
Flexible MPSoC Platform with Fast Interconnect Exploration for Optimal
System Performance for a Specific Application

Florin Dumitrascu, Iuliana Bacivarov, Lorenzo Pieralisi, Marius Bonaciu, Ahmed A. Jerraya
TIMA Laboratory, Grenoble France

{Florin.Dumitrascu, Iuliana.Bacivarov, Lorenzo.Pieralisi, Marius.Bonaciu, Ahmed.Jerraya}@imag.fr

Abstract
One of the key elements in Multi-Processor Systems-on-
Chip (MPSoC) design is to select the optimal on-chip
interconnect architecture, in order to maximize the
overall system performance.

This paper proposes a flexible MPSoC platform,
designed for a target application, which allows
customizing the interconnect by selecting various
architectures. It allows fast building of executable models
from architecture specifications and performance
evaluation using the cycle-accurate cosimulation.

We experimented a DivX encoder application with
three different interconnects: DMS (Distributed Memory
Server), AMBA bus and Octagon Network-on-Chip (NoC).
The simulation results relative to performance metrics
such as, average latency, throughput and execution time
allowed to compare these different interconnect
architectures, to verify the application real-time
constraints and to propose further optimizations.

1. Introduction
One of the most important steps in MPSoC design is the
selection of the optimal architecture for the on-chip
communication, under a given application workload
[6][7]. Apart from the efficiency of the computing
resources, the system performance depends on how
efficiently the interconnect can handle the application
workload.

Current design efforts are conducted to build scalable
and reusable communication architectures, using on-chip
interconnection networks instead of ad-hoc wiring [1].
Though, the communication design is still driven by the
application requirements.

A large body of research has focused on the
exploration of interconnect architectures. The most
representatives are described next.

- StepNP is an exploratory simulation environment for
exploring router applications, multiprocessor Network
Processing architectures, and SoC tools [9]. Different
NoCs, i.e. Octagon and SPIN, were integrated using a
standard communication channel named SOCP. In this
way, StepNP provided a fixed interface to the application.

Moreover, this platform was mainly oriented to Network
Processing applications.

- MPARM [10] provides a SystemC cycle-true
platform to simulate a complete multi-processor system at
the cycle-accurate and signal accurate level. It
investigated the impact of the interconnect infrastructure
on system performance at the highest level of accuracy.
However, the tests run on bus-based architectures (i.e.
AMBA and ST Bus), ignoring NoCs. One drawback of
this platform was the evaluation speed, as the simulations
run at RTL-level. Other limitation was the use of test
benchmarks instead of the real application.

- A complete platform for analysis and trade-off
exploration of MPSoC communication architectures,
providing a realistic performance analysis of on-chip
interconnects was derived in [11]. However, it did not
account for switching between different interconnect
architectures. The interconnect was fixed, and only some
parameters could be tuned for optimization purposes.

We identified the main drawbacks of the previous
exploratory platforms as: the lack of flexibility, the low
level of accuracy or the slow simulation speed.

In this paper we eliminate some of these drawbacks,
by proposing a flexible MPSoC platform able to evaluate
fast and accurately the performances of a given
application with different interconnect structures. The
platform could predict the optimal interconnect first by
switching between several interconnects (i.e. bus-based,
NoC or other dedicated structure) and second by varying
their parameters.

In this paper, our contribution is as follows.
- Flexibility: the automatic generation of various

adaptation interfaces. The adaptations are performed
between a target application and diverse interconnects
including buses, NoCs and more complex communication
structures;

- High evaluation speed: high-level evaluation models
based on cosimulation;

- Precise evaluation: on one hand cycle-accurate
models for the application and interconnect, and on the
other hand the utilization of real interconnect
implementation.

3-9810801-0-6/DATE06 © 2006 EDAA

The rest of the paper is organized as follows. Section 2
presents the used design framework. Section 3 describes
the proposed design flow for interconnect performance
evaluation: the definition of the application profile, the
switching between several interconnect models, their
adaptation and the performance evaluation methodology.
Section 4 provides implementation details on these
elements. Section 5 presents experimental results.

