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Abstract

Networked processing units are becoming widely used in
the automotive embedded system domain aiming not only to
reduce vehicle weight and cost but also to assist the driver
to cope with critical situations. Because the fact that these
embedded networked systems are strictly involved with hu-
man safety, there is a high demand on dependability re-
quirements which can only be guaranteed if active redun-
dancy is employed. Considering that the processing units
are usually connected by a shared serial media, the underly-
ing communication platform is the most important building
block. It must provide low-level support for deterministic
data transmission as well as a global time base to coordi-
nate the actions of replicated units. Within this context, this
paper presents the development of the fault-tolerant Daisy-
Chain clock synchronization algorithm over the CAN proto-
col, resulting in an highly optimized communication archi-
tecture for safety-critical applications. Implementation is-
sues and some obtained practical results are also discussed
in the paper.

1 Introduction

As computers become increasingly more involved with
healthy and safety of humans, dependability becomes a key
factor when developing completely integrated solutions. It
is noteworthy the growing interest in the automotive indus-
try towards the replacement of mechanical artifacts by inter-
networked electronic units to perform dynamic control such
as steering, braking, power-train and suspension control.
Besides cost and weight diminution, the use of embedded
computers inside vehicles should also assist the driver to
cope with critical situations. This current trend has been

forcing designers to cope with new requirements that are far
beyond those of traditional distributed systems where there
are no major risks in case of failure. Safety-critical systems
must provide correct service delivery even in the presence
of faults or any other unpredictable behavior since a single
failure can lead to disastrous consequences, possibly result-
ing in loss of life or property.

Recently, it has been reported that failure rates less than
10−9 per hour are required in some particular cases [6].
However, that requirement can only be met if active redun-
dance is employed combined with fault-tolerance mecha-
nisms. Because replicated components have to make equiv-
alent decisions at about the same time, redundancy coordi-
nation strongly depends on the correct operation of a clock
synchronization algorithm to maintain a system-wide global
time agreement. In view of that, clock synchrony must not
be considered just an add-on feature of the system but an
essential low level service of the underlying communication
platform over which safety-critical functions are mapped.

In a dependable distributed system, the communica-
tion architecture must support straightforward integration
of components and subsystems (including corresponding
replica) without jeopardizing the temporal characteristics
of each one individually. In other words, it must support
time composability to ensure that one function does not ad-
versely affect another under any possible operating condi-
tions. From [6], [4] and [2] one can observe a common con-
sensus indicating that this is only guaranteed if the channel
bandwidth is fairly partitioned according to a time-division
multiple access (TDMA) arbitration scheme, where each
node transmits messages in dedicated time slots. By stat-
ically configuring all messages to be sent at pre-defined in-
stants of a global time base, contentions for the bus will not
occur so, even messages from low priority tasks will never
be delayed.
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With all that in mind, we have implemented a highly
optimized Communication Architecture for Safety-Critical
Applications, or simply CASCA, that performs clock syn-
chronization over the existing Controller Area Network pro-
tocol. The proposed CASCA architecture is composed of a
logical and a physical block. The former one corresponds to
a data link protocol plus extended time management func-
tions while the second consists of a single (possibly repli-
cated) serial bus together with COTS CAN transceivers.
The logical block was entirely described in VHDL in order
to take advantage of low turnaround time of rapid proto-
typing using FPGA devices, which becomes an interesting
alternative of system design, specially when fast time-to-
market is desirable.

This paper is organized as follows: section 2 discusses
main characteristics of existing fault tolerant embedded pro-
tocols; section 3 briefly reviews the concepts of clock syn-
chronization and existing algorithms, with special attention
on the fault-tolerant Daisy-Chain approach; the proposed
communication architecture is described in section 4; sec-
tion 5 presents practical results and finally, in section 6,
some concluding remarks are made.

