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Abstract 
 

Verification quality is a must for functional safety in 
electronic systems. In automotive, the verification flow is 
historically based on a layered approach, where each 
level (model, design and system) has its proper 
verification and validation methodology. Very often, 
these methodologies are badly or not interconnected at 
all one to another, and it's still common to see some of 
the most critical verification tasks confined to post-
silicon validation, where costs to solve issues could be a 
killing factor for deeply integrated electronic systems. 

This paper presents the architecture of verification 
components that can be applied in all the different levels 
and shows how they have been successfully applied to 
the verification of systems integrating LIN, CAN and 
FlexRay protocols. 
 

1. Introduction 
Electric and electronic systems account for 49.2% of 

automobile breakdowns, according to Germany's 
Allgemeiner Deutscher Automobil Club in data for 2003. 
Recent statistics on ICs say that 71% of System-on-Chip 
(SoC) re-spins are due to logic bugs, and 47% of these 
are because of incorrect or incomplete specifications. 
Moreover, 14% of failing SoCs show bugs in reused 
components or IPs. Such statistics show why 60-70% of 
the entire product cycle for a complex logic chip is 
dedicated to verification tasks [1]. The same message is 
stated in the IEC-61508 standard for functional safety of 
electronic systems, which classifies as mandatory 
functional testing and fault injection [2]. 

The verification flow of electronic systems for 
automotive is historically based on a layered approach, 
where each level (model/module, design/chip and 
system/application) has its proper analysis or verification 
or validation methodology. Very often, these 
methodologies are badly or not interconnected at all one 
to another. It's still common to see some of the most 
critical verification tasks (such as protocol compliance or 
fault injection) confined to post-silicon validation, where 
costs to solve issues could be a killing factor for deeply 
integrated electronic systems. 

To reach the best verification quality, a more 
integrated approach is suggested, where verification 

components and related methodologies applied at 
module level can be re-used in other levels to better 
cover particular scenarios or hard-to reach "corner" cases 
in the early development stage. Modern verification 
approaches such as constraint-driven random test 
generation and functional coverage analysis, can be 
applied at different level of abstractions guaranteeing a 
better match of verification plans.  

This paper shows how this integrated approach can 
be realized and applied to state-of-art automotive 
protocols such LIN, CAN and FlexRay, showing 
examples of the use of verification components at 
different abstraction levels based on the characteristics 
of each of these protocols. 

2. LIN protocol verification 
Local Interconnect Network protocol (LIN, [3]) is 

one of the most used serial protocol in automotive: it is a 
single wire serial protocol, single master multi slave with 
self synchronization mechanism. The specification of a 
LIN network covers different layers (figure 1), and 
therefore the architecture of a verification component for 
LIN should be able to be reused in all of them. Each of 
these layers is specified by different files such for 
instance LIN description File (LDF) and Node 
Capability File (NCF). 

2.1. LIN verification component 
Figure 2 shows the proposed architecture of a 

verification component to be reused in all the different 
levels. Generally speaking, a verification component is 
an IP that performs the verification tasks at design stage. 
For the most popular verification methodology called 
“coverage-driven dynamic verification”, a verification 

 
 

Figure 1: the layered structure of LIN 

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



component is composed by four main parts: agents, 
monitors (including checkers), coverage and 
configuration. The LIN verification component proposed 
in this paper is composed by a master agent that can be 
configured to be active or passive. When is active, based 
on existing frame, the agent can send the network 
configuration (assign PID, etc..) and/or send randomly 
requests for all the available frames. This is done in the 
sequence driver with a dedicated configuration sequence. 
The sequence driver is responsible of the master task and 
the slave task of the master: it selects a header, and if 
publisher of the frame, it sends the response as well. 
When passive, the Bus Functional Module (i.e. the 
module that is in charge of interacting with the 
transmission lines) is not present, but the monitor is able 
to analyse frames to check if the configuration is well 
analysed by all the slaves.  

The verification component includes a slave agent 
that can be configured as an active or passive agent. 
When passive, it cannot transmit on the LIN network. 
But it will check the behaviour of the slaves after their 
configuration (check the response to the related PID, 
hook for the scoreboards in order to check that reception 
of a subscribed frame well updated the corresponding 
signals). When is active, it analyses the configuration, 
and reacts when it’s subscriber or publisher of a frame. 

The verification component is completed by 
monitors. The monitors include the protocol checker and 
some additional checks for higher level: time between 
two wake-up request, response space in the range 
defined by the node capability file, etc….The link 
between the BFM (Bus Functional Module) and the 
monitors is needed to check if the value sent on the LIN 
network lines is the correct one: if not, the transmission 
must be stopped. 