2. The design framework
2.1 The design flow
The flow used for the exploration of the interconnect
architecture is illustrated in Figure 1.

Figure 1. Generic MPSoC design flow providing the best
interconnect solution

- The application profile is derived from the initial
application. It is decomposed into SW modules running
on traditional ISSs and HW modules represented by
traffic generator models. In this paper, the profile is
defined as a SystemC Timed Executable Model. It will be
discussed in Section 3.1.

- The on-chip interconnect architecture is the
customizable part. We can choose from three models
available in our components library: DMS (Distributed
Memory Server) [5], AMBA AHB bus and Octagon NoC
[4]. They will be detailed in Section 2.3.

- Both the application profile and selected interconnect
are described in a SystemC subset called virtual
architecture [2]. The virtual architecture enables the
automatic composition of a high-level executable model.

- The performance evaluation of the entire architecture
is done through cosimulation, using the SystemC
environment. If the design meets imposed constraints, the
chosen interconnect will be implemented on the final chip.
Otherwise, its parameters will be tuned, or another
interconnect will be selected. The cosimulation results
show which is the optimal interconnect, with respect to
the communication workload requirements of the targeted

application.

2.2 The adaptation between interconnect and
application components

In heterogeneous MPSoC architectures, it is often the case
that the interface of the subsystems must be adapted to
interconnect APIs. The challenge consists in providing
suitable components whose role is to adapt the chosen
programming model to the communication infrastructure.

An adaptation layer is needed for this purpose. The
adapters have the main role of translating the application
communication primitives, into interconnect transactions
defined by each protocol.

In this paper, the application communicates through
message passing, by calling a set of high-level MPI
primitives. At its turn, each interconnect implements
specific communication protocols, e.g. master/slave
protocol for an AMBA AHB bus.

2.3 The interconnect design library used in the
experiment

The on-chip interconnection library contains three
candidate models: the Distributed Memory Server (DMS),
the AMBA AHB bus and the Octagon NoC. Their
structure and communication APIs are presented in this
section.
Distributed Memory Server (DMS)
The Distributed Memory Server (DMS) is a flexible and
scalable data transfer architecture for MPSoC with
massive distributed memory [5].

The used DMS is described as a cycle-accurate TLM
model. The MPI interface provided by this model acts as a
data transfer engine between the local memory of the
caller subsystem and the memories of other subsystems.
The data transfer primitives are mpi_send and mpi_recv.

void mpi_send (lch, laddr, size);
void mpi_recv (lch, laddr, size);
The targeted module is uniquely identified through the

local channel (lch) parameter. The message relative
address is denoted by the laddr parameter. The base
address for the local memory is determined at module
initialization time by calling the sram_init() primitive.
The message length is specified using the size parameter.

The synchronization between two modules is insured
by specific control signals. For instance, the initiation of a
call for mpi_send/mpi_recv by a module is blocked until
the corresponding mpi_recv/mpi_send is started by the
module connected to the other end.
AMBA AHB bus
The AMBA AHB (Advanced High-performance Bus) bus
is defined as a TLM model, using the OCCN
methodology [3]. This model provides the full accuracy of
the AMBA AHB protocol [8], in terms of read/write
transactions timings or bus arbitration delays.

The AMBA MPI interface is based on the OCCN

Application profile (fixed):
-Cycle-accurate ISS
-Traffic generator

Interconnect instance
selection

Interconnect
library

Virtual architecture
definition

Cosimulation
executable model

automatic generation

Performance
evaluation

OK?YES NO

Best Interconnect for
the targeted Application

Application-Interconnect
adapters

automatic generation

Application profile (fixed):
-Cycle-accurate ISS
-Traffic generator

Interconnect instance
selection

Interconnect
library

Virtual architecture
definition

Cosimulation
executable model

automatic generation

Performance
evaluation

OK?YES NO

Best Interconnect for
the targeted Application

Application-Interconnect
adapters

automatic generation

MasterPort/SlavePort API. The data transfer is controlled
by the Master Modules through the following primitives:

