

On the Verification of Automotive Protocols

G. Zarri, F. Colucci, F. Dupuis, R. Mariani, M. Pasquariello, G. Risaliti, C. Tibaldi*

YOGITECH SpA, San Martino Ulmiano (Pisa), Italia - www.yogitech.com

*Politecnico di Torino - Dipartimento di Informatica e Automatica- Torino, Italia

Abstract

Verification quality is a must for functional safety in
electronic systems. In automotive, the verification flow is
historically based on a layered approach, where each
level (model, design and system) has its proper
verification and validation methodology. Very often,
these methodologies are badly or not interconnected at
all one to another, and it's still common to see some of
the most critical verification tasks confined to post-
silicon validation, where costs to solve issues could be a
killing factor for deeply integrated electronic systems.

This paper presents the architecture of verification
components that can be applied in all the different levels
and shows how they have been successfully applied to
the verification of systems integrating LIN, CAN and
FlexRay protocols.

1. Introduction
Electric and electronic systems account for 49.2% of

automobile breakdowns, according to Germany's
Allgemeiner Deutscher Automobil Club in data for 2003.
Recent statistics on ICs say that 71% of System-on-Chip
(SoC) re-spins are due to logic bugs, and 47% of these
are because of incorrect or incomplete specifications.
Moreover, 14% of failing SoCs show bugs in reused
components or IPs. Such statistics show why 60-70% of
the entire product cycle for a complex logic chip is
dedicated to verification tasks [1]. The same message is
stated in the IEC-61508 standard for functional safety of
electronic systems, which classifies as mandatory
functional testing and fault injection [2].

The verification flow of electronic systems for
automotive is historically based on a layered approach,
where each level (model/module, design/chip and
system/application) has its proper analysis or verification
or validation methodology. Very often, these
methodologies are badly or not interconnected at all one
to another. It's still common to see some of the most
critical verification tasks (such as protocol compliance or
fault injection) confined to post-silicon validation, where
costs to solve issues could be a killing factor for deeply
integrated electronic systems.

To reach the best verification quality, a more
integrated approach is suggested, where verification

components and related methodologies applied at
module level can be re-used in other levels to better
cover particular scenarios or hard-to reach "corner" cases
in the early development stage. Modern verification
approaches such as constraint-driven random test
generation and functional coverage analysis, can be
applied at different level of abstractions guaranteeing a
better match of verification plans.

This paper shows how this integrated approach can
be realized and applied to state-of-art automotive
protocols such LIN, CAN and FlexRay, showing
examples of the use of verification components at
different abstraction levels based on the characteristics
of each of these protocols.

2. LIN protocol verification
Local Interconnect Network protocol (LIN, [3]) is

one of the most used serial protocol in automotive: it is a
single wire serial protocol, single master multi slave with
self synchronization mechanism. The specification of a
LIN network covers different layers (figure 1), and
therefore the architecture of a verification component for
LIN should be able to be reused in all of them. Each of
these layers is specified by different files such for
instance LIN description File (LDF) and Node
Capability File (NCF).

2.1. LIN verification component
Figure 2 shows the proposed architecture of a

verification component to be reused in all the different
levels. Generally speaking, a verification component is
an IP that performs the verification tasks at design stage.
For the most popular verification methodology called
“coverage-driven dynamic verification”, a verification

Figure 1: the layered structure of LIN

3-9810801-0-6/DATE06 © 2006 EDAA

component is composed by four main parts: agents,
monitors (including checkers), coverage and
configuration. The LIN verification component proposed
in this paper is composed by a master agent that can be
configured to be active or passive. When is active, based
on existing frame, the agent can send the network
configuration (assign PID, etc..) and/or send randomly
requests for all the available frames. This is done in the
sequence driver with a dedicated configuration sequence.
The sequence driver is responsible of the master task and
the slave task of the master: it selects a header, and if
publisher of the frame, it sends the response as well.
When passive, the Bus Functional Module (i.e. the
module that is in charge of interacting with the
transmission lines) is not present, but the monitor is able
to analyse frames to check if the configuration is well
analysed by all the slaves.