2 Fault Tolerant Protocols

Embedded safety-critical applications consist mostly of
control loops in which the execution of a control algorithm
and data exchange from sensors to actuators take place at
regular intervals within a known periodicity. In this do-
main, more important than throughput is the correctness of
the results and the timeliness of data transmission services
offered by the communication platform. In drive-by-wire
applications, for example, the control frequencies have been
estimated to be in the order of 100Hz [2]. If state messages
are mainly of 32 bit length, then the total throughput for
individual control loops is near 3.2kpbs which is relatively
low compared to office local area network demands. Nev-
ertheless, a primary requirement is that correct messages
arrive on time when transmitted as they represent the sys-
tem’s view of the current state of the physical environment.
Additionally, proper operation must be ensured even at the
occurrence of faults since a late or corrupted state message
can cause the system to compute wrong outputs and put hu-
man lives in danger.

Many years of experience and research has shown that
the highest degrees of reliability in distributed systems are
achieved if their entire design flow is guided by the concepts
that surround the time-triggered paradigm, or simply TT.
Roughly speaking, a TT distributed system is the one where
actions are triggered as a global time base progresses. The
matching list of trigger instants and corresponding actions
is defined during the design phase and then inserted in a
data structure inside each system network adapter.

The TT paradigm was first introduced by Hermann
Kopetz who proposed the Time-Triggered Architecture
(TTA) [4]. From the TTA three protocols derive: the
TTP/A, TTP/B and TTP/C, which is the fault-tolerant ver-
sion. The last letter of each protocol name indicates for
which class of application it is intended for according to
the Society of Automotive Engineers (SAE) classification
of vehicle applications, covering from body electronics
(classes A and B) to vehicle dynamic control (class C).

Bus arbitration in TT systems is basically performed by
a time-division control logic which is tightly coupled with
a low level clock synchronization algorithm. There is a
sequence of TDMA slots where each node transmits one
message thus forming a round. After finishing one TDMA
round, the next one is started. The temporal access pattern
of the new round is basically the same, but possibly dif-
ferent messages are sent. The number of different rounds
determines the length of a master cycle. After a master
cycle is finished, the transmission pattern starts over again.
This cyclical operation behavior is maintained as long as all
nodes keep synchronized one to another.

From the static communication behavior of TT systems
several advantageous characteristics comes out. For in-
stance, error detection is increasingly facilitated at both the
sender and receiver sides due to the the fact that transmis-
sion and arrival times of each message are previously de-
fined. Additionally, time composability is guaranteed as
there are no bus contentions in a TDMA arbitration scheme.
Finally, system verification and testing are both facilitated
as a result of restricting the overall combinations of system
states.

Actually, the time-triggered paradigm is being used as
the primary design concept of the great majority of embed-
ded protocols intended for safety-critical functions. The
FlexRay protocol [1] from BMW and DaimlerChrysler is
time-triggered because part of the communication band-
width is dedicated to the transmission of pre-scheduled
messages in a TDMA-based scheme. The CAN protocol,
which has been largely used in the automotive industry for
many years, is not suitable in terms of safety mainly due to
the unpredictable variability of message transmission times.
In the original CAN protocol, there is no global view of
time. Any attempt to access the bus is triggered by asyn-
chronous events from the host or from the environment in
contrast to time-triggered architectures where all transmis-
sions are scheduled at design phase. It follows that col-
lisions eventually occur delaying the transmission of low
priority messages. As a consequence, time composabil-
ity can not be always guaranteed because individual func-
tions may experience varying temporal behavior due to the
shared use of communication media. In response to that,
researchers from Bosch GmbH have created the TT-CAN
(Time-Triggered CAN) [3] which is a time-triggered exten-



sion of the unchanged CAN protocol that is in the process
of standardization by ISO as ISO 11898-4. Communication
in the TT-CAN is organized in several TDMA rounds each
one being triggered by a centralized master which broad-
casts the reference message.

Both TTP/C and FlexRay operates over an uncentralized
time base which is better in terms of reliability. Assuming
that all nodes are fail-silent, any node that eventually fails
will not prevent the others from communicating. On the
other hand, the master-triggered approach adopted in TT-
CAN requires that the master node is available all the time.

3 Clock Synchronization

In uniprocessor systems, synchronization mechanisms
can derive directly from the system clock providing means
to coordinate multiple execution flows and I/O accesses.
Unfortunately, in a distributed processing environment the
problem is indeed more complicated because physical im-
perfections of oscillator devices would create prohibitive
divergences between execution speed of distributed tasks.
The main reason is that crystal oscillators may generate an
absolute error as large as 10−5 per second, which is equiv-
alent to 0.86 seconds per day [7].