single_write (data, size, addr);
single_write_leaving (data, size, addr);
single_read (data, size, addr);
single_read_leaving (data, size, addr);
These primitives write/read a single word of data with

a length of size bytes to/from a location specified by addr
parameter. The bus is locked with the single_write/
single_read primitives and unlocked after each transfer
with the single_write_leaving/single_read_leaving
primitives.
Octagon NoC
The Octagon NoC [4] interconnects routers using a simple
and regular topology. Resources are attached to routers at
the edge of the network through Network Interfaces (NI).
The main advantage of communication through NIs is the
full decoupling of module behavior from inter-module
communication [5]. It was implemented at cycle-accurate
TLM level, using OCCN methodology [3].

The Octagon specification provides the following MPI
interface to the application:

void send (const msg_type& flit);
msg_type* recv ();

3. Performance evaluation of the interconnect
subsystem
Our final objective is to determine the best on-chip
interconnection scheme in terms of communication
performance, for a predefined embedded application. This
section presents the main steps of the design flow: the
application profile design, interconnect selection,
adaptation layer generation and performance evaluation.

3.1 Application profile definition
In order to simplify the design and benefit of a fast
simulation, the application component models act as
traffic generators. It is possible then to simulate with
clock accuracy the output trace of the real application.

The timing information necessary to simulate the
timestamp between network transactions is represented
through time annotations. They correspond to WAIT()
functions in the SystemC model. Timing information is
captured in tables depending on the chosen configuration
i.e. CPU subsystem architecture, cache size, CPU clock
frequency. It simulates the computation delay and the
times required by a CPU subsystem for operations such as
local memory access or bus grant.

3.2 Interconnect model selection
The interconnect architecture is selected as one instance
from the available models in the library. These models
can be defined in three different ways: (1) using the
virtual architecture specification, (2) using the OCCN
methodology, and (3) using an OCCN model wrapped

into a virtual component.
In this paper the interconnects are all described at

clock-accurate TLM. This is useful for fast and accurate
architecture exploration.

3.3 The executable MPSoC model
Figure 2 describes the cosimulation platform. The HW
and SW subsystems are represented by their timed traffic
generators. The interconnect structures are described at
cycle-accurate TLM.

Figure 2. The executable MPSoC model

The adaptation function between the different APIs is
provided by abstract adaptation interfaces. They mainly
transform channel access via internal ports to channel
access via external ports.

By using the virtual architecture specification, the
adaptation wrappers can be generated automatically [2].
Their structure is detailed in Figure 2.

An adaptation wrapper mainly consists of one module
adapter and one or more network adapters, one for each
network access point. The module adapter is in charge
with data conversion and channel resolution. The network
adapter realizes the protocol conversion, when it is
needed.

3.4 Performance evaluation
The considered performance metrics are latency,
throughput and execution time. They are dynamically
monitored during cosimulation, in order to analyze the
effectiveness of inter-module communication and
adaptation components. In order to acquire the
Send/Receive primitives latency and throughput, the
OCCN [3] functions named StatDelay() and respectively
StatInstantThroughput() are used.

For each interconnect (i.e. AMBA bus, DMS and
Octagon), the critical parameters (e.g. clock frequency,
NoC topology, etc.) may be tuned during the design in the
case when the performance numbers are not reached
(Figure 1, the “NO” loop).

4. Adapters’ generation
The DivX encoder application used in the experiments
was designed for the DMS interconnect. The
mpi_send/mpi_receive represents its native API. Based on
the functional principle of the DMS, this section describes
the implementation of the adapters translating the MPI
primitive calls when replacing DMS with AMBA or
Octagon NoC.

