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Abstract

Time Adaptive Clustering (TAC) is a cognitive Logical
Story Unit (LSU) segmentation algorithm that is found to
show good and consistent results. This paper presents an ef-
ficient hardware implementation for approximating the TAC
algorithm. The design consists of three main blocks. The
first block generates similarity values needed in the clus-
tering process. To take full advantage of the parallelism of
Field Programmable Gate Arrays (FPGA) devices, a video
shot sequence is divided into subsets and processed in par-
allel by the second block. The third block combines all the
output results of each subset. The design is implemented on
a Xilinx Virtex-II xc2v3000 on board a RC203E board and
it runs 27 times faster than a Pentium 4-based PC at 3.4
Ghz.

1. Introduction

The advancement in VLSI technology, broadband net-
works and compression standards, is spurring the creation
and handling of increasing high volume of digital video
data. This leads to an explosive growth of visual informa-
tion available in the form of multimedia archives. As a con-
sequence, sophisticated technology for modeling of multi-
media data is necessary. Although many algorithms and sys-
tems had been proposed, a significant impact is yet to be
generated in the marketplace.

Generally, video content perception can be differentiated
into low-level, cognitive and affective level. Most of the
hardware work done so far has focused on low level features
and little research effort has been invested in the higher lev-
els. This paper describes a novel method of approximating
the Time Adaptive Clustering (TAC) algorithm using a Xil-
inx Virtex-II xc2v3000 on board a RC203E board. The seg-
mentation performance, speed and area performance have
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Figure 1. (a) Classification of LSU segmenta-
tion techniques [8] and (b) Hierarchical Model
of Movie Structure.

been evaluated for the design. This paper’s contributions in-
clude a novel method of approximating the TAC algorithm
(modTAC), a modified evaluation criteria based on [8] and
the proposed architecture of modTAC.

The rest of the paper is organized as follows. A survey
of related work is presented in section 2. Section 3 pro-
vides some background knowledge of the TAC algorithm.
In section 4, the modified TAC (modTAC) algorithm is de-
scribed. In section 5, the proposed architecture is intro-
duced. Section 6 describes the method of evaluation and
presents some performance evaluation results. Concluding
remarks are presented in section 7.

2. Related Work

Segmenting videos into shots are considered as a low
level video analysis. While shot boundary detection orga-
nizes video content at the syntactic level, high level parsing
provides natural segmentation of video that viewers can as-
sociate with [2]. In high level video parsing, Logical Story
Units (LSU) of videos are to be searched for. There are
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generally four types of LSU segmentation techniques (Fig-
ure 1(a)), Overlapping Links [3, 5], Video Coherence [4, 7],
Time Constraint Clustering [9, 6] and Time Adaptive Clus-
tering [4, 10].

Techniques that employ binary temporal distance func-
tions are more sensitive to the choice of threshold. Tech-
niques that employ continuous functions are less sensitive
because of the inverse proportionality of visual distance and
temporal distance. Sequential comparison techniques per-
form pair-wise shot distance comparisons, whereas clus-
tering comparison techniques perform group-wise shot dis-
tance comparisons. The TAC algorithm is currently the best
method to segment a large collection of video [8].

3. Background

3.1. Definitions

A movie structure has a hierarchical model which con-
sists of three levels: Shots, Events (groups) and LSUs. A
shot is an unbroken sequence of frames recorded in a sin-
gle camera. Events are defined as series of shots unified by
location or incident. LSUs are defined as a series of tem-
porally contiguous shots characterized by links that connect
shots with similar visual content elements [2, 3]. A movie
can be understood as a concatenation of LSUs (Figure 1(b)).

3.2. Time Adaptive Clustering

The TAC algorithm can be summarized as follows. Given
a shot set {shot 0,1,2,· · ·,Nshots}, shot 0 is initialized as
a member of group 0 and LSU 0 in iteration 0. In itera-
tion i, shot i is compared with the latest members of groups
{group 0,1,2,· · ·,Ngps}. Shot i belongs to a group which
has the highest similarity value that exceeds a threshold.
If no such group exists, shot i is placed in a new group
Ngps+1 which is then compared with existing LSUs {LSU
0,1,2,· · ·,NLSUs}. The similarity comparison is done be-
tween shot i of group Ngps+1 and the average similarity of
each LSU’s group members. Group Ngps+1 belongs to the
LSU that has the highest similarity value which exceeds a
second threshold. Group Ngps+1 is placed in a new LSU
NLSUs+1 if no such LSU exists.

