. Then a 
processor architecture and an instruction set are 
customized with special respect to the algorithmic 
computations in order to achieve the specified timing at 
reasonable complexity. Taking advantage of the 
programmability of processor architectures, the 
flexibility of the system is increased, involving e.g. 
dynamic parameter adjustment and color treatment. 
ASIP implementation results in 0.13 µm CMOS 
technology are presented.  
 
 
1. Introduction 

In the most recent panorama [1] of digital system 
design, ASIPs are gaining ground to fill the gap between 
the highly optimized platforms (ASICs) and the more 
flexible solutions offered by DSPs. Since ASIPs are 
optimized towards certain applications, they combine the 
high performance and efficiency of a dedicated solution 
with the flexibility of a programmable solution. 

ASIPs are flexible within an application domain, 
being able to accomplish a group of functionalities using 
a set of common operations. Therefore, it makes them 
more useful than ASICs in case of applications requiring 
a certain degree of programmability. Moreover, since the 
customization of the design is focused on the addressed 
application domain, they are more specialized and 
therefore more optimized than DSPs, being able to 
provide the right features in terms of timing 
performance, energy consumption and required area. 
Architecture Description Languages (ADLs) [2,3,4] 
offer the ASIP designer a quick and optimal design 
convergence by automatically generating the software 
tool-suite as well as the Register Transfer Level (RTL) 
description of the processor [5]. Recently, optimization 
techniques have been introduced, which make the 
generated RTL-code quality comparable to handwritten 
code [6]. Of course, while designing an ASIP, it is the 
designer’s duty to do the trade-off of performance vs. 
flexibility in the most suitable way. Depending on the 
application, a more specialized or a more flexible ASIP 
may be desired. 

ASIPs can be used in various kinds of scenarios like 
signal or video processing and in all applications 
involving some elaboration kernels that are regularly 
repeated, so that it is easier to spot an effective structure 
for an instruction set. In particular, in the video field, 
both in the en/decoding blocks and in the post-
processing filtering, some innovative algorithms are 
spreading involving highly non linear operators [7,8]. 
This makes the hardware design harder than for the 
classical linear counterparts (FIR, IIR). By changing 
some algorithmic parameters, the same class of filters 
can be used for different application scenarios. For this 
goal, dedicated ASIC solutions are not suitable since 
they provide only very limited flexibility. In addition to 
that, video algorithms usually foresee a repetition of the 
same slice of operations for a high number of frames 
each composed of large pixel matrixes. Thus, DSP 
solutions are not acceptable, because high computational 
performance, low energy consumption and low silicon 
area are very important specifications in handheld and 
mobile scenarios. For the above reasons, the ASIP 
concept applies very well to video applications. 

In this paper the implementation of the Retinex class 
of algorithms [7,8,9] by using an ASIP is presented as 
case study. The identification of the operation kernels 
and their mapping onto an instruction set are described. 
Then some special processor concepts that were used to 
achieve a good trade-off between performance and 
flexibility are described in more detail, highlighting the 
power of ASIPs. In particular, this case study will be 
used as a test bench for the ASIP implementation of non 
linear operators. The architecture has been developed 
using the ADL LISA [2]. 

Section 2 describes Retinex-like non linear operators 
and their implementation and verification. Section 3 
presents the ASIP design referring to the features that 
make it an application specific design. In Section 4 the 
synthesis results and the performance of the system are 
shown. We conclude with a summary and an outlook. 