Informally, the objective of clock synchronization in dis-
tributed systems is to keep logical clocks of distributed pro-
cessors approximately close to each other despite of that
slight drifting apart of physical devices. Let i and j be two
non-faulty nodes and Ci(t) and Cj(t) their corresponding
logical times at any instant of perfect time t. It comes that
if the following condition is satisfied:

|Ci(t) − Cj(t)| ≤ δ (1)

for all i and j �= i, then one can say that the system has
a global view of time. The term δ is the precision of the
global time base, that is, the maximum skew between non-
faulty clocks.

Assuming that all logical clocks are initially within δ,
clock synchronization is performed like follows.

1. each node broadcasts its logical clock to all other nodes

2. each node assembles the clock readings from other
nodes and then calculates the correction term

3. at a specific point in time, all nodes apply the correc-
tion term at their logical clocks

Clock synchronization algorithms for TT systems dif-
fer mainly in steps 2 and 3. In FlexRay, the Fault-Tolerant
Midpoint (FTM) algorithm is executed from the clock read-
ings collected during the current and last TDMA rounds. At
each execution of FTM, the k largest and k smallest values
are discarded then the correction term is determined by the

mean of the largest and the smallest of the remaining values
[8]. The TTP/C protocol performs clock synchronization by
applying the fault-tolerant average (FTA) algorithm on the
most recent deviation values stored in a push-down stack of
depth four. The correction term of FTA is the average of the
two remaining values after discarding the smallest and the
largest ones.

Another interesting solution is the Fault-Tolerant Daisy-
Chain algorithm which was first proposed by Henrik Lönn
[5] as an cost-efficient way for synchronizing clocks with-
out appealing to a single, centralized clock source. Unlike
FTA and FTM, the Daisy-Chain is simpler to implement
since there is no need to temporarily store clock readings so,
hardware complexity is reduced considerably. All nodes ad-
just their clocks according to the current transmitter’s view
of global time.

At any time, the maximum skew between non-faulty
nodes provided by the Daisy-Chain algorithm is bounded
by:

δmax = ε + 2ρR (2)

where ρ is an upper bound of physical clock drift, ε is the
reading error resulting from variable propagation delays and
R is the synchronization interval, that is, the distance in
time between two clock corrections. In practice, the actual
runtime drift is unpredictable but one can make the assump-
tion that it always lies within ±ρmax.

transmitter i receiver j

actual arrival time

expected arrival time

clock skew

t (transmitter side)
delay compensation

transmission time at i

transmission time at j

RW reception window

t (receiver side)

Figure 1. Clock reading in TDMA protocols.

The Daisy-Chain algorithm uses the principle of indirect
clock reading, that is, the logical time of each transmitter is
inferred at the receivers from the difference between the ex-
pected arrival time and the actual arrival time of the mes-
sage, as shown in Figure 1. At the moment the transmission
of a start bit from transmitter i is detected at receiver j, that
difference corresponds to the current clock skew between
them. During normal operation, that skew is immediately
used to adjust the local clock at j. The definition of the ex-
pected arrival time must account for network propagation
delays otherwise all receivers would have the impression

                                      



that they are ahead in time because the start bit arrives al-
ways later than expected. Rather than defining the expected
arrival time at the exact transmission time at j, it is repo-
sitioned at a later point by adding a delay compensation
constant which is an accurate estimation of how long the
signal takes to propagate from the source to destination.

For the Daisy-Chain algorithm to provide fault-tolerance
against transient faults, clock readings whose absolute skew
is too large are not accepted. The actual arrival time of
any message must be approximately close to the expected
time else its corresponding timestamp is discarded. Assum-
ing that δmax is the maximum skew between any two non-
faulty clocks, the size of the reception window around the
expected arrival time is defined as 2δmax in order to account
for worst cases.