The verification component should be easily 
configurable: all pieces of information relative to a node 
(message id, NAD, published/subscribed frames and so 
on...) must be randomly generated, to allow the checking 
of all possible configuration of a node. To be linked with 
upper layers, the LIN verification component 
architecture should offer the possibility to extract from 
the NCF (Node Capability File) all the parameter of a 
node. This allows simulating a complete network with 

only the description available and not the real IP, by 
instantiating a verification component node with the 
same characteristic. Moreover, the LIN verification 
component must includes a co-verification link in order 
that a real application program can be run for each slave 
and/or for the master. In such a way, a software engineer 
could start writing application code even if the design is 
not yet available, and debug it. 

A database of sequence must be also available. This 
database should include standard sequences of test but 
also some fault sequences to easily check the most 
common faults (error in parity, in protocol etc…). 

The proposed verification component has been 
realized and successfully used in the verification of LIN 
designs [4], as described afterwards. It is worth to note 
that such component, as the others described in this 
paper, has been implemented using the “e” language, 
under standardization with the IEEE initiative P1647 [5]. 

2.2. Coverage 
Coverage is one of the most important aspects of a 

verification environment since it is the metric to assess 
the quality of the verification task [6]. 

Particular events in the simulation induce the 
embedded coverage unit of the verification component to 
collect information on the conceptual items that are 
defined as “coverage groups”. They represent the 
functional coverage items that can be used for test 
program ranking. This is a critical measure to understand 
if the validation task can be considered fully completed 
or vice versa the verification engineer still needs to 
develop new tests to cover the “holes” in his 
environment. In fact only when LIN basic coverage 
items, user defined coverage definitions and the HDL 
code coverage percentages reach 100%, the verification 
engineer can consider himself safe about having 
exhaustively stressed the module under test. 

For example for a specific set of LIN tests, it is 
important to know if all the possible response lengths 
(that can vary from 1 to 8 bytes) have been 
submitted/received to/from the IP, if the sequence has 
been interrupted at any time during the transmission (i.e. 
during sync, PID and response phases), if the node has 
been at least once publisher and/or subscriber of a frame, 
if different inter-bytes spaces and/or response spaces 
have been tested, if break fields with different length 
have been submitted to the IP in order to cover specific 
predefined ranges of values, and if the sent data have 
been properly read back on the reception line.  

Moreover, coverage items will give feedback on 
specific corner cases: if the frames had good or bad 
checksum and parity, they were compliant to 2.0 or 1.3 
specifications, the PID was valid or invalid, etc... 

2.3. Module-level verification 
The following is an example of module-level 

verification using the LIN verification component 
described in previous paragraph, taken from a real 
project. The goal was to verify a LIN Controller IP 
having an AMBA APB interface on one side, and a LIN 
interface on the other side. This IP being a slave, it has 
been used the master agent of the LIN verification 
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Figure 2: The architecture of a LIN verification 

component 



component in order to send LIN frames over the 
network. 

As shown in figure 3, the LIN verification 
component is connected to the LIN side of the IP and it 
is used to send frame headers and responses on LIN RX 
input, collect responses on LIN TX output, monitor the 
traffic, and check the LIN protocol and collect coverage 
information. An AHB Verification component [7] has 
been used to emulate the “system” controlling the IP 
itself. 

Coverage information are improved for the specific 
environment by adding items like the interrupts set in an 
interrupt register each time the AHB verification 
component will read such an address on the interface in 
order to confirm the all the possible interrupts have been 
checked during the test. Finally the scoreboard collects 
data information from both APB and LIN bus and 
compare them together in order to check if all the 
TX/RX frames are correctly passed through the LIN IP. 

 
The following is an example of bugs that can be 

easily detected with this environment. According to the 
LIN specifications, the end of the synchronization falls 
together with the 4th falling edge of the synch-break 
field, each transmission should start with a start bit (i.e. 
the line is set to ‘0’), and stop with a stop bit (i.e. the line 
is set to ‘1’) and errors that might occur will cause the 
nodes to ignore the current transmission. 

In the verified LIN IP, the checks on the start bit and 
stop bit were properly done by the decoder, which 
however was erroneously disabled during the 
synchronization phase. Since the last 2 bits of the 
synchronization field are not useful for the 
synchronization, no specific checks were done. 
Therefore, if a collision occurs on the physical interface 
such that the stop bit of the synchronization field is 
corrupted, the LIN IP will not be able to see the error 
condition. Since there will be no transmission issues 
detected, the LIN IP will wait for the next byte 
synchronizing itself on the next start bit of the Identifier 
field byte (PID), instead of ignoring the following 
transmission until the beginning of the next frame. 