 
2. Retinex-like non linear algorithms 

In the Retinex theory, first proposed in [10], an 
image is expressed as the pixel-by-pixel product of the 
ambient illumination y and the reflectance r of the scene 
object. Based on the Retinex theory several non linear 
operators have been proposed in literature for image 
contrast enhancement, correction of images acquired in 
bad lighting conditions, control of dynamic in 
logarithmic sensors [7,8,11,12]. All these filters exploit a 
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similar structure sketched in Fig. 1: a non linear edge-
preserving low-pass filter F is used to estimate the 
illumination y. Then the reflectance information r is 
obtained by division. These components are split to 
different elaboration chains which operate non linear 
point-to-point transformations, e.g. luminance correction 
Γ and reflectance enhancement β. After Γ transformation 
the illumination component is linearly stretched to 
perfectly cover the whole input range (0÷255 in case of 
8-bit input pixel). Eventually the two components are 
recombined by multiplication. As an example, Fig. 2 
shows a portion of an image acquired in bad lighting 
conditions (2a). The application of the classical 
histogram equalization brings to the result visualized in 
Fig. 2b. While trying to get the image clearer, a detail 
blurring comes up. The Retinex algorithm, instead, 
permits to obtain the effect in Fig. 2c solving the 
problems of image contrast and brightness together. 

 The description of F, Γ and β blocks in Fig. 1 
involves the use of non linear operators reproducing the 
non linear behaviour of the human visual system. Here 
below, the equations for the Γ and β operators, 
depending on the shape parameters γ and b, are reported: 
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The low-pass filter F is based on a recursive 
configuration whose coefficients are non linear functions 
of the input pixel in(n,m) and its neighbours within 
3x3-sample masks. It needs four passes through the 
whole image to accomplish to its function. 
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A similar expression is available for Sv, evaluating 
the gradient through the m-direction. The α parameter 
controls the cut-off frequency of the filter. Non linearity 
plays its role both in Γ and β transformations and in the 
expressions of filter coefficients. 

Dealing with such non linear operators requires to 
tailor a design flow to achieve the 
area/performance/energy specifications. First, an 
optimization stage should be addressed in a C/Matlab 
environment, as sketched in Fig. 3. For this purpose 
some effective methodologies for bit-true arithmetic 
definition and linearization of non linear operators have 
been developed requiring some pre-fixed optimization 
schemes based on piecewise linear and piecewise 
constant. In this stage two criteria are used to minimize 
the degree of the approximation: the objective criterion 
based on PSNR evaluation and the subjective one based 
on visual perception. These optimizations carried out at 
algorithmic level have been presented in [9] and are 
therefore omitted in this paper. Then the implementation 
can be addressed using the favourite approach among the 
different implementation methodologies. In Fig. 3 the 
ASIP and ASIC approaches are depicted, referring to 
their respective class of description languages: ADL and 
HDL. In case of ASIP design the HDL netlist is 
automatically generated from the LISA description. 
Hereafter, we present the implementation steps, choosing 
the ASIP path indicated in Fig. 3. 

 
3.  ASIP implementation for the algorithm 

domain based on Retinex 
The Retinex algorithm presented in Section 2 is a 

flexible framework that can be applied to a large number 
of operations in the multimedia scenario [7,8,11,12]. The 
filter F in Fig. 1 can be programmed by tuning its 

Figure 3. Optimization flow 
Figure 2. a) Original image, b) Histogram 

equalization, c) Retinex algorithm 

 
Figure 1. Block diagram of Retinex-based operators 



bandwidth or varying the number of passes through the 
image the filter will execute. The shape of the Γ and β 
transformations in equation (1) can be adjusted to 
achieve different image processing effects. Furthermore, 
the application can be switched between a linear and a 
logarithmic domain in which the multiplication/division 
operators are replaced with addition/subtraction 
operators [12]. The treatment of colored image by using 
the Retinex algorithm is still an open issue, but some 
intuitive solutions have been proposed according to the 
colour space. For instance, a possible procedure for RGB 
images is the parallel elaboration of the three 
components. For the YCrCb or YUV spaces, the Y 
component is processed while letting the others pass 
unchanged. Also the colour space conversion should be 
pursued as a capability of the system to be designed in 
order to cope with different input video sources. 