…

MPI

HW subsystems

…

Interconnect (TLM clk-accurate)

adapter adapter

Application
API

Interconnect
API

Module
Adapter
Internal

Comm.Media
Network
Adapter

API API API

SW subsystems

Interconnect API

adapter

…

MPI

HW subsystems

…

Interconnect (TLM clk-accurate)

adapteradapter adapteradapter

Application
API

Interconnect
API

Module
Adapter
Internal

Comm.Media
Network
Adapter

Module
Adapter
Internal

Comm.Media
Network
Adapter

API API API

SW subsystems

Interconnect API

adapteradapter

DMS communication principle
Figure 3 illustrates the DMS communication principle.
The links which connect a module MX to its network
access point (NA) are grouped into virtual channels
(VC_MX_NA).The module M1 sends data to modules M2
and M3.

The DMS addressing scheme defines point to point
connections. In our example these are configured as
follows:
M1 -> M2 is configured as [NA_1 : 4 – NA_2 : 0]
M1 -> M3 is configured as [NA_1 : 5 – NA_3 : 0].

Figure 3. DMS communication principle

After module initialization pi stores the base address
for local message memory of module Mi.

The data transfer from module M1 to M2 is done
through the following steps:

- M1 calls mpi_send;
- NA_1 processes the request by retrieving the

message located in module’s M1 memory at p1 +
laddr_1 address, and transferring it to the NA_2
buffer;

- data transfer from NA_1 to NA_2;
- M2 calls mpi_recv;
- NA_2 processes the request by transferring the

message from its buffer to the local memory of
module M2, at the address p2+laddr_2;

Data transfer from M1 to M3 occurs in a similar
manner.
Different interconnect cosimulation wrappers
generation for AMBA bus and Octagon NoC
In order to enable the communication through different
interconnect structures, the mpi_send/mpi_recv calls are
now processed by the adapters, instead of the DMS NA
interfaces.

The adapters operate similarly. Their main
functionalities consist in address translation and
information formatting for the corresponding
interconnect. The adapter’s functionality for the OCCN
AMBA bus and the Octagon NoC are presented in
pseudo-code in Figure 4 (a) and (b).

The mpi_send primitive is called by an AMBA
Master Module and respectively by a NoC Sender
Module. The address translation uses the laddr_1

parameter to retrieve the data from the local memory of
the caller module. The lch parameter is translated into a
valid receiver module address. For AMBA slave address-
space range, the lch value could correspond to a
hexadecimal address. For the NoC, lch will be translated
into a valid destination ID.

 (a)

 (b)

Figure 4. Send/Receive primitive implementation for (a) the
AMBA bus; (b) Octagon NoC.

The next step is sending the message over the
datapath. For the AMBA bus, the message is split into
32bit words, each preceded by a header containing
specific AMBA signals (e.g. HBUSREQ, HBURST,
HLOCK, HADDR). Each pair data + control is sent over
the bus using single_write()/single_write_leaving()
primitives. They are based on the send() primitive of the
OCCN MasterPort/SlavePort communication API [8].

For Octagon, the message will be preceded by a
header with the destination ID, source ID and the message
length. The resulted data is dispatched towards the NoC
NI, using the send() Octagon API.

The mpi_recv call is handled by the AMBA Slave
Adapter, and respectively by the NoC Receiver Adapter.
They will wait to receive data, by calling into a thread the
corresponding primitive, i.e. receive() for the OCCN
AMBA API and recv() for the Octagon API.

Then, the adapter will strip the control information and
will rebuild the data into the original message. In both
cases, the message is written into the local memory of the
receiver module, at the address specified by laddr_2.

5. Experiments
5.1 DivX application
In order to test the various interconnection schemes, we
will use the specification of a DivX real-time encoder,
illustrated in Figure 5.

