
Design and Implementation of a Modular and Portable IEEE 754
Compliant Floating-Point Unit

Kingshuk Karuri, Rainer Leupers,
Gerd Ascheid, Heinrich Meyr

Institute for Integrated Signal Processing Systems,
RWTH Aachen University, Germany

Monu Kedia

Indian Institute of Technology,
Kharagpur, India

Abstract

Multimedia and communication algorithms from em-
bedded system domain often make extensive use of
floating-point arithmetic. Due to the complexity and ex-
pense of the floating-point hardware, final implementa-
tions of these algorithms are usually carried out using
floating-point emulation in software, or conversion (man-
ually or automatically) of the floating-point operations to
fixed point operations. Such strategies often lead to semi-
optimal and imprecise software implementation.

This paper presents the design and implementation of a
Floating-Point Unit (FPU) for an Application Specific In-
struction set Processor (ASIP) suitable for embedded sys-
tems domain. Using a state-of-the-art Architecture De-
scription Language (ADL) based ASIP design framework,
the FPU is implemented in such a modular way that it can
be easily adapted to any otherRISC like processor. The im-
plemented operations are fully compliant to the IEEE 754
standard which facilitates portable software development.
The benchmarking, in terms of energy, area and speed,
of the designed FPU highlights the trade-offs of having a
hardware FPU w.r.t. software emulation of floating-point
operations.

1. Introduction
Floating-point arithmetic, although extremely com-

mon in general purpose computing, was rarely used in
embedded systems world until recently. While a num-
ber of communication and multimedia algorithms are
designed and simulated using floating-point arithmetic,
the implementation platforms for such algorithms of-
ten leave out any hardware floating-point unit in favor
of software emulation or float to fixed point conversion.
While the former can be extremely inefficient in terms
of speed and energy consumption, the later leads to te-
dious and error prone software modifications and loss of
precision. Moreover, lack of a standard in fixed point,
non-integer arithmetic means practically zero portabil-
ity for any application converted from floating to fixed
point. In recent times, sensing this need of floating-point
arithmetic hardware, many prominent embedded DSP
and media processor vendors such as TI (e.g. TI C67x)
[1] and Phillips (e.g. TriMedia) [2] have added FPUs to
their cores.

Implementation of an efficient and correct FPU is an
extremely difficult, involved and time consuming task.
While major processor vendors can afford to invest the
required manpower and time to add FPUs to their prod-
ucts, designers of small, application specific embedded
ASIPs often leave out floating-point instructions, even

when they are required, due to the high development ef-
forts involved.

This paper presents the design and implementation
of a modular and portable FPU - specially suitable for
use in small ASIPs - using a state-of-the-art Architec-
ture Description Language (ADL) [7]. The floating-point
instructions are very loosely coupled to the main pro-
cessor core, and can be easily ported to other architec-
tures by minimal changes. We have developed a frame-
work for testing the correctness and the compatibility of
the developed instructions w.r.t. the prominent floating-
point arithmetic (IEEE 754 [3]) standard. This paper
also presents a summary of area requirements for differ-
ent classes of FPU instructions, and an estimate of the
energy and speed benefits of them. Such results can as-
sist a designer to take decisions about whether to add
or leave out a certain instruction in his architecture.

The rest of this paper is organized as follows. After a
discussion of the related work in the next section, we in-
troduce the IEEE 754 standard in section 3 and the re-
quired design automation tools in section 4. Section 5
covers the implementation details of the FPU, and sec-
tion 6 presents the testing architecture developed. The
area and energy consumption results are presented in
section 7. The final section summarizes our work and
presents some future directions.

2. Related Work

The basics of floating-point arithmetic are well cov-
ered in [5]. A comprehensive treatment of floating-point
arithmetic can be found in [6] which also describes the
IEEE 754 standard in brief. The details of the standard
can be found in [3], and a compliant software reference
implementation of the standard is available in [4].

[10] shows that software emulation of IEEE 754 stan-
dard is extremely inefficient and proposes a software-
oriented floating-point format for automotive control
systems. There exists a number of optimized, but non
IEEE FPU implementations in hardware, too. Some of
them do not support operations on de-normalized num-
bers to save area [11, 12], whereas some adopt a repre-
sentation format completely different from the standard
[18, 15]. Such implementations may work well for spe-
cialized applications, but the resulting hardware and the
software can not ported to other systems.