The verification component includes a slave agent
that can be configured as an active or passive agent.
When passive, it cannot transmit on the LIN network.
But it will check the behaviour of the slaves after their
configuration (check the response to the related PID,
hook for the scoreboards in order to check that reception
of a subscribed frame well updated the corresponding
signals). When is active, it analyses the configuration,
and reacts when it’s subscriber or publisher of a frame.

The verification component is completed by
monitors. The monitors include the protocol checker and
some additional checks for higher level: time between
two wake-up request, response space in the range
defined by the node capability file, etc….The link
between the BFM (Bus Functional Module) and the
monitors is needed to check if the value sent on the LIN
network lines is the correct one: if not, the transmission
must be stopped.

The verification component should be easily
configurable: all pieces of information relative to a node
(message id, NAD, published/subscribed frames and so
on...) must be randomly generated, to allow the checking
of all possible configuration of a node. To be linked with
upper layers, the LIN verification component
architecture should offer the possibility to extract from
the NCF (Node Capability File) all the parameter of a
node. This allows simulating a complete network with

only the description available and not the real IP, by
instantiating a verification component node with the
same characteristic. Moreover, the LIN verification
component must includes a co-verification link in order
that a real application program can be run for each slave
and/or for the master. In such a way, a software engineer
could start writing application code even if the design is
not yet available, and debug it.

A database of sequence must be also available. This
database should include standard sequences of test but
also some fault sequences to easily check the most
common faults (error in parity, in protocol etc…).

The proposed verification component has been
realized and successfully used in the verification of LIN
designs [4], as described afterwards. It is worth to note
that such component, as the others described in this
paper, has been implemented using the “e” language,
under standardization with the IEEE initiative P1647 [5].

2.2. Coverage
Coverage is one of the most important aspects of a

verification environment since it is the metric to assess
the quality of the verification task [6].

Particular events in the simulation induce the
embedded coverage unit of the verification component to
collect information on the conceptual items that are
defined as “coverage groups”. They represent the
functional coverage items that can be used for test
program ranking. This is a critical measure to understand
if the validation task can be considered fully completed
or vice versa the verification engineer still needs to
develop new tests to cover the “holes” in his
environment. In fact only when LIN basic coverage
items, user defined coverage definitions and the HDL
code coverage percentages reach 100%, the verification
engineer can consider himself safe about having
exhaustively stressed the module under test.

For example for a specific set of LIN tests, it is
important to know if all the possible response lengths
(that can vary from 1 to 8 bytes) have been
submitted/received to/from the IP, if the sequence has
been interrupted at any time during the transmission (i.e.
during sync, PID and response phases), if the node has
been at least once publisher and/or subscriber of a frame,
if different inter-bytes spaces and/or response spaces
have been tested, if break fields with different length
have been submitted to the IP in order to cover specific
predefined ranges of values, and if the sent data have
been properly read back on the reception line.

Moreover, coverage items will give feedback on
specific corner cases: if the frames had good or bad
checksum and parity, they were compliant to 2.0 or 1.3
specifications, the PID was valid or invalid, etc...

2.3. Module-level verification
The following is an example of module-level

verification using the LIN verification component
described in previous paragraph, taken from a real
project. The goal was to verify a LIN Controller IP
having an AMBA APB interface on one side, and a LIN
interface on the other side. This IP being a slave, it has
been used the master agent of the LIN verification

BFM

Active agent

Monitor
Checker

Seq. Driver

Agent
Configuration

Passive agent

Monitor
Checker

Agent
Configuration

LIN bus

Database of
sequences

Coverage
reports

NCF/LDF
Configuration

API Link

Figure 2: The architecture of a LIN verification

component

component in order to send LIN frames over the
network.

As shown in figure 3, the LIN verification
component is connected to the LIN side of the IP and it
is used to send frame headers and responses on LIN RX
input, collect responses on LIN TX output, monitor the
traffic, and check the LIN protocol and collect coverage
information. An AHB Verification component [7] has
been used to emulate the “system” controlling the IP
itself.