3.3. Problem Formulation

Shot are compared based on their visual and activity dis-
tances. The shot activity measure provides a means of mea-
suring the tempo of the shot and can be computed by:

Ai =
1

Ni − 1

Ni−1∑

k=1

d(k, k + 1) (1)

where d(k, k + 1) is the visual distance between frames k
and k + 1 and Ni is total number frames in shot i. The Hue
(H) and Saturation (S) histogram intersect distance is used
as the distance measure, given by:

d(k, k + 1) = 1 −
∑

H

∑

S

hk(H, S) − hk+1(H, S)∑
H

∑
S hk(H, S)

(2)

where hk(H, S) is the HS histogram of frame k. The activ-
ity distance between a shot pair is given by:

ASimij = max(0, ϕij) × |Aj − Ai| (3)

ϕij = 1 − 0.5 × (bj + ej) − 0.5 × (bi + ei)
LShotave × LLSUave

(4)

where LShotave is the average shot length in frames,
LLSUave is the average LSU length in shots, bi and ei are
the first and last frame of shot i. bi and ei are keyframes
of shot i. Note that although there are other more sophis-
ticated keyframes extraction methods, most of them have
very high computational costs and using them might not
provide tremendous improvements. The interested reader
is referred to [1] for a good review on keyframes extrac-
tion techniques.

The visual distance of a shot pair is determined by first
computing the raw visual differences between the keyframe
pairs (bj , bi), (bj , ei), (ej , bi) and (ej , ei) using 1 - d(k, k+
1). The raw similarity values are adjusted by temporal at-
traction constants given by:

Attrxy = max(0, 1 − d(x, y)
LShotave × LLSUave

) (5)

where d(x, y) is the frame index difference between the
keyframes. The maximum of the adjusted shot color sim-
ilarities are selected to be the final shot color similarity
CSimij .

The overall shot similarity can be calculated as a
weighted sum of the normalized CSimij and ASimij .
The weights can simply be obtained determining the stan-
dard deviations of CSimij and ASimij . The weights are
given by:

Wc =
σc

σc + σa
, Wa =

σa

σc + σa
(6)

where σa and σc are the standard deviations of the activ-
ity and visual distances respectively. The overall shot simi-
larity can be computed using the following equation:

SSimij = Wc×CSimij − µc

σc
+Wa×ASimij − µa

σa
(7)

where µa and µc are the mean values of CSimij and
ASimij . SSimij values are used by the algorithm to per-
form Time Adaptive Clustering.



4. The modTAC

Despite the good performance, the TAC algorithm has
very high computational cost. In order to take advantage
of the parallelism of FPGA devices, a video shot sequence
can be partitioned into subsets and processed in parallel.
However, since the clustering result of each iteration is very
dependent on the existing clustered structure, a brute force
partition and process method will greatly degrade the final
segmentation output. The challenge is to design a suitable
combiner that introduces minimum degradation.

The combining algorithm can be implemented by tak-
ing advantage of the TAC algorithm’s nature. Since perfor-
mance degradation only occurs near the partition bound-
aries, similarity comparisons are only necessary between
the first and last LSU of a structure pair. Given a set of out-
put structures {ST0,ST1,···,STN}, compute the similarity
distances between the first shot members of all the groups
in LSU 0 of STi+1 and the latest shot members of all the
groups of the last LSU of STi. Since it is safe to assume that
shots belonging to the same group also belong in the same
LSU, the LSU structure of STi+1 can be updated once a
similar shot is located. Group structure updating is slightly
more complicated than the LSU case because shots belong-
ing to different groups may belong to the same LSU. The
group updating process is described in section 5.3.

5. Proposed Design for modTAC

The proposed design consist of three fundamen-
tal blocks. The description of each block’s architecture are
presented in the following sections.

5.1. Block 1 Architecture

The architecture of block 1 is depicted in figure 2. Dur-
ing the visible scan period, each pixel is first subjected to a
RGB to HSI color space conversion. FIFO 0 and FIFO 1
are used to store HSI histogram values used to compute the
visual distance of each frame. These distances are computed
by CSimij/AsimijCalculator and accumulated in regis-
ter act acc. FIFO 2 to FIFO 5 consists of RAMs used to
store histogram values of keyframes for the past LLSUave

shots. This process is controlled by ControllerB0, which
consists of a set of counters that generate addresses and
read/write status to the RAMs.