There also exists a number of IEEE 754 compliant
floating-point cores [13, 14], pre-designed components
[17] or data-path libraries [16]. Such components can be
used as separate blocks in embedded System-on-Chip
(SoC) designs, but can not be incorporated into ASIP
cores.

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



In contrast to the other works cited here, our FPU is
designed to be part of small, embedded ASIP cores. We
provide an ADL based implementation of floating-point
operations that can be easily integrated to a wide vari-
ety of RISC like processor cores, and can be extended
or curtailed according to the needs of the target ap-
plication. Therefore, we have left out several complex
features (e.g. pipelining the FPU), in favor of modular-
ity and flexibility. However, once the FPU is ported to
a specific processor, the modular design makes it very
easy to incorporate processor specific pipelining, data
forwarding and other hardware features into it.

3. IEEE 754 Standard for Binary
Floating-point Arithmetic

IEEE 754 is the floating-point arithmetic standard
followed almost universally. This section provides a very
brief overview of this standard for a better understand-
ing of the following sections.

IEEE 754 is an extremely complex standard that
specifies the format and representation of floating-point
numbers, the allowed operations and their expected out-
comes, the exception cases, handling of overflow and un-
derflow etc. A few important aspects of the specification
are summarized below:

• Representation Format: In the standard, a float-
ing point number is represented using a significand
and an exponent. One bit is reserved for the sign
of the number. Depending on the sizes of the ex-
ponent and the significand, two groups - basic and
extended - are defined in the standard. Moreover,
each group has single and double precision repre-
sentations resulting in a total of four formats with
different bit widths.

The single and double precision representations
in the basic group require 32 and 64 bits (C float
and double data types), respectively, and offer suf-
ficient precision for almost all computations found
in embedded applications.

• Floating-point Operations: Addition, subtrac-
tion, multiplication, comparisons, division, square
root, and remainder are the arithmetic operations
which are specified in the standard. Apart from
these, conversions between integer and floating-
point formats, between different floating-point for-
mats, and between floating-point numbers and dec-
imal strings are also specified.

• Exception Handling: The standard defines the
precise semantics of different floating-point excep-
tions such as overflow/underflow, divide by zero
and Not-A-Number (NAN ) arithmetic. Five float-
ing point exceptions must be properly detected and
signaled. The signaling can mean setting a flag, rais-
ing a trap or possibly both.

• Rounding modes: Rounding takes a number con-
sidered as infinitely precise and modifies it to fit
in the destination format. There are four rounding
modes specified in the standard that determines the
outcome when the result of an operation is too wide
to fit into the format.

4. Design Automation Tools
It would have been normal for us to implement the

FPU in a Hardware Description Language (HDL) like
Verilog or VHDL. However, since our goal was to imple-
ment an FPU that can be easily integrated into any
RISC like processor architecture, we decided to use

C ApplicationLISA Model

LPDP
C Compiler

C Compiler

Assembler
Assembler

Linker & Loader
Linker & Loader

IS Simulator
IS Simulator

C Profiler
C Profiler

Binary Program

Feedback

HDL Model
HDL Model

Design
Constraints

Violated

Final Architecture

Figure 1. LISA Based ASIP Design Frame-
work

the LISA Architecture Description Language (ADL).
LISA allows designers to specify the instruction-set and
the micro-architecture of a processor at an abstrac-
tion higher than that of HDLs. The processor spe-
cific software tools (i.e. instruction set simulator, as-
sembler, linker and loader) and an HDL model, in
VHDL/Verilog/SystemC, can be automatically gener-
ated from such a description using LISATek Processor
Development Platform (LPDP) [8]. LPDP also supports
semi-automatic generation of a C compiler from the
LISA model, but it requires some extra design effort.
As figure 1 shows, LISATek tools assist ASIP design-
ers to iteratively refine their processor architectures.

In LISA, the instruction set of a processor is speci-
fied in a hierarchical fashion. This feature allows a mod-
ular implementation of the instructions with maximum
code re-usability. In the next section, we will show how
we used this feature to implement the FPU in a mod-
ular way. The generation of the target specific software
tools assisted us in quickly developing a testing archi-
tecture. The generated HDL models are almost as ef-
ficient as those written manually [9], and provided us
with a mechanism to benchmark our FPU in terms of
area and timing.