These flexibility requirements make a programmable 
solution indispensable. But the demand for low 
elaboration time, low silicon area and high energy 
efficiency, as required in many applications like mobile 
devices or single-chip embedded systems in multimedia 
scenarios, forces to keep the advantages of a dedicated 
design. For these reasons, ASIPs offer an excellent trade-
off, since the most repeated application kernels can be 
grouped in optimized hardware units, while keeping the 
activation of those hardware accelerators at a software 
level by the definition of a suitable instruction set for the 
ASIP programming.  

 
3.1. A memory-dominated design 
Like most multimedia applications, the design of 

video filtering architectures is dominated by the memory 
size and data transfer rate [13]. For example, an 8-bit per 
pixel VGA frame (640x480) needs 300 Kbytes. In case 
of video processing, it is often necessary to store more 
than one image since the previous frames are needed in 
elaboration (e.g. temporal filtering). Moreover, 8 bits are 
not sufficient to correctly represent the intermediate 
processing results: Extra bits are needed also for the 
fractional part [9]. Eventually, it can be the case that the 
image processing is split over several pipeline stages in 
order to increase the information throughput (see Section 
3.2). To determine the required memory size to store the 
intermediate images, the memory size has to be 
multiplied with the number of used pipeline stages. 
Referring to VGA format, a worst case evaluation leads 
to a memory requirement of 10 Mbytes [14], 
unacceptable for systems designed for a single die. To 
reduce the memory amount, one way was pursued in the 
C/Matlab optimization step [9], by playing on the 
number of precision bits the trade-off between 
algorithmic performance and required memory. But 
lowering the number of fractional bits below the found 
optimum value can lead to a great worsening of the 
algorithmic performance. An effective way is to remove 
the pipelining at a frame level. This solution is based on 
a re-utilization of the same memory to store the 
intermediate data concerning the partially elaborated 
frames. The main drawback is, of course, the worsening 

of the throughput of the information, which is a critical 
specification item. Actually, real-time applications 
require a high throughput. Because of the trade-off 
between memory resources and data throughput, we 
decided to use two frame memories. This solution allows 
to keep a slight parallelism in the elaboration, since it is 
possible, for instance, performing the Γ and β 
transformations at the same time, without increasing the 
memory requirements too much compared to the 
simplest solution involving a single frame memory. In 
the case study, we used 8 integer bits and 6 fractional 
bits for data representation. Therefore, the total required 
memory for VGA format processing is 1.03 Mbytes. 
Moreover, there is a highly effective methodology to 
improve timing performance keeping the benefits of this 
memory organization. This is achieved by re-introducing 
a pipelining of the elaboration moving it from the frame 
level to the pixel level, which is more efficient in terms 
of memory usage. That allows for parallel elaboration of 
several pixels making the architecture timing efficient as 
well. Entering in more details about memory architecture 
implementation, Synchronous SRAM memories have 
been used for data storage. The two RAMs have been 
named X RAM and Y RAM. They are read scanning the 
whole image in order to produce the illumination 
component (y) according to the F filter functionality. 
This process requires four passes of the whole image and 
the intermediate results are stored in the Y RAM, while 
the X RAM contains the input image. After that both 
RAMs are further scanned and the reflectance 
component (r) evaluation is performed by division. Also 
the Γ and β transformations are performed. Then the Γ 
output is stored in the Y RAM, while the β output is 
stored in X RAM. In the end, a further scan of the two 
RAMs is required for the component recombination 
leading to the output image, which is finally stored in the 
X RAM. In all frame processing stages, a pipelining of 
subsequent pixels is used to speed up the architecture. 
Both, the particular memory organization and the data 
pipelining are important hardware customizations 
applying to the case study application. These sorts of 
customizations of memory and pipeline architecture are 
major advantages of ASIPs. Other resources utilized in 
the processor arithmetic can be customized according to 
the application needs, too. In the case study, 16 general 
purpose 32-bit registers have been instantiated. Some 
additional dedicated registers have been used for the 
storage of processing parameters which can be easily 
used during the elaboration. A fixed point arithmetic has 
been used for data representation and instructions have 
been coded using 32-bit instruction words. 