Using the proposed architecture of the LIN 
verification component this bug was easily found by 
sending a random sequence having wrong stop bits in the 
header. 

Such a scenario is extremely simple to produce, and 
the same thing would have been more difficult to be 
verified with a standard testbench environment, due to 
difficulty with which corner-cases can be implemented. 

Another typical example of scenario that takes 
advantage of the proposed verification architecture, it is 
to interrupt the transmission in a specific part of the 
frame by sending a new frame in order to test the break 
detection even during a reception. In fact, one of the 
crucial aspects of the environment is the capability to 
randomly generate the constraints: this allows the user to 
have both the simplicity of a test that randomly generates 
the desired scenarios, and the easy control of all the 
generated parameters in order to generate very specific 
tests. 

The same idea can be applied in order to send some 
frames with bad checksum, bad parity, bad start/stop 
bits, or to limit the break field size to a specific set of 
values (for example always greater then 15 Tbits).  

2.4. System-level verification 
The following figure 4 shows how the architecture 

used at module level is fully reusable at system level. If 
many verification components are available, each for any 
interface of the LIN, they can generate independent 
transaction objects or structures to work on different 
sides of the LIN network. In such a system, the check of 
the AHB/APB interface is not needed anymore. The 
AHB verification component can be easily replaced by a 
piece of software that will handle the good LIN IP 
transmission/reception of the frames; different slaves 
verification components (active or passive) will be 
connected to the LIN network in order to reach the 
desired level of system complexity. 

Possibility to easily move from module to system 
level is make easier by the use of the eRM methodology 
and the object oriented philosophy [8]. eRM 
methodology guarantees that all the verification 
component that are instantiated in the verification 
environment can work in the same way (when different 
types of protocols need to be checked) and that similar 
structures can be generated and merged in sequences 
very easily (leveraging on compatibility and absence of 
conflicts in resource sharing).  
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3. CAN protocol verification 
The same concepts used for LIN verification can be 

used with CAN, a well-known protocol [9] performing 
serial broadcasting communication with multi-master 
bus access, time synchronization, high error detection 
capability and a layered structure similar to the LIN case. 

Respect other commonly used test benches such [10], 
the distinguish elements to be addressed by a CAN 
verification component are protocol compliance (e.g. the 
respect of ISO 11898-1, ISO 16845 [11]), random noise 
injection and the extension of the verification to chip and 
system level. 

A verification environment combining all the 
previous mentioned aspects has been implemented and 
successfully used to prove CAN-based designs [12-14]. 
The model-level verification of a CAN node is done (see 
figure 5) by using a CPU model or a BFM (Bus 
Functional Model) to create meaningful scenarios for the 
CAN Protocol Engine (PE). 

The CAN verification component is used to drive the 
CAN bus and to monitor CAN PE's answers. The 
monitor logs all traffic information and collects items for 
test functional coverage. The protocol checker is a 
runtime tool checking CAN rules of the current bus 
traffic. If some problem conditions are detected during 
the simulation phase, the checker prompts the user about 
the error printing a message on the violation. 

These rules can be extended and customized by the 
user. A sequence driver coordinates all CAN verification 
component functions based on a test suite following, the 
ISO 16845 and ISO11898-1 norms.  

At chip level (figure 6), a full CAN node, including a 
CPU, the CAN PE, and the CAN RX/TX transceiver, is 
verified re-using the CAN verification component, and 
adding a top-level verification environment to control 
the CPU and monitor the CPU bus. 

A model of the channel is provided and fault 
injection is done to verify the robustness of CAN 
protocol: the CAN verification component includes a 
random noise injector that is particular important to 
verify CAN synchronization. In fact, most of electronic 
systems require at least a noise analysis (i.e. the injection 
of a disturbance in the control lines and the measurement 
of the consequent degradation of the system mission). 

A typical example of this is the verification of 
robustness of CAN protocol units against line noise (the 
injection of bit errors in the packets). In this case CAN 
devices should be able to deal with these kinds of errors 
and re-transmit until they are successful. At the same 
time they should not clog the bus with re-transmissions 
due to faulty or marginal designs and these must be 
identified before silicon goes into production. 

Therefore, an important function of a chip and 
system-level verification environment is the ability to 
inject permanent or intermittent errors, with configurable 
fault models. In addition, all the failures foreseen by the 
International Transceiver Conformal Test should be 
applied, such shorts between CANH and CANL, and 
shorts with VBAT (battery voltage) or ground. 

At system level (figure 7), many CAN nodes can be 
verified in a real system, also taking into account the 
API (Application Programmer's Interface) to provide a 
co-simulation link between the sequence driver and the 
application software. Functional patterns of a set of 
stimuli and expected values can be generated out of this 
environment to link system-level verification with post-
silicon test. 