Apart from the LISATek tools, we have also used Syn-
opsys Design Compiler [20] and Prime Power [21] tools
for obtaining results of hardware generation.

5. Implementation of Floating-point In-
structions

This section presents the details of the FPU imple-
mentation using LISA. Instead of designing a completely
new architecture, we decided to implement the FPU in
an already existing LISA processor model. We selected
a simple RISC like processor model, named LTRISC, as
the base architecture. The architecture has a RISC in-
struction set with 16 32-bit General Purpose Registers
(GPRs) and four pipeline stages - Fetch, Decode, Ex-
ecute and Writeback. The instruction words are 32-bit
wide with sparse instruction coding, and the instruction
set implements almost all integer fixed-point operations
including addition, subtraction, comparisons, logical op-
erations and integer multiplication. The following sub-
sections describe the different aspects of design and in-
tegration of the FPU in the LTRISC architecture.



5.1. Instruction Short-listing for Implemen-
tation

Implementation of all the formats and operations
specified by the IEEE 754 standard can be very costly
in terms of area. However, as mentioned in section 3,
the basic format in the standard provides sufficient pre-
cision for almost all embedded applications. Therefore,
we decided to implement operations only for the basic
single and double precision format.

Embedded processors seldom require and can afford
more than a few of the operations specified in the stan-
dard. Therefore, we had to short-list only a limited set
of operations for our implementation. We decided to
leave out the conversion operations to and from inte-
gers, strings and other floating point formats. We also
eliminated more advanced operations such as the square
root, remainder and division, since even in some ad-
vanced architectures such as the Intel IA64 [19], these
operations are emulated in software. There is very lit-
tle need to over-design the FPU with such expensive op-
erations.

Therefore, we selected a minimal set of instructions
using which all the required arithmetic and compari-
son operations in the standard can be executed either
in hardware, in software or using a combination of both.
For the same reason, we decided to support all the
rounding modes and exception signaling in the hard-
ware since they might be needed for software emulation
of more advanced operations (or for future hardware ex-
tensions to implement such operations). A list of the im-
plemented operations are supplied below.

1. Arithmetic: We selected Addition, subtraction
and multiplication for hardware implementation.
As mentioned already, square root, division and
remainder operations can be easily implemented
in software using iterative techniques like Newton-
Raphson method.

2. Comparison: We decided to implement Less than,
less than equal to and equal to in hardware. Greater
than, greater than equal to and not equal to can
be easily handled by the compiler with the imple-
mented instructions.

3. Memory: Since our base architecture is a RISC,
we decided to implement load and store instruc-
tions for single and double precision floating-point
values.

5.2. Instruction Coding
The reason for selecting LTRISC as our base architec-

ture was its simple and clean RISC instruction-set and
the well structured hierarchical organization of its in-
structions - called the coding tree (This is a misnomer
since the coding tree, in reality, is a Directed Acyclic
Graph (DAG)). The well organized instruction-set al-
lowed us to implement the floating-point instructions as
an isolated part of the LISA coding tree that can be eas-
ily detached from the other portions of the instruction-
set, and incorporated into other RISC like processors.

A part of the LTRISC coding tree with the floating-
point instructions is shown in figure 2. In the figure,
each node represents a LISA operation - the basic LISA
unit for describing the assembly coding, syntax and be-
havior of the instructions. An instruction usually con-
sists of many operations. The advantage of such design
is that the common functionalities between a set instruc-
tions can be put into an operation that can be shared by
these instructions. This ensures maximum code reuse.

CODING ROOT

FPU

INSTRUCTIONS

001
OTHER

INSTRUCTIONS

ARITHMETIC COMPARE

01 10

New floating-point
Group can be added

here

New Instructions can
be added here

32-bits 64-bits
32-bits 64-bits

1
1

0
0

Coding Root for FP
Instruction

ADD MULSUB

ShiftRightJamming
Check Infinity

Round And Pack

Detect UF/OF

FPU

Figure 2. Coding Tree of LTRISC with
Floating-point Instructions

The floating-point instructions are added as a com-
pletely separate group in the original coding tree. All
LISA operations beneath the node labeled FPU IN-
STRUCTIONS in figure 2 constitute our FPU. The
floating-point instructions all have 001 as the first 3-
bits of their instruction coding. This differentiates them
from every other instruction group. The rest of the bits
are defined in a way that preserves modularity based
on the formats and the functionalities of the instruc-
tions.