 
3.2 Task concurrency: a pipelined architecture 
As mentioned in the previous subsection, the pixel 

elaboration has been split over a pipelined architecture. 
This choice has the benefit of increasing the architecture 
parallelism and to shorten the critical path. This property 
of pipelined systems leads to an increased data 
throughput, which is highly desirable in our case. 
However, this strategy can have some drawbacks due to 



increased latencies, silicon area overhead, e.g. by 
pipeline control and registers, and dependencies in the 
pipeline. Data dependencies can exist between 
neighbored instructions, that is, a result produced by an 
instruction may be used as an operand by the following 
instructions. Mechanisms to cope with data dependency 
problems are discussed in the next section. 

Using ADLs, the design space is fully explorable 
with no restriction given by pre-designed parts or 
templates. Nevertheless, templates can be used as a first 
starting point, but the designer is not limited by that. 
Customizations of pipeline structure and memory 
architecture are presented in the following. 

In the case study, seven pipeline stages have been 
introduced. After design space exploration this pipeline 
organization resulted as the best trade-off between 
throughput increase and complexity considering that the 
higher is the number of pipeline stages, the higher is the 
throughput but also the higher is the complexity and the 
risk of inter-dependencies and hence of pipeline stalls. 
Particularly, to understand why such a pipeline structure 
has been used we have to refer to a repeated optimization 
technique used all over the design: the piecewise 
approximation of non linear operators. Since this is a 
widely utilized functional kernel in the optimized 
application, some particular attention was paid to its 
implementation. As example, let us consider the 
piecewise linear technique used to approximate the Γ 
transformation in Fig. 4. 

Since the throughput is a pressing specification, it is 
desirable having an instruction able to load an operand 
from the data memory, to perform the Γ transformation 
in the piecewise linear form and to store the result back 
to the data memory. The designed pipeline allows for the 
processing of such an instruction, using the following 
stages (Fig. 5): 
- FE: the fetch stage in which the instruction is fetched 

from the program memory. 
- DC: the decode stage in which the instruction is 

decoded, producing the control signals for the 
operating part. 

- LD: the load stage in which the operand is loaded from 
the data memory. 

- CMP: the comparison stage where the loaded operand 
is compared to the edges on the abscissa axis in order 
to identify the correct approximation interval. 

- ROM: the ROM stage in which the result of the 
previous comparison is used to address a ROM from 
which to fetch the parameters (offset Q and slope K) of 
the correct piecewise segment. 

- ARITH: the arithmetical stage in which the fetched 
parameters are used to calculate the output according 
to piecewise segment expression K x IN + Q. 

- WB: the write-back stage in which the output is stored 
back to the data memory. 

The names assigned to each stage are mnemonical names 
applying to the presented particular case. Depending on 
the instruction, different operations can be executed in 
the stages, meaning e.g. the ROM stage is not used for 
ROM accesses exclusively. 

The piecewise linear approach allows also for the 
implementation of the division operation with a through-
put of one division per cycle, which is a great advantage 
for the system performance. Obviously, the performed 
division is a customized operation leading to acceptable 
results only operating on inputs in the working range. 
Otherwise the approximation introduced by our 
procedure would compromise the result. Nevertheless 
the LUT technique used for our customized division 
shows satisfactory results. In the division instruction, the 
LD stage is used to load the denominator from the data 
memory, the CMP stage is used to load the numerator 
and the WB stage to write the computed ratio back to the 
data memory (see memory accesses in Fig. 5). 