(1) copy message memory block into buffer
mpi_send (lch_1,laddr_1,size)

(2) create Header; // add destID, source ID, msg. length
Data = Message;
send (Data+Header);

mpi_recv (lch_2,laddr_2,size)
(3) - call recv() into a thread

- store Data into buffer
(4) - recover the original message (strip the header)

- copy buffer into message memory block

(1) copy message memory block into buffer
mpi_send (lch_1,laddr_1,size)

(2) create Header; // add destID, source ID, msg. length
Data = Message;
send (Data+Header);

mpi_recv (lch_2,laddr_2,size)
(3) - call recv() into a thread

- store Data into buffer
(4) - recover the original message (strip the header)

- copy buffer into message memory block

(1) copy message memory block into buffer
mpi_send (lch_1,laddr_1,size)

(2) for (i=0;i<size;i++){ // segmentation
create Header; // add bus_addr
create Data; // add 32 bits from buffer
send (Data+Header);
}

mpi_recv (lch_2,laddr_2,size)
(3) - call receive() into a thread

- store Data into buffer
- if read finished, call recv_completion.notify()

(4) - wait (recv_completion)
- copy buffer into message memory block

(1) copy message memory block into buffer
mpi_send (lch_1,laddr_1,size)

(2) for (i=0;i<size;i++){ // segmentation
create Header; // add bus_addr
create Data; // add 32 bits from buffer
send (Data+Header);
}

mpi_recv (lch_2,laddr_2,size)
(3) - call receive() into a thread

- store Data into buffer
- if read finished, call recv_completion.notify()

(4) - wait (recv_completion)
- copy buffer into message memory block

p1+
laddr_1

mpi_send(4,laddr_1,size)
mpi_send(5,laddr_1,size)

API

M1
M

NA_1

45 0 0

p2+
laddr_2

API

M2
M

p3+
laddr_3

API

M3
M

DMS
NA_2 NA_3

M1

mpi_recv(0,laddr_3,size)

mpi_recv(0,laddr_2,size)
M3

M2

VC_M1_MPI VC_M2_MPI VC_M3_MPI

p1+
laddr_1

mpi_send(4,laddr_1,size)
mpi_send(5,laddr_1,size)

API

M1
M

API

M1
M

NA_1

45 0 0

p2+
laddr_2

API

M2
M

API

M2
M

p3+
laddr_3

API

M3
M

API

M3
M

DMS
NA_2 NA_3

M1

mpi_recv(0,laddr_3,size)

mpi_recv(0,laddr_2,size)
M3

M2

VC_M1_MPI VC_M2_MPI VC_M3_MPI

The DivX functionality is as follows. The Splitter
module receives a stream of non-compressed video data
(QCIF). Each video frame is split in 4 sub-frames which
are sent to 4 parallel encoding units (P0-P3). The data
processed by each of the encoding processors is then
forwarded to a Variable Length Coding (VLC) module
which performs some additional encoding and also
reconstructs the frame before forwarding it to the Storage
module [5].

Figure 5. DivX encoder application scheme

In order to map this application onto the evaluation
platform, the virtual architecture mapping is the
following. Both Splitter and Combiner modules are
mapped onto HW. All the four encoding units (P0-P3) and
the VLC are mapped onto ARM7 CPUs.

5.2 On application mapping onto AMBA bus
and Octagon NoC architectures

Application mapping on the AMBA bus
The DMS addressing scheme is identified on the base

of the lch parameters. For example, the Splitter calls
mpi_send for a write operation to P0, with the lch value
of 5, and the VLC calls mpi_recv for a read operation
from P0 by with the lch value of 0. The lch is then
translated into the corresponding hexadecimal address on
the AMBA bus.
Application mapping on the Octagon NoC

Figure 6. (a) DivX mapping over the Octagon NoC; (b) local

channel translation into a destination ID; (c) DivX executable
MPSoC model, with Octagon NoC

The NoC allows various mapping possibilities for the

application modules, with different impact over the
performance, depending on the traffic pattern. The ideal
would be to have the Splitter-P0/P1/P2/P3, P0/P1/P2/P3-
VLC and VCL-Combiner peers separated by only one hop
(number of intermediate routing nodes) over the network.
Figure 6 (a) shows the mapping used in our example.