The floating-point instructions are grouped into three
different categories - arithmetic, comparison and load-
store (only arithmetic and comparison have been shown
in figure 2 for the sake of convenience). Further sub-
groups are defined under each category according to
precisions and formats. A certain number of bits in the
coding distinctively mark instructions belonging to each
group. For example, instructions in arithmetic category
have 01 as the fourth and fifth bits in their instruc-
tion coding.

5.3. Implementation Details
LISA allows designers to describe the behavior of any

LISA operation using plain ANSI C code. An instruc-
tion data path is defined by the combined behavior of the
LISA operations constituting the instruction. The con-
trol path and the decoding logic is implicit in the LISA
coding-tree.

As shown in figure 2, the main implementation of the
FPU is defined by the behaviors of the operations such
as add, sub and mul (and other instructions not shown
for sake of brevity). The C behavior of these instruc-
tions is modeled after the IEEE 754 compliant software
implementation provided by [4] which is efficient, but
contains C constructs (such as labels and loops) with-
out any hardware equivalents. Therefore, we adapted
and changed the C code according to our needs. More-
over, we grouped the common functionalities (e.g. shift
with right jamming, round and pack etc.) into operations
that are shared by other operations. This led to maxi-
mum code reuse during design and resource sharing in



Decode

(Coding Root)

FPU

Instructions

Basic

Instructions

ADD

MUL

SUB

Fetch

Integer

Writeback

FP

Writeback

Integer

Ops

Fetch Decode Execute Writeback

Pipeline Registers

Forwarding

Figure 3. FPU in the LTRISC Pipeline

hardware model generation from LISA.
We added a new floating-point register file consisting

of 16 32-bit registers in the architecture. The floating-
point instructions exclusively access this register file.
The double precision operations use 8 pairs of 32-bit
registers as 8 double precision registers.

LISA allows designers to assign each operation in dif-
ferent pipeline stages. Figure 3 shows the FPU in the
LTRISC pipeline structure. The pipeline has four stages
(Fetch, Decode, Execute and Writeback) which are con-
nected by pipeline registers shown with dotted lines. The
operations that define the behavior of different floating-
point instructions (such as add, mul and sub) are all as-
signed to the Execute stage of the pipeline. They are
activated from the coding root (i.e. the decode oper-
ation) indirectly. Note that there is no interaction be-
tween the integer and the floating point operations. The
FPU is completely independent of other parts of the pro-
cessor in its instruction coding and implementation. As
shown in the figure, the results of the floating-point op-
erations are forwarded from the output pipeline registers
of the Execute stage to its input. Thus, all floating-point
operations are single cycle, zero latency operations.

New instructions 16
New LISA Operations 79
Extra lines of LISA code 4891
Extra resources 16×32-bit

registers and several
pipeline registers

Extra lines of 22360
generated Verilog code

Table 1. Statistics of the Implemented FPU

In table 1 the statistics of the implemented FPU is
presented in detail. It is possible to integrate the FPU
with minimal effort to any other RISC like processor
model written in LISA. The only thing that must be
modified is the coding of the different instructions which
requires only a few lines’ change in the LISA code. The
size of the register file and the distribution of the instruc-
tions over different pipelines might need to be changed
depending on the processor architecture.

6. Testing

.data

.int 0xFF7FFF6F,

0xFF7FFFF1

.text

r0 = 0x00000000

f1 = dmem[r0+0]

f2 = dmem[r0+1]

f3 = f1*f2

.end

float f[16];

f[1] = 0xFF7FFF6F ;

f[2] = 0xFF7FFFF1 ;

f[3] = f[1] * f[2];

printFloat (3, f) ;

printSysFlags() ;

C library +
Inline assembly

diff

ref.c test.asm

ref.result test.result

LISA Assembler

test.out

Command line LISA ISS

GCC

ref.out

Intel i686 Machine

Result and Flags Result and Flags

Figure 4. Testing Architecture for the FPU

An FPU implementation can not be complete with-
out a robust and extensive testing mechanism. There-
fore, we have also developed a testing framework for
our implemented FPU using the software tools gener-
ated from LTRISC LISA model. This testing architec-
ture is pretty generic and can be adapted to other pro-
cessor models. This section describes our testing archi-
tecture in detail.