3.3 Data dependencies: the bypass mechanisms 
Data dependencies are a problem related to the 

pipeline architecture. A 7-stage pipeline obviously leads 
to the following disadvantage of data hazards: in the LD 
stage an instruction (“consumer”) may read from a 
shared storage (a general purpose register or a memory 
location), which is expected to be written by a previous 
instruction (“producer”). If the producer instruction has 
not yet reached the WB stage in which the final result is 
stored in the shared storage, the consumer instruction 
will load an outdated value. That will cause a completely 
wrong result. There are two standard solutions for this 
issue: pipeline interlocking and bypassing. Using 
interlocking, the instructions trying to access data, that 
has not yet been written back, causes the pipeline to be 
stalled partially. This causes unacceptable throughput 
degradation, especially in performance critical loops. 

 
Figure 4. Γ transformation (straight line) and its 

piecewise linear approximation (dashed line) 
 
 
 
 
 
 
 
 
 
 

Figure 5. Pipeline structure and memory accesses 
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This drawback can be solved by instruction rescheduling 
– either by the processor or by the compiler. This 
approach is usually strongly limited by the data and 
control flow. A more efficient way of resolving the data 
dependencies is to implement bypasses. Bypasses 
forward data immediately from a pipeline stage back to a 
previous stage. In the case study the majority of the 
instructions can provide the final result not before the 
ARITH stage. Therefore, two kinds of bypasses were 
implemented depending on the starting point of the 
bypass path: bypasses from the ARITH stage or bypasses 
from the WB stage. In both cases, more than one path 
was implemented depending on the end point of the 
bypass. They include: bypasses to the LD stage, the 
CMP stage, the ROM stage and the ARITH stage (Fig. 
6). Most of the implemented bypasses are extensively 
used e.g. in the non linear filter F (Fig. 1), which 
implements one of the key elaboration steps of our case 
application.  

 
3.4. Customized Instruction Set 
One of the most important advantages of ASIPs is the 

fact that the instruction set can be customized according 
to the requirements of the application. This enables a 
trade-off between computational performance, silicon 
area and energy consumption. In order to increase the 
architecture efficiency it can be beneficial to implement 
complex pipelined instructions. This shortens the length 
of the final assembly program that is in our case study 
strictly related to the number of clock cycles needed for 
the complete elaboration. 

Since the specific scenario is image/video processing, 
it is important to notice that there will be a portion of the 
assembly program (referred to as main loop) that has to 
be repeated a large number of times according to the 
image size (one iteration per pixel), typically in the order 
of hundreds of thousands of times. That means that a 
particular attention has to be paid to the number of 
program lines setting up the main loop, in order to avoid 
any waste of cycles and to maximize the throughput. In 
particular we show this for our case study in the 
following after giving a list of the most important 
instruction set customizations: 

- Single instruction non linear transformations 
- Automatic address calculation 
- Zero overhead loops 
For example, considering the address generation for 

the data memory, from the algorithmic specifications it 
can be noticed that some pre-fixed patterns are 
established iterating over the image. Thus an Address 

Generation Unit (AGU) calculating the next address for 
the data memory by incrementing the pixel pointer can 
be implemented in hardware. This is reflected in the 
syntax of several instructions by a short extension. Thus 
the address update is performed in parallel without the 
need of wasting cycles just to do the data address update. 

Another observation is, that in conventional loop 
implementations comparisons and conditional branches 
create a significant instruction overhead and, even 
worse, cause pipeline control hazards. They lead to 
pipeline stalls and flushes. These problems can be 
avoided by implementing a loop mechanism in 
hardware. This is possible for loops being executed a 
pre-calculated number of times (equal to the image size). 
In this case it is enough to have a loop-parameter 
initialization before entering the loop and to manage the 
loop jumps by the hardware. This technique is known as 
zero-overhead loop implementation. With these 
implementation strategies, the programming is made 
easier and pipeline stalls and flushes resulting from 
control hazards can be eliminated.  