4. FlexRay protocol verification 
FlexRay is an emerging protocol for high-reliability 

communications with high data rate [15]. Also in this 
case, the crucial aspect of verification is to have a 

 
Figure 7: CAN system-level verification 

 
Figure 6: CAN chip-level verification 

 
Figure 5: CAN model-level verification 



modular verification component that can be used at the 
different levels of abstraction. 

Figure 8 shows the schematic architecture of the 
proposed verification component for the FlexRay node. 
The main block is the PE verification component that 
contains a model of the Protocol Engine based on what 
described in FlexRay specifications. Moreover, a PE-
CHI (Control Host Interface) verification component 
must be implemented: it contains BFM, monitor and 
protocol checker to easily handle the interface between 
PE and CHI. With the included blocks is possible to link 
the PE verification component with the CHI part of the 
node that can be described in HDL or in e/SC. An API 
should be also included for this purpose, to have the 
possibility to co-verify software tests. The independent 
PE-CHI monitor can be reused when the PE-CHI active 
part (BFM) isn't instantiated in the environment. 

The other block of the verification component is the 
Channel, that contains a model of the FlexRay channel, 
able to add delays between each node participating in the 
cluster. An indipendent TX/RX Monitor is also included 
to monitor the two TX-RX lines of the FlexRay interface 
of the PE. The monitor is able to report the frames seen 
and to check the basic rules on the structure of the frame 
(CRC, lenght of field, etc..). The verification component 
architecture is completed by a Config structure that 
contains all the FlexRay global and Node specific 
configurations parameters. All the parameters are chosen 
following and satisfying the rules specified in the 
FlexRay Specification. 

 
The verification component proposed in this paper 

can be used at node level both to verify the Protocol 
Engine (figure 9a) and the upper levels of the Flexray 
node (figure 9b) such the CHI. 

At system level (figure 10), the FlexRay verification 
component can be used both to emulate a FlexRay 
network and therefore to verify a complete RTL 
implementation of a FlexRay node. It is worth to note 
that to start a FlexRay communication two nodes are 
enough, except during startup where for fault tolerance 

requirements at least three nodes need to be there. Then 
the user can constraint its global environment and drives 
the full verification scenario through the host driver and 
adapting the scoreboards to extract useful coverage 
information. 

5. Comparison with other methodologies 
The verification components proposed in this paper 

introduce significant benefits respect traditional 
verification methodologies (such as RTL testbench or 
pure software driven tests), summarized in the following: 

− Use of random-constrained stimuli generation to 
reach particular corner-cases, really important for 
protocols 

− Coverage-driven verification to precisely specify 
the verification goals and reach the highest 
verification quality 

− Embedded capability of run-time protocol 
checking, fully aligned with protocol specs  

− High-level of reusability in all the different level of 
abstractions and possibility to easy customize the 
verification environment to the specific application 

 
 

Figure 8: The architecture of a FlexRay 
verification component 

 
 

Figure 9a: FlexRay node-level verification 

 
Figure 9b: FlexRay node-level verification 



need. This is particular important for verification 
blocks such monitors and checkers. 

− Inclusive of random fault-injection to model bus 
noise 

− To allow a co-verification link to be used together 
with software test 

All these benefits result in practical advantages in 
terms of bugs found (tenths of bugs – someone critical - 
found also in mature IPs) and drastically reduction of the 
verification effort.  

6. Conclusions 
There are two issues still pending: "Who's guarding 

the guards," in other words, how to assess the quality of 
the verification flow, and determining the link with post-
silicon and on-field testing. Verification automation's 
quality is based both on the maturity of the tools and on 
the experience of the engineers using them. High-level 
languages and the use of detailed methodologies help 
system engineers. However, the crucial point remains the 
verification plan where each coverage item should be 
defined and pondered. Efficiency and execution time of 
verification tools allow the use of massive regressions 
enabling "think & try" approaches. However blind 
verification is a practice of the past and a modern 
verification engineer should always be fully aware of 
what he or she is verifying. 

Concerning the link with post-silicon and on-field 
testing, as seen in the CAN example, a first answer is the 
generation of functional patterns out of the system-level 
verification environment. Latest innovations in 
verification automation foresee a tighter integration 
providing the system engineer with hardware boxes that 
emulate, accelerate, and drive the real silicon with the 
same inputs of the verification environment. However, 
system engineers are still looking forward to a seamless 
complete integration.  

 
In brief, only a combined use of modern verification 

automation tools and high quality verification 
components can surmount verification barriers and cross 
the layer boundaries, providing system engineers with a 
systematic and controlled verification flow, able to fulfill 
the strict functional testing rules required by safety 
norms, such as IEC61508. 
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