The major goal of our testing was to check the IEEE
754 compliance of our FPU. We decided to treat any
outcome that does not conform to this standard as in-
correct. For this, we needed an reference implementa-
tion of IEEE 754 that is robust and already well tested .
Fortunately, such an implementation was readily avail-
able at hand in the form of the FPU of any Intel i686
machine.

Our testing architecture is depicted in figure 4. A
test case (test.asm) written in LTRISC’s assembly lan-
guage is assembled and linked through LISATek gen-
erated tools. The resulting executable is executed on
an LTRISC Instruction Set Simulator (ISS) that dumps
the results and the flags after each floating-point opera-
tion. This operation trace is compared to that produced
by a reference application written in C (ref.c) and com-
piled and executed on an Intel i686 machine. The ref-
erence application performs the same floating-point op-
erations with the same inputs as the LTRISC assembly
file, and a set of predefined function calls print out the
outcome of the operations and the flags using inline as-
sembly. The LTRISC operations are IEEE 754 compli-
ant if the outputs of ref.c and test.asm match. Writing
the ref.c in a way that it exactly does the same things
as test.asm is left to the user.

We did not invest the extra effort in retargeting the
LTRISC compiler to make use of the newly available
floating-point instructions. If such a target specific com-
piler is available, the ref.c file can be directly compiled
and executed on ISS, and the test.asm file can be done
away with.

We have written around 50 test cases to verify differ-
ent corner cases regarding exceptions, NaN arithmetic,
over and underflow and de-normalized number arith-
metic. For the cases investigated so far, our testing ar-



chitecture revealed one bug that has been corrected in
the FPU.

7. Results

This section presents some results of our FPU imple-
mentation w.r.t. area and energy consumption. The re-
sults were obtained by generating synthesizable HDL
models from our LTRISC implementation automati-
cally, and then synthesizing them using Synopsys De-
sign Compiler [20].

7.1. Area and Speed

0

50

100

150

200

250

300

350

400

450

R
e
la

ti
ve

A
re

a
(%

)

LTRISC FPU Reg FPU32

w/oMUL

FPU32 FPU w/o

MUL

FPU

Area Results for FPU

Figure 5. Area of LTRISC with FPU w.r.t.
Original LTRISC

Figure 5 presents the area overhead of our FPU rela-
tive to the original LTRISC model. All the models have
been synthesized using a 0.13 µm library under 40ns (25
MHz) clock speed. The hardware models have been ob-
tained with highest possible optimizations in the LISA
hardware generator. We have synthesized the HDL de-
scriptions of six different LTRISC configurations as de-
scribed below -

1. Basic LTRISC

2. LTRISC with floating point registers. This non-
combinational area overhead for floating-point in-
structions is almost 30% of original LTRISC area.

3. LTRISC containing single precision (32-bit) FPU
without multiplication. Single precision add, sub-
tract and three comparison operations increase the
area by another 70%.

4. LTRISC with complete single precision FPU
(i.e. FPU with multiplication). A single precision
floating-point multiplication alone requires almost
50% of the original LTRISC area.

5. LTRISC containing single (32-bit) and double (64-
bit) precision FPU without any multiplication. This
causes an area increase of almost 240% in the orig-
inal core.

6. LTRISC with complete FPU which is a little more
than 4 times as big as the original LTRISC. There-
fore, the FPU alone has more than 3 times the size
of the original LTRISC.

As can be seen from the results, the multiplication
(both single and double precision) operations by far are
the most expensive operations. They alone account for
an area increase of almost 125% of the original core.
Therefore, depending on the frequency of multiplica-
tions in the target applications, the architect must de-
cide whether to incorporate multiplications in the de-
sign or not.