The designed Instruction Set includes 42 instructions. 
They can be categorized in the following groups: non 
linear transformations (9), arithmetical computations 
(11), space colour conversions (6), memory accesses (9), 
processor initialization (6) and loop control (1). 
 
4.  Synthesis and performance 

After the ASIP design has been fully carried out and 
its behaviour has been verified, a synthesis has been 
performed by means of Synopsys Design Compiler using 
a standard-cell CMOS 0.13 µm technology library with 
1.2 V supply voltage. The requirements concerning the 
minimum clock frequency of the system are listed in 
Table 1 for the real time elaboration of YUV video 
sequences with a frame frequency of 24 Hz. The 
synthesis results show a 6.5 ns critical path located in the 
ARITH stage. That means that the maximum ASIP clock 
frequency is 154 MHz and this matches with real-time 
processing of CIF video formats up to 28 Hz. This is a 
satisfactory result considering that we moved to a 
programmable implementation approach (opposed to an 
ASIC) and that we were able to make the processor 
flexible but also efficient enough to allow for the outer 
control of elaboration parameters, output dynamic and 
for processing of coloured images represented in RGB, 
HLS, YCrCb or YUV spaces. The matching degree to 
the original algorithm is demonstrated by a PSNR of 
30.7 dB. A speedup of a factor 1.8 can be achieved by 
performing only two passes of the filter F in Fig. 1 
instead of four. This way real-time processing of 50 Hz 
CIF and 18 Hz VGA videos is allowed while the visual 
quality reduction is limited (e.g. 0.1 dB PSNR reduction 
for the image in Fig. 2).  As far as the circuit complexity 
of the ASIP processing core is concerned, the synthesis 
results led to a complexity of 109 Kgates. A power 
simulation has been performed on gate level resulting in 
an average power consumption of 0.32 mW/MHz which 
corresponds to roughly 17 nJ/pixel. This number varies 
slightly with image size and aspect ratio. The ASIP 

  
 
 
 
 
 
 

Figure 6. Implemented bypasses 
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performs well comparing the synthesis results with state-
of-art implementations of similar non linear video 
filtering algorithms on DSP [15] or dedicated VLSI cells 
[16]. DSP-based implementations have been proposed in 
the literature for the real time elaboration of up to CIF 
videos but their power cost is in the order of watts, more 
than one order of magnitude higher than the ASIP power 
consumption.  With respect to dedicated VLSI 
macrocells the ASIP stands for its higher flexibility 
while synthesis results are comparable. 

The design has been also mapped on a DN6000K10s 
prototyping board equipped with a Xilinx Virtex-II Pro 
FPGA. Since the speed of the FPGA emulation is much 
higher than the speed of any RTL simulation we were 
able to process more test data (pictures) in a short time 
than we would have been using RTL simulations. This 
enabled us to carry out a complete life demonstration of 
the effects introduced by the algorithm on still images.  

 
5. Conclusion 

A complete ASIP design has been presented in this 
paper. The design process has been split over two steps: 
an algorithmic optimization step referred in Section 2 
and a processor design detailed in Section 3. The main 
considerations that led to the designed architecture have 
been listed, leading from the memory organization to the 
architecture pipelining and, eventually, to the further 
customization of the architecture by the addition of some 
hardware features like bypasses, AGU and special 
structures for hardware looping. During the whole design 
the basic idea of the Instruction Set has been kept in 
mind as a guide for the hardware design. The synthesis 
performed on CMOS 0.13 µm technology showed that 
the ASIP performances are better than the results that 
could be obtained by a DSP implementation. Moreover, 
the processor architecture allows for a certain degree of 
flexibility compared to ASICs, involving the setting up 
of several parameters and the colour treatment. 
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Format fclock - MHz  RAM - KB 

QCIF (176×144)  32    86 
CIF (352×288) 129   347 

VGA (640×480) 391 1050 

Table 1. Clock frequency and RAM to process 
different video formats (at 24 frames/s ) in real time 
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