During the non-visible scan period, ControllerB0
checks whether the frame count is on a shot bound-
ary. Shot boundary indices are stored in cut index 1
and cut index 2. If the test is true, the value stored in
act acc is divided by the difference between the val-
ues read from cut index 1 and cut index 2 (total frame
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Figure 2. Architecture of Block 1.

count in the shot). The result reflects the activity mea-
sure of the shot and is stored in act i mat.

The CSimij/AsimijCalculator reads histogram and
activity values from the FIFOs and act i mat to com-
pute the similarities between the current shot and the
past LLSUave shots. The CSimij/AsimijCalculator
has LLSUave+1 calculator blocks that run in paral-
lel, each capable of computing distances between a
shot pair. ControllerB0 ensures that the computed val-
ues are written to correct storage locations in block
2.

5.2. Block 2 Architecture

Block 2 consists of parallel clustering blocks that are
able to perform clustering to a video shot subset (fig-
ure 3). The similarity values stored in shotActSim store
and shotColorSim store are used to estimate the mean
and standard deviation of the similarity values. These val-
ues are also reused in findGroupSim, findSceneSim,
UpdateStructure and findSCGpEnt to perform the
clustering. ControllerB1 generates addresses and con-
trol signals to control the overall operation.

The general operation can be summarized as follows.
For each shot, ControllerB1 instructs findGroupSim
to compute the similarities between the shot and the exist-
ing groups. The highest value is tested to see if it exceeds a
preset value. If the test is true, UpdateStructure will up-
date the group and LSU structure stored in Group mat
and Scene mat. If the test is false, various counters in
ControllerB1 are updated and findSceneSim is in-
structed to compute the similarities between the shot and
the existing LSUs. This value is compared with a sec-
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ond predefined value and Group mat and Scene mat
are updated by UpdateStructure accordingly depend-
ing on the test result. Once the clustering is completed,
findSCGpEnt and findminmaxGp generate con-
trol signals (mG X , mM X , sG X and sM X) that are
used in block 3 for addressing.

5.3. Block 3 Architecture

The architecture of block 3 is depicted in figure 4(a).
Each combiner block is capable of combining a pair of
subset structures in parallel. For example, given a set of
structures {ST0,ST1,ST2,ST3}, CombinerBlock 00 and
CombinerBlock 01 combine {ST0,ST1} and {ST2,ST3}
respectively in parallel in the first time step. In the next time
step, CombinerBlock 00 will combine {ST1,ST2}.

The basic operation of each combiner block can
be described as follows. Consider the case where the
CombinerBlock 00 is attempting to combine {ST0,ST1}.
(mG 0, mM 0, sG 0, sM 0) and (mG 1, mM 1, sG 1,
sM 1) from ClusteringBlock 00 and ClusteringBlock
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Figure 4. (a) Architecture of Block 3 and (b)
Architecture of a Combiner Block.

01 are used by ST 0GpCt to generate control sig-
nals that ensure correct similarity values are read by
findGroupSim and findSceneSim to compute the
group and LSU distances. The distance values are sent to
ScUpp to generate the updated structure data. Control sig-
nals are also generated to ensure that the right addresses of
Group mat and Scene mat of ClusteringBlock 01 are
updated with the new data.

The addressing process in the combining stage is illus-
trated in figure 5. Each address location of Group mat
and Scene mat represents the shot number. The contents in
Group mat and Scene mat corresponds to the group and
LSU that the shot belongs to. For example, address 0 of ST1

Group mat and Scene mat shows that shot 0 belongs to
group 0 and LSU 0. The following paragraph is dedicated to
the description of the slightly more complicated group com-
bining process.

Shot 0 and shot 1 are the first shot entries of group 0 and
1 of the first LSU of ST1. These shots are compared with
last shot entries 1, 2, 8, 7 and 9 of groups 21 to 26 of the last
LSU of ST0 respectively. In this example, group 0 of ST1 is
found to be similar to group 24 of ST0. The contents of ad-
dress locations 0 and 2 are updated by adding the content
difference (24 - 0). The contents of the remaining ST1 ad-
dress locations are updated by adding the the largest value
in Group mat of ST0 (26).

6. Results

The described architecture has been implemented using
the Handel-C language. The design is mapped on a Xilinx
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Figure 5. Illustration of Combining Process.

Virtex-II xc2v3000 on board a RC203E board. It’s perfor-
mance is evaluated based on its segmentation, speed and
area performance.