The initial area results presented in figure 5 has been
obtained with a quite long clock period of 40 ns. Short-
ening the clock cycle usually results in area increase of
the core. Figure 6 shows how the area of our FPU in-
creases with shorter clock cycles. As can be seen, the
area of the complete FPU increases by around 70%
of the original LTRISC area when the clock period is
halved to 20 ns. Further shortening of clock leads to cy-
cle time violation. For the single precision FPU, how-
ever, the area increase due to shorter clock is minimal.
The single precision FPU can be run with a minimum
clock length of 15 ns (i.e. a maximum clock speed of
around 66 MHz).

0

50

100

150

200

250

300

350

400

450

500

R
e
la

ti
ve

A
re

a
(%

)

40 35 30 25 20 15

Clock period (ns)

Basic LTRISC LTRISC + FPU32 LTRISC + FPU

Figure 6. Area Increase in FPU with Short-
ening Cycle Time

As is shown in [10], software emulation of even the
simplest floating-point operations take around 20 hard-
ware cycles for completion. Therefore, for floating-point
intensive applications, the implemented FPU will do
better than faster fixed-point machines even with a clock
speed of 40 ns. However, a better solution will be to split
the FPU into several pipeline stages that will improve
clock speed and area, both.

7.2. Energy Consumption
Figure shows the power consumption figures for our

FPU, (obtained using the same 0.13 µm library) in com-
parison to the original LTRISC model. The power fig-
ures were obtained by simulating integer, single and dou-
ble precision floating point implementation of two appli-
cations - factorial computation and Fibonacci series gen-
eration upto the 6th term on the generated HDL mod-
els. The integer and floating-point version of the appli-
cations contained the same set of operations - only the
integer arithmetic was replaced by floating-point arith-
metic.

As can be seen, the single precision floating point
operations, on average, consume 2.5 times power (i.e.



1.5 times more power) than that of integer operations,
and the double precision operations eat up, on average,
around 5 times of the same. However, when we consider
that several integer arithmetic operations are required
to emulate one floating point operation, the savings in
energy consumption become clear. For example, a sin-
gle precision addition consuming 1.5 times more power
than an integer addition still consumes only a fraction of
energy of software emulation which takes around 50 cy-
cles [10]. Although it is difficult to make a general com-
ment on power consumption by simulating two simple
applications, it is obvious that our implemented FPU
can lead to at least one order of magnitude less energy
consumption than floating point emulation.

0

100

200

300

400

500

600

700

R
e
la

ti
ve

P
o
w

e
r

(%
)

Factorial Fibonacci

Applications

Basic LTRISC 32-bit FPU 64-bit FPU

Figure 7. Power Consumption by the FPU

7.3. Comparison with Commercially Avail-
able FPUs

For the sake of completeness of this section, it is nec-
essary to compare our implementation with some other
commercially available FPUs. Such comparison, how-
ever, is fraught with difficulties due to the differences in
specification formalisms (ADL vs. RTL), technology li-
braries, clock frequencies, effects of pipelining etc.

Many commercial embedded processors, such as [23,
22], provide FPU implementations that can be used with
their base processor cores. Xtensa 6[22] has a 32-bit FPU
, compliant to the single precision IEEE 754 standard,
implemented using 25 K gates, whereas our single pre-
cision operations require around 29 K gates. However,
the Xtensa FPU can have multi-cycle operations, and
therefore, can operate at a much higher clock frequency.
The ARM VFP9-S co-processor[23] has 32 single preci-
sion registers compared to our 16. The area of this unit
is between 100-130 K gates, whereas our implementa-
tion takes only 62 K gates. This is not a fair comparison
since the VFP9-S can operate at a much higher clock
frequency and implements the IEEE 754 standard fully.

A better comparison with individual FPU blocks
written in RTL can be done by considering the data
presented in [24]. The combined area of single and dou-
ble precision FPU blocks (excluding division) in this im-
plementation, is around 66 K gates compared to our 62
K gates. Since the synthesis results are shown using a

0.18 µm library, a direct comparison is still not possi-
ble.