Again address translation is necessary between DMS
and Octagon NoC. Starting from the DMS addressing
scheme in Figure 6 (b), the lch identifier associated with a
send operation is translated into a destination ID in the
range 0-7 (in the presented application, Octagon has 8
nodes).

Figure 6 (c) illustrates the executable model of the
DivX encoder with Octagon interconnection. This is
possible due to the adapters which translate application
APIs into Octagon communication primitives. The
adapters are generated automatically from the virtual
architecture.

5.3 Performance evaluation and results
The test case is a movie encoding, for 125 frames at a
resolution of 352x288 pixels. In order to make
performance comparisons and optimization proposals, we
investigated the total execution time, the average
throughput and Send/Receive latency. Each of these
metrics was computed for the modules that initiate
communication: Splitter, VLC and Combiner.

Table 1.Execution time comparison (clock cycles)

DMS AMBA bus Octagon NoC
233,689,205 233,431,813 233,154,449
Table 1 illustrates the execution times for the three

interconnects. Even if they are very close, not all of these
interconnects can be used because of the real-time
constraints imposed by the application.

Figure 7. Average throughput for Splitter, VLC and combiner,
evaluated for the three networks: DMS, AMBA and NoC.

The interconnect occupancy degree is a useful
measure for optimization purposes. It is evaluated as the
average ratio between the average throughput and the
network bandwidth. In our case, we obtain almost the
same throughputs for the three interconnects (Figure 8),
indicating that none of these networks do saturate.
Although average throughput values are similar, it will be
seen later that this may hide real-time constraints
violation.

By analyzing the latency, we can figure out if the
interconnect is fitting the given application. In the case
when the latencies exceed the real-time range, the real-
time conditions imposed for the application are violated.
In simple words, the real-time range is the time between

P0

P3

P1
P2

V
L
C

CombinerSplitter Storage

MPSoC

Video
P0

P3

P1
P2
P1
P2

V
L
C

CombinerSplitter Storage

MPSoC

Video

Combiner40VLC

VLC
3
3
3
3

P0
P1
P2
P3

Sender
5
6
7
8

l_ch
7
1
6
2

destID
P0
P1
P2
P3

Dest.

3
3
3
3

Splitter

(b)

Combiner40VLC

VLC
3
3
3
3

P0
P1
P2
P3

Sender
5
6
7
8

l_ch
7
1
6
2

destID
P0
P1
P2
P3

Dest.

3
3
3
3

Splitter

Combiner40VLC

VLC
3
3
3
3

P0
P1
P2
P3

Sender
5
6
7
8

l_ch
7
1
6
2

destID
P0
P1
P2
P3

Dest.

3
3
3
3

Splitter

(b)

two consecutive frames. Due to design constraints, the
Antenna is not buffered and it cannot be blocked. This
means that all the computations and the data transfer
should be achieved in this interval.

The latency for the AMBA bus (Figure 7 (a)) shows
that in average, the bus can handle the application
requests: 9 cycles transfer latency between Splitter and
P0-P3. However, conflicts are detected in the bus. The
large spikes, in the same figure, indicate an abnormal
functioning of the application: thus real-time constraints
are not met. However, these spikes cannot be detected by
the average throughput because they have a very low rate,
and they are over-whelmed by the average.

The latency per transaction (i.e. Send/Receive MPI)
for the DMS interconnect was evaluated at 19 cycles for
instance between Splitter and P0-P3, constant over the
whole simulation time. This is due to the DMS
communication that uses point-to-point interconnects,
without conflicts.

(a)

(b)
Figure 8. (a) AMBA bus (b) Octagon NoC punctual latency

Figure 7 (b) represents the latency for the NoC, for
Send/Receive primitives. The values are lower compared
to the other interconnects: varying between 3 and 5
cycles. This is due to the ASIC implementation of the
routers and the fact that the NoC is designed to be
congestion-free.