Coverage information are improved for the specific
environment by adding items like the interrupts set in an
interrupt register each time the AHB verification
component will read such an address on the interface in
order to confirm the all the possible interrupts have been
checked during the test. Finally the scoreboard collects
data information from both APB and LIN bus and
compare them together in order to check if all the
TX/RX frames are correctly passed through the LIN IP.

The following is an example of bugs that can be

easily detected with this environment. According to the
LIN specifications, the end of the synchronization falls
together with the 4th falling edge of the synch-break
field, each transmission should start with a start bit (i.e.
the line is set to ‘0’), and stop with a stop bit (i.e. the line
is set to ‘1’) and errors that might occur will cause the
nodes to ignore the current transmission.

In the verified LIN IP, the checks on the start bit and
stop bit were properly done by the decoder, which
however was erroneously disabled during the
synchronization phase. Since the last 2 bits of the
synchronization field are not useful for the
synchronization, no specific checks were done.
Therefore, if a collision occurs on the physical interface
such that the stop bit of the synchronization field is
corrupted, the LIN IP will not be able to see the error
condition. Since there will be no transmission issues
detected, the LIN IP will wait for the next byte
synchronizing itself on the next start bit of the Identifier
field byte (PID), instead of ignoring the following
transmission until the beginning of the next frame.

Using the proposed architecture of the LIN
verification component this bug was easily found by
sending a random sequence having wrong stop bits in the
header.

Such a scenario is extremely simple to produce, and
the same thing would have been more difficult to be
verified with a standard testbench environment, due to
difficulty with which corner-cases can be implemented.

Another typical example of scenario that takes
advantage of the proposed verification architecture, it is
to interrupt the transmission in a specific part of the
frame by sending a new frame in order to test the break
detection even during a reception. In fact, one of the
crucial aspects of the environment is the capability to
randomly generate the constraints: this allows the user to
have both the simplicity of a test that randomly generates
the desired scenarios, and the easy control of all the
generated parameters in order to generate very specific
tests.

The same idea can be applied in order to send some
frames with bad checksum, bad parity, bad start/stop
bits, or to limit the break field size to a specific set of
values (for example always greater then 15 Tbits).

2.4. System-level verification
The following figure 4 shows how the architecture

used at module level is fully reusable at system level. If
many verification components are available, each for any
interface of the LIN, they can generate independent
transaction objects or structures to work on different
sides of the LIN network. In such a system, the check of
the AHB/APB interface is not needed anymore. The
AHB verification component can be easily replaced by a
piece of software that will handle the good LIN IP
transmission/reception of the frames; different slaves
verification components (active or passive) will be
connected to the LIN network in order to reach the
desired level of system complexity.

Possibility to easily move from module to system
level is make easier by the use of the eRM methodology
and the object oriented philosophy [8]. eRM
methodology guarantees that all the verification
component that are instantiated in the verification
environment can work in the same way (when different
types of protocols need to be checked) and that similar
structures can be generated and merged in sequences
very easily (leveraging on compatibility and absence of
conflicts in resource sharing).

Verification
Environment

LIN
(MASTER)

LIN
PASSIVE
SLAVE

MONITOR &
CHECKER

IP
Slave

LIN
ACTIVE
SLAVE

LIN
PASSIVE
SLAVE

MONITOR &
CHECKER

IP
Slave

IP
slave

IP
slave

API
NCFs

API
NCFs

Figure 4: LIN system-level verification

AHB

Verification
Component

LIN
Verification
Component

Test Test

AHB
 to
APB

 IP

A
P
B

L
I
N

Scoreboard

Figure 3: LIN module-level verification

3. CAN protocol verification
The same concepts used for LIN verification can be

used with CAN, a well-known protocol [9] performing
serial broadcasting communication with multi-master
bus access, time synchronization, high error detection
capability and a layered structure similar to the LIN case.

Respect other commonly used test benches such [10],
the distinguish elements to be addressed by a CAN
verification component are protocol compliance (e.g. the
respect of ISO 11898-1, ISO 16845 [11]), random noise
injection and the extension of the verification to chip and
system level.