6.1. modTAC Segmentation Performance

Users usually have doubts about the exact start and end
of a LSU. The evaluation criterion should therefore measure
”how incorrect the boundary is” instead of measuring ”if
the boundary is incorrect” [8]. The evaluation method pre-
sented in [8] is a powerful criterion which allows compar-
ison of different LSU segmentation techniques. However,
the number of false positives and negatives are not of great
importance in their criteria. Since the proposed design per-
forms clustering to smaller shot subsets, false positives and
negatives might be introduced. The number of false pos-
itives and negatives therefore becomes an important issue
and the criterion has to be modified.

Denote ε as the total number of shot boundaries, ζ as the
total number of ground truth boundaries, η as the total num-
ber of segmentation result boundaries and θ as the number
of boundaries in the segmentation result that is equal to the
ground truth. The modified evaluation criterion can be for-
mulated as follows:

g =
(ζ − θ) + (η − θ)

(ε − ζ)
(8)

The first term of the numerator corresponds to the number
of false positives, the second term of the numerator corre-
sponds to the number of false negatives and the denomina-
tor corresponds to the worst case segmentation (every shot
is a LSU).

The evaluation is performed by first evaluating the soft-
ware version of the TAC algorithm using 13 full length
movies as test data (3× cookery programs, 3× Star Trek En-
terprise, 3× Frasier, 1× Cartoon, 1× Eight Simple Rules,
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Figure 6. (a) Evaluation Curve for Test Movie
08 and (b) Average Curve of 13 Test Movies.

1× Constantine, 1× Star Wars Episode II, total 6518 shots,
370 LSUs). The evaluation is repeated for the proposed de-
sign for different number precisions.

It is observed that the degradation increases exponen-
tially when the subset size is too small. This is because of
two reasons. Firstly, a smaller subset size will result in a
greater loss in coherence due to the partitioning of the shot
sequence. Secondly, as the subset size approaches the aver-
age LSU length (LLSUave = 10), more false positives are
introduced during the combining process. This is because
the probability of a single LSU being partitioned into two
or more subsets is higher.

The evaluation curve shows that a reasonable perfor-
mance (>90%) can still be achieved with clustering blocks
that can process 20 shots (×2 of the average LSU length in
shots) using 8-bits number representations.

6.2. Speed Comparisons

A speed comparisons of the current work with the soft-
ware implementation has been presented in figure 7. The
software implementation has been performed in MATLAB
on a Pentium 4 work station (3.4 GHz, 1 GB RAM), and
the computation time to process a 35000 frame movie with
an average shot length of 100 frames is 118 minutes and
41 seconds. The clustering process takes about 50 seconds.
The throughput rate is 0.05 shots per second.

The proposed design runs at a maximum frequency of 40
MHz, with a throughput of approximately 1.3 shots per sec-
ond. The comparison is done by setting the number of clus-
tering blocks to 10 and frame size of 640 × 480. The time
taken for the design to process the same movie is approx-
imately 4 minutes 30 seconds, which is about a 27 times
speed up (Figure 7(d)). The clustering process has a speed
up of as high as 1,000 times depending on the number of
shots required to be processed in each clustering block (Fig-
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Figure 7. Time Taken to Process a 35000
Frames Movie for (a) the Whole Design and
(b) Block 2. Speed up for (c) the Clustering
Stage and (d) the Whole Design.

ure 7(c)). The bottleneck of the proposed design is in block
1 because it takes time to scan and process the pixels.

6.3. Area Analysis

Figure 8 depicts the area occupied by the proposed ar-
chitecture that consists of 10 clustering blocks and 5 com-
biner blocks. It is observed that the area increase is gradual
as the number of shots that can be processed by a cluster-
ing block increases. This is because most of the storage el-
ements in the design are implemented as dual-port RAMs
(DRAMs), which are more efficiently packed into Look-
Up Tables (LUTs). For a design consisting of 10 cluster-
ing blocks that can process 20 shots each (200 shots in to-
tal) and using 8-bits wordlength distance values represen-
tion, the area occupied is approximately 18%. Note that the
Xilinx Virtex-II xc2v3000 has 14,336 slices, 28,672 LUTs
and 96 block RAMS (BRAMs).

7. Conclusions

Time Adaptive Clustering is a computationally intensive
algorithm requiring many keyframe comparisons in every
iteration. The proposed modTAC is able to approximate the
TAC algorithm with minimum degradation. The proposed
architecture presented outperforms the software implemen-
tation in terms of computation time and throughput rate. Fu-
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ture work includes incorporating affective content analysis
capabilities to the design, and using this as a primary block
for a video summarization system.
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