From the above discussions it can be conjectured that
the area results of our implemented FPU is comparable
to those of the commercially available FPUs. It is not
possible to have a really meaningful comparison of tim-
ing and power consumption without considering the ef-
fects of pipelining (which most commercially available
FPUs implement) our FPU.
8. Conclusions

This paper presents the design and implementation
of IEEE 754 compliant floating-point instructions in an
ASIP. The FPU is designed in a modular way and can
be integrated to other architectures with minimal effort.
Moreover, depending on the requirements of the appli-
cations, the FPU can be extended or cut down to ba-
sic operations easily. These features make it suitable for
use in small embedded processors. A testing architec-
ture has been developed for the FPU and basic test-
ing of the corner cases have been done. The benefits
of the hardware implementation of the FPU w.r.t. soft-
ware emulation has also been studied.

In future, we plan to make the FPU pipelined and
study its effects on area, timing and energy consump-
tion. Implementation of other advanced operations such
as division and square-root is another possible work. But
more importantly, we want to look into the compiler
retargeting issues for the floating-point instructions so
that we can perform more intensive testing of the FPU.
References
[1] http://dspvillage.ti.com/
[2] http://www.semiconductors.philips.com/products/nexperia/
[3] http://grouper.ieee.org/groups/754/
[4] Softfloat distribution available at

http://www.cs.berkeley.edu/ jhauser/arithmetic/SoftFloat.html
[5] J. L. Hennessy, D. A Patterson: Computer Architecture : A Quan-

titative Approach, 2nd Edition,Morgan KaufmannPublishers, Inc.
ISBN 981-4033-227

[6] D. Goldberg:What Every Computer Scientist Should Know About
Floating-Point Arithmetic, ACM Computing Surveys, Volume 23,
No 1, March 1991

[7] A. Hoffmann, T. Kogel, A. Nohl et.al:A Novel Methodology for
the Design of Application-Specific Instruction-set Processors
(ASIPs) using a Machine Description Language, IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Sys-
tems, Volume: 20, Issue: 11, Nov. 2001

[8] http://www.coware.com/products/lisatek.php
[9] O. Schliebusch, A. Chattopadhyay, E. M. Witte et. al: Optimiza-

tion Techniques for ADL-driven RTL Processor Synthesis, IEEE
Workshop on Rapid System Prototyping (RSP), June 2005.

[10] D. A. Connors, Y. Yamada, W. W. Hwuy: A Software-Oriented
Floating-Point Format for Enhancing Automotive Control Sys-
tems, Workshop on Compiler and ArchitectureSupport for Embed-
ded Computing Systems (CASES98). December, 1998

[11] K.Taek-jun, J.Sondeen, J.Draper: DesignTrade-Offs inFloating-
Point Unit Implementation for Embedded and Processing-In-
Memory Systems, IEEE International Symposium on Circuits and
Systems, 2005, May 2005

[12] http://www.gaisler.com/doc/grfpu dasia.pdf
[13] http://www.dcd.pl/
[14] http://www.nallatech.com/mediaLibrary/images/english/2432.pdf
[15] J. Dido, N. Geraudie, L. Loiseau et.al: A flexible floating-point

format for optimizing data-paths and operators in FPGA based
DSPs, Proceedings of the 2002 ACM/SIGDA tenth international
symposium on Field-programmable gate arrays

[16] R. Hossain, J.C. Herbert, J.E. Gouger, R. Bechade : Datapath li-
brary reuse in the design of a high performance floating point unit,
Proceedings of Eleventh Annual IEEE International ASIC Confer-
ence, Sept. 1998

[17] C. Brunelli, F. Campi, J. Kylliainen, J. Nurmi : A reconfigurable
FPU as IP component for SoCs Proceedings of 2004 International
Symposium on System-on-Chip, November, 2004.

[18] S. Lee,I. Park:Low cost floating-point unit design for audio appli-
cations IEEE International Symposium on Circuits and Systems,
May, 2002

[19] M. C. Hasegan, Bob Norin: IA-64 Floating-Point Operations and
the IEEE Standard for Binary Floating-Point Arithmetic, Intel
Technology Journal Q4, 1999

[20] http://www.synopsys.com/products/logic/design compiler.html
[21] http://www.synopsys.com/products/power/primepower ds.pdf
[22] http://www.tensilica.com/products/x6 floating point.htm
[23] http://www.arm.com/products/CPUs/VFP9-S.html
[24] http://www.asics.ws/doc/efpu brief.pdf


	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06