A verification environment combining all the
previous mentioned aspects has been implemented and
successfully used to prove CAN-based designs [12-14].
The model-level verification of a CAN node is done (see
figure 5) by using a CPU model or a BFM (Bus
Functional Model) to create meaningful scenarios for the
CAN Protocol Engine (PE).

The CAN verification component is used to drive the
CAN bus and to monitor CAN PE's answers. The
monitor logs all traffic information and collects items for
test functional coverage. The protocol checker is a
runtime tool checking CAN rules of the current bus
traffic. If some problem conditions are detected during
the simulation phase, the checker prompts the user about
the error printing a message on the violation.

These rules can be extended and customized by the
user. A sequence driver coordinates all CAN verification
component functions based on a test suite following, the
ISO 16845 and ISO11898-1 norms.

At chip level (figure 6), a full CAN node, including a
CPU, the CAN PE, and the CAN RX/TX transceiver, is
verified re-using the CAN verification component, and
adding a top-level verification environment to control
the CPU and monitor the CPU bus.

A model of the channel is provided and fault
injection is done to verify the robustness of CAN
protocol: the CAN verification component includes a
random noise injector that is particular important to
verify CAN synchronization. In fact, most of electronic
systems require at least a noise analysis (i.e. the injection
of a disturbance in the control lines and the measurement
of the consequent degradation of the system mission).

A typical example of this is the verification of
robustness of CAN protocol units against line noise (the
injection of bit errors in the packets). In this case CAN
devices should be able to deal with these kinds of errors
and re-transmit until they are successful. At the same
time they should not clog the bus with re-transmissions
due to faulty or marginal designs and these must be
identified before silicon goes into production.

Therefore, an important function of a chip and
system-level verification environment is the ability to
inject permanent or intermittent errors, with configurable
fault models. In addition, all the failures foreseen by the
International Transceiver Conformal Test should be
applied, such shorts between CANH and CANL, and
shorts with VBAT (battery voltage) or ground.

At system level (figure 7), many CAN nodes can be
verified in a real system, also taking into account the
API (Application Programmer's Interface) to provide a
co-simulation link between the sequence driver and the
application software. Functional patterns of a set of
stimuli and expected values can be generated out of this
environment to link system-level verification with post-
silicon test.

4. FlexRay protocol verification
FlexRay is an emerging protocol for high-reliability

communications with high data rate [15]. Also in this
case, the crucial aspect of verification is to have a

Figure 7: CAN system-level verification

Figure 6: CAN chip-level verification

Figure 5: CAN model-level verification

modular verification component that can be used at the
different levels of abstraction.

Figure 8 shows the schematic architecture of the
proposed verification component for the FlexRay node.
The main block is the PE verification component that
contains a model of the Protocol Engine based on what
described in FlexRay specifications. Moreover, a PE-
CHI (Control Host Interface) verification component
must be implemented: it contains BFM, monitor and
protocol checker to easily handle the interface between
PE and CHI. With the included blocks is possible to link
the PE verification component with the CHI part of the
node that can be described in HDL or in e/SC. An API
should be also included for this purpose, to have the
possibility to co-verify software tests. The independent
PE-CHI monitor can be reused when the PE-CHI active
part (BFM) isn't instantiated in the environment.

The other block of the verification component is the
Channel, that contains a model of the FlexRay channel,
able to add delays between each node participating in the
cluster. An indipendent TX/RX Monitor is also included
to monitor the two TX-RX lines of the FlexRay interface
of the PE. The monitor is able to report the frames seen
and to check the basic rules on the structure of the frame
(CRC, lenght of field, etc..). The verification component
architecture is completed by a Config structure that
contains all the FlexRay global and Node specific
configurations parameters. All the parameters are chosen
following and satisfying the rules specified in the
FlexRay Specification.

The verification component proposed in this paper

can be used at node level both to verify the Protocol
Engine (figure 9a) and the upper levels of the Flexray
node (figure 9b) such the CHI.