4 Practical Work

The logical block of CASCA that comprises the commu-
nication protocol with clock synchronization was entirely
described in synthesizable VHDL code. The core of the sys-
tem is a PIC processor that supervises all data flow between
the components attached to an internal parallel bus. This
strategy provides best error containment since a faulty com-
ponent can not adversely affect another one without confus-
ing the central core. Error detection mechanisms can be
implemented in software to run at the PIC processor in or-
der to fast isolate any component that eventually fails. If
the processor fails itself, care must be taken to ensure that it
assumes fail-silent behavior.

host interface

ISO11898

D-PORT
RAM

GLOBAL
CLOCK

82C250

CAN BSP

BTL

D-PORT
RAM

PIC16F84A PROG
MEM

CAN bus

82C250

CAN BSP

BTL

Figure 2. Internal organization of CASCA.

The underlying data link layer of CASCA is in accor-
dance with the ISO-11898 standard that defines the CAN
protocol, except that automatic retransmissions and error

frame generation were not implemented in order to elimi-
nate the possibility of slot overlapping in case of bus errors.
The bit stream processor (BSP) encapsulates all logic for
serialization and parallelization of CAN frames, checksum,
stuff coding and bitwise arbitration control. The bit time
logic (BTL) performs bit time synchronization throughout
the reception and transmission of messages. It is responsi-
ble for maintaining the sample point at near 60% from the
beginning of every bit transmitted. To employ bus redun-
dancy, the entire data link layer can be replicated by attach-
ing another instance of BSP and BTL to the internal bus, as
suggested in Figure 2.

There are also two dual-port static RAM memories at-
tached to the internal bus consisting of an interface with
the host where state messages and control information are
constantly updated. Despite the fact that the CASCA is
essentially time-triggered, the host can also transmit asyn-
chronous messages inside its dedicated slot whenever there
is no critical data to be sent.

4.1 Clock Control

The Global Clock component encapsulates the control
logic for communication time management. Prior to execu-
tion, the Global Clock is previously loaded with the static
schedule information that is essential for protocol opera-
tion like slot size, number of slots per TDMA round and
so on. The basic unit of time is called a microtick, extracted
directly from the primary clock source, e.g. oscillator de-
vice. The length of a microtick does not need to be the same
within all nodes since hardware platforms can have different
oscillator device frequencies. Instead of that, at each node
an integer number of microticks must be configured to gen-
erate the macrotick time unit. The length of the macrotick
is a global parameter and it represents the minimum gran-
ularity of the synchronized time base. Its size must be an
accurate estimation of δmax for the system to have a consis-
tent view of time.

As the macrotick counter progresses, interrupt signals
from the Global Clock trigger significant actions to be ex-
ecuted by the PIC core such as the transmission and recep-
tion of messages. The macrotick counter is incremented up
to the end of each TDMA round. When it reaches its up-
per limit, it restarts over again to execute a new TDMA
round. In CASCA, clock correction is performed by the
Daisy-Chain algorithm as described in section 3. The BSP
component raises an interrupt signal whenever a start of
frame bit is detected within the reception window. At this
time, the PIC processor takes a snapshot of both microtick
and macrotick counters and computes the difference from
the expected arrival time. Once the message is correctly re-
ceived, that difference is added to the microtick counter thus
adjusting its local time base according to the sender’s time.



The total propagation delay �Pij used to determine the
expected arrival time of clock readings is defined as the sum
of 3 components1:

�Pij = ∆Tx + ∆bus + ∆Rx (3)

where ∆Tx is the output delay, ∆bus is the bus delay pro-
portional to the cable length and ∆Rx corresponds to the in-
put delay. Both ∆Tx and ∆Rx results from interrupt laten-
cies and execution cycles so they can be exactly determined
by simulation. On the other hand, ∆bus is a non-uniform
component because the cable length between each pair of
nodes in a bus topology may vary. The best solution would
be to statically define different compensation values which
is exactly how a TTP/C system is configured. However, this
would not only increase hardware complexity but also the
amount of memory resources that would have to be allo-
cated in the CASCA adapter. Instead of pursuing this path,
it was decided to extract maximum and minimum bus de-
lays and to use the average as a global parameter for ∆bus,
that is:

∆bus =
∆bus.max + ∆bus.min

2
(4)

From this approximation the maximum error of a clock
reading is bounded by:

ε =
∆bus.max − ∆bus.min

2
(5)

The resulting value of ε must be used to compute the maxi-
mum drift apart of logical clocks according to equation 2.