For systems that meet the real-time constraints (i.e.
DMS, Octagon), the designer has several optimization
possibilities. For optimization, we can push the latency or
throughput to their maximum: we can slow-down the NoC
frequency in order to save power; or reduce some of the
unused interconnects in order to save on-chip area. The
NoC advantage is that it is more flexible, easier to tune
and it offers several freedom degrees.

On the other hand, for the systems that do not meet the
constraints, the interconnect should be re-designed. For
instance, for the AMBA bus this can be solved by re-
considering the priorities, or the arbitration policy.

6. Conclusions
This paper presented a flexible platform for the
performance evaluation of the interconnect subsystem for
a target application, providing optimal MPSoC
performance. The final objective was to determine the
best on-chip interconnection scheme, from a library of
interconnect structures.

The basic principle was the automatic generation of
adapters between the application and the different
interconnect structures. In the experiments, the used
application was a DivX real-time encoder. It was defined
at the macro-architecture level, annotated with cycle-
accurate timing information, while all the interconnect
networks were at TLM cycle-accurate level. The
interconnect networks used in this paper were: the
Distributed Memory Server (DMS), the AMBA AHB bus
and the Octagon NoC. The experiments proved the
flexibility of our approach in exploring the design space
for an efficient interconnect in terms of total execution
times, average throughput and latency.

Acknowledgement
This work was supported by Medea+ Project Lomosa+ 2A708.

References
[1] L.Benini, G.de Micheli “Networks On Chips: A New SoC
Paradigm”, IEEE Computer, 2002.
[2] W. Cesario, A. Baghdadi, L. Gauthier, D. Lyonnard, G.
Nicolescu, Y. Paviot, S. Yoo, A.A. Jerraya, M. Diaz-Nava,
"Component-Based Design Approach for Multicore SoCs", DAC, New
Orleans, USA, 2002.
[3] M. Coppola, S. Curaba, M. Grammatikakis, G. Maruccia, F.
Papariello, “On-Chip Communication Network: User Manual v1.0.1”,
available online at http://occn.sourceforge.net/occn_user_manual.html
[4] F. Karim, A. Nguyen, S. Dey, and R. Rao. “On-chip
communication architecture for OC-768 network processors”,
Proceedings of Design Automation Conference, Las Vegas, NV, June
2001, pp. 678-683.
[5] S.-I. Han, A. Baghdadi, M. Bonaciu, S.-I. Chae, A.A. Jerraya,
"An Efficient Scalable and Flexible Data Transfer Architecture for
Multiprocessor SoC with Massive Distributed Memory”, DAC, San
Diego, USA, June 2004.
[6] S. Mahadevan, F. Angiolini, M. Storgaard, R. G. Olsen, J.
Sparsø, J. Madsen, “A Network Traffic Generator Model for Fast
Network-on-Chip Simulation”, DATE, Munich, Germany, 2005, pp.
780-785 Vol. 2
[7] T. Salminen and J.-P. Soininen, ”Evaluating application
mapping using network simulation.”, SOC2003, Tampere, Finland,
November 2003.
[8] AMBA Specification (Rev 2.0), ARM Limited 1999,
available online at:
http://www.arm.com/products/solutions/AMBA_Spec.html .
[9] P. Paulin, C. Pilkington, E. Bensoudane. "Network
Processing Challenges and an Experimental NPU Platform", DATE
2003, Designers' Forum, p. 64.
[10] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, R. Zafalon,
Analyzing On-Chip Communication in a MPSoC Environment, DATE ,
Paris, France, 2004, pp. 752-757 Vol. 2
[11] S. Pestana, E. Rijpkema, A. Radulescu, K. Goossens, O. P.
Gangwal, “Cost-Performance Trade-Offs in Networks on Chip: A
Simulation-Based Approach”, DATE 2004: 764-769.
[12] K.Lahiri, A.Raghunathan, S.Dey, "System-Level
Performance Analysis for Designing On-Chip Communication
Architectures", IEEE Trans. on Computer Aided Design of Integrated
Circuits and Systems, vol.20, no.6, pp.768-783, June 2001.

	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