At system level (figure 10), the FlexRay verification
component can be used both to emulate a FlexRay
network and therefore to verify a complete RTL
implementation of a FlexRay node. It is worth to note
that to start a FlexRay communication two nodes are
enough, except during startup where for fault tolerance

requirements at least three nodes need to be there. Then
the user can constraint its global environment and drives
the full verification scenario through the host driver and
adapting the scoreboards to extract useful coverage
information.

5. Comparison with other methodologies
The verification components proposed in this paper

introduce significant benefits respect traditional
verification methodologies (such as RTL testbench or
pure software driven tests), summarized in the following:

− Use of random-constrained stimuli generation to
reach particular corner-cases, really important for
protocols

− Coverage-driven verification to precisely specify
the verification goals and reach the highest
verification quality

− Embedded capability of run-time protocol
checking, fully aligned with protocol specs

− High-level of reusability in all the different level of
abstractions and possibility to easy customize the
verification environment to the specific application

Figure 8: The architecture of a FlexRay
verification component

Figure 9a: FlexRay node-level verification

Figure 9b: FlexRay node-level verification

need. This is particular important for verification
blocks such monitors and checkers.

− Inclusive of random fault-injection to model bus
noise

− To allow a co-verification link to be used together
with software test

All these benefits result in practical advantages in
terms of bugs found (tenths of bugs – someone critical -
found also in mature IPs) and drastically reduction of the
verification effort.

6. Conclusions
There are two issues still pending: "Who's guarding

the guards," in other words, how to assess the quality of
the verification flow, and determining the link with post-
silicon and on-field testing. Verification automation's
quality is based both on the maturity of the tools and on
the experience of the engineers using them. High-level
languages and the use of detailed methodologies help
system engineers. However, the crucial point remains the
verification plan where each coverage item should be
defined and pondered. Efficiency and execution time of
verification tools allow the use of massive regressions
enabling "think & try" approaches. However blind
verification is a practice of the past and a modern
verification engineer should always be fully aware of
what he or she is verifying.

Concerning the link with post-silicon and on-field
testing, as seen in the CAN example, a first answer is the
generation of functional patterns out of the system-level
verification environment. Latest innovations in
verification automation foresee a tighter integration
providing the system engineer with hardware boxes that
emulate, accelerate, and drive the real silicon with the
same inputs of the verification environment. However,
system engineers are still looking forward to a seamless
complete integration.

In brief, only a combined use of modern verification

automation tools and high quality verification
components can surmount verification barriers and cross
the layer boundaries, providing system engineers with a
systematic and controlled verification flow, able to fulfill
the strict functional testing rules required by safety
norms, such as IEC61508.

7. References
[1] R.Mariani, “Breaking the verification barriers “,

Automotive Design Line, Feb 2005
[2] CEI International Standard IEC 61508, 1998-2000
[3] LIN Specifications 2.0, LIN Consortium, http://www.lin-

subbus.org/
[4] LIN eVC datasheet, www.yogitech.com
[5] IEEE 1647: http://www.ieee1647.org/index.html
[6] A. Pizali, “Functional Verification Coverage Meaurement

and Analysis”, Springer Edition, 2004
[7] AHB verification component, www.cadence.com
[8] eRM Methodology, www.cadence.com
[9] CAN specification, CAN CIA, http://www.can-cia.org/
[10] CAN Reference Model and Testbench, BOSCH,

http://www.semiconductors.bosch.de/de/20/can/index.asp
[11] ISO Norms, http://www.iso.ch
[12] A.Di Blasi, F.Colucci, R.Mariani, “Y-CAN Platform: A

Re-usable Platform for Design, Verification and
Validation of CAN-Based Systems On a Chip”, ETS-
2003 Symposium, May2003

[13] C.Turner, C.Mueller, “Re-usable CAN IP block”, CAN
newsletter 3/2002 CIA

[14] CAN eVC datasheet, www.yogitech.com
[15] FlexRay consortium, http://www.flexray.com

Figure 10: FlexRay network-level verification

	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