4.2 System Initialization

Once the system is first energized, no assumption can
be made about initial state of logical clocks so, a provably
correct clock initialization procedure is needed at this mo-
ment to bring all clocks close to δmax. The PIC processor
is in charge of this task whose objective is either to force
the node to adopt an existing communication schedule or to
create a new global time base without the need to rely on a
centralized time source.
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�node off

node initialization

listen time

coldstarting

normal operation

�integrating

MSG1 MSG1 MSG2 MSG3

NODE 1

NODE 2

NODE 3

Figure 3. Clock initialization procedure.

1In star topologies the hub delay must be included.

Figure 3 shows how clock initialization works. When
any node is powered on, it first listens to the bus in order
to detect ongoing communication. If a message is received
during this listen time then the node adjusts its counters ac-
cording to the contents of the corresponding message iden-
tifier that carries the current slot and TDMA round. On the
other hand, if there is no bus traffic then the node goes to a
coldstart mode on each a new time base is created. The node
that reaches its pre-allocated timeslot first will be the lead-
ing node by broadcasting a message with its own view of the
time. By receiving the leader message all other nodes set
their time variables according to its own schedule. After re-
ceiving two correct messages from the leader, all nodes start
sending messages in their respective time slots. Since the
clocks are not initially synchronized, collisions may occur if
two or more nodes reach their slot time together. When that
happens, the node with the highest priority node becomes
the leader without perceiving that a collision has occurred,
thanks to the original non-destructive bitwise arbitration of
CAN.

5 Practical Results

A network prototype consisting of 3 nodes and a serial
twisted cable was implemented using Spartan2E develop-
ment boards. Table 1 shows the resource utilization synthe-
sis report extracted from Project Navigator tool. Compared
to the original CAN protocol, the extended time-triggered
layer consisting of the Global Clock block and the PIC core
represents an overhead of near 70% of programmable re-
sources required to implement the CASCA logical block.

Table 1. Resource Utilization of the Xilinx
Spartan2E Device

Block Name slices % slice FFs % LUTs %
CAN data link 315 27 239 33 556 26
Global Clock 353 29 140 19 637 30
PIC Core 527 44 346 48 948 44

In order to verify the correctness of the bit stream pro-
cessor, the internal transmit flag was tied to TRUE in the
VHDL code to force successive collisions. The bitwise
arbitration can be clearly distinguished in Figure 4 show-
ing a scope image of Tx signals at two nodes. Thereafter,
each CASCA adapter was configured with the same TDMA
schedule consisting of 5 TDMA slots and one single TDMA
round pattern with total duration of 2ms. The macrotick
length, that is, the precision of the global time was set to
1us considering oscillator drifts of 10−5 and maximum syn-
chronization interval qual to the duration of a TDMA round.



Figure 4. Non-destructive bitwise arbitration.

Figure 5 shows stable communication just after the
startup phase in which two nodes have participated. Figures
6 and 7 shows messages from all nodes being sent after the
third node has been successfully integrated to the current
global schedule. For simplicity, all nodes send a CAN mes-
sage of 16 bits at corresponding slot.

Figure 5. Two nodes online, one ready to in-
tegrate.

6 Final Remarks

The paper presented CASCA, an optimized, time-
triggered communication architecture for safety-critical ap-
plications. Correct operation of protocol behavior and clock
synchronization was experimentally validated by means of
fast prototyping using FPGA devices. The CASCA logical
block was entirely implemented in VHDL RTL code how-
ever, off-the-shelf CAN controllers can also be used if the
following features are provided: 1) error frames and auto-
matic retransmissions can be disabled; 2) the controller is
able to raise an interrupt signal whenever a start of frame
bit is detected and 3) input and output delays are determin-
istic. As future work, the authors are involved with the de-
velopment of synthesis and modelling tools aiming to fa-
cilitate the mapping from system functional specification to

Figure 6. Three nodes online.

Figure 7. Three nodes online (zoom view).

hardware platform considering non-funcional requirements
of fault-tolerance.
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