

GALS Networks on Chip: A New Solution for Asynchronous Delay-Insensitive
Links

G. Campobello¹, M. Castano¹, C. Ciofi¹ and D. Mangano²

¹ Dipartimento di Fisica della Materia e Tecnologie Fisiche Avanzate, University of Messina, Italy.
² Dipartimento di Ingegneria dell’Informazione, University of Pisa, Via Caruso, I-5122 Pisa, Italy.

e-mail: daniele.mangano@iet.unipi.it

Abstract
In this paper a cost effective solution for asynchronous
delay-insensitive on-chip communication is proposed. Our
solution is based on the Berger coding scheme and allows
to obtain a very low wire overhead. For instance, the
results of our evaluation show that a 64-bit link can be
built paying a wire overhead of 10% and 30 equivalent
two-input gates per wire. As a general rule, when the
number of bits to be transmitted increases, the wire
overhead decreases and the gate overhead remains almost
the same.

1. Introduction

With the System-on-Chip era, in order to provide enough
on-chip bandwidth, the shared-bus approach was replaced
by more complex hierarchical bus structures (i.e. AMBA,
STBus, etc.). However, current interconnection systems
will soon be inadequate in terms of scalability, flexibility,
performances and energy efficiency. Recently, a new
method for building a communication infrastructure
interconnecting the IP-cores in a packet-switched fashion
has been proposed [1]. This communication infrastructure
is generally known as Network-on-Chip. As it is shown in
Fig.1, the main components of the NoCs are: the routers
(or switches), the Network Interfaces (NI) and the links
(or channels). However, in order to provide the future
NoC systems with adequate scalability degree, a method
for decoupling the clocks of the IP modules is needed. In
fact, the synchronization with a single clock source is
another important issue which limits the SoCs
development ([2], [3]). A fully asynchronous approach
may be used to overcome the clock synchronization
problem, but because of the investment in the clocked
tools and techniques, synchronous design will continue to
be attractive in industry [4]. Therefore, a solution based on
GALS paradigm is expected to be the a really attractive
approach to overcome the problem [1]. Such
argumentations lead to elect the GALS-NoC paradigm as

target for developing the future complex SoC-based
systems. In the last years, many efforts have been done to
develop efficient NoC, and several NoC architectures,
emulation frameworks and synthesis flows, have been
proposed (e.g., [5], [6], [7]). Coppola at al. proposed a
framework for design exploration which enables fast
modeling and simulation through a layering approach [8].
A synthesis flow, known as NetChip, targeting fully
synchronous NoC architectures, has been recently
proposed [9]. Xpipes is a NoC architecture obtained by
means of NetChip. This NoC architecture, based on the
pipelined links, uses latency insensitive operation to
overcome the interconnect-delay problem. Solutions based
on GALS-NoC paradigm could allow to overcome several
design problems by avoiding the necessity of the timing
constraints on the clock signal. In fact, by partitioning the
system into different decoupled synchronous modules,
clock distribution among the synchronous IP-cores is not
needed and locally clock generation is possible. At
present, it is known that in order to achieve asynchronous
communication, expensive coding and decoding circuits
are needed. Furthermore, an overhead in terms of wires
has to be paid.
In this work we propose an asynchronous delay-
insensitive link implementation supporting the GALS-
NoC paradigm. Such a link is based on the Berger coding
scheme [10]. Our proposal enables to build links of any
width with low wire and logic overheads and removes the
constraints on wire propagation delays. In this way, the
back-end SoC design could be simplified and a higher
productivity and a lower time-to-market could be
achievable. Such a solution is based on the idea to exploit
the temporal order of the events for accomplishing the
completion detection. The main advantages of our
approach are the completely self-timed property, the high
degree of modularity, and the possibility of an
implementation that uses only standard and highly
optimized blocks.

3-9810801-0-6/DATE06 © 2006 EDAA

The reminder of this paper is organized as follows.
Section 2 presents the overview of our proposal and tha
way in which asynchronous links can be used in actual
SoCs. Section 3 introduces the theoretical basis of the DI
coding and provide details on our implementation. Section
4 reports a few interesting simulation results and a
complexity evaluation. In section 5, a cost comparison
with previous solutions is presented. Finally, in section 6,
some conclusions are reported.

Figure 1: Simple Network-on-Chip block diagram

2. Overview

In GALS systems, synchronous units belonging to
different clock domains communicate to each other by
means of asynchronous channels. Data synchronization is
the main issue in GALS circuits, and several solutions
have been recently proposed [11], [12]. There are two
main approaches for building GALS Network-on-Chips:
one where the links are the only asynchronous elements,
and one where the whole communication infrastructure is
asynchronous and the IP-cores are the only fully
synchronous units. The asynchronous links presented in
this paper can be used in both organizations. From the
point of view of the NoC designer, an asynchronous link
can be considered as the provider for a transport service
across the chip. The top-level view of the proposed link is
reported in Fig.2.

Fig. 2: links top-level view.

In general, two asynchronous design methodologies, and
therefore two asynchronous communication schemes, are
possible. These are Bounded-Delay (BD) and Delay-
Insensitive (DI). In the former, information on wires and
gates delays is needed, whereas in the latter is not. Since

the proposed asynchronous link implements a DI
communication, our solution requires no constraints on
the wires delays, and it guarantees the correctness of the
communications in any case.
We have chosen to provide the links with a four-phase
handshake signaling protocol.
In a GALS-NoC system, data synchronization is needed
both at the border of the network and at the switch input
ports. In order to integrate the asynchronous links in a
GALS-NoC system, suitable interfacing modules have to
manage the communication with both the link ports and
the synchronous units. We will refer to such an interface
as Asynchronous Domain Interface (ADI). Therefore, an
ADI module manages:

• The communication with either the synchronous
IP-core or the synchronous router module by means
of a suitable protocol.

• The communication with the link by means of a
four-phase handshake protocol.

• Data synchronization.

Recently, an ADI implementation for STBus protocol has
been proposed [13]. In this case, the ADI module enables
full-duplex communication with generic STBus
synchronous modules. The four-phase handshake protocol
which is used with the view to interfacing the link with the
external, works as follows:

• When no transaction is in progress, all output
signals of the TX are at 0 logic level.

• When the Transmitter IP Core sends a request and
the TX wants to start a transaction, it accordingly
drives the outputs.

• When the RX side recognizes the condition of “data
valid”, it samples the data and rises an Ack signal to
the TX.

• When the TX receives an Ack signal, it de-asserts
all its outputs.

• When the RX detects all 0s at its inputs, it de-
asserts an Ack signal.

• Finally, when the TX recognizes that an Ack signal
goes back to 0, the system comes back to the initial
condition and a new transaction can start.

3. DI codes and proposed links

DI codes have been used in many applications for error
detection and delay-insensitive communication. Their
main feature is the ability of allowing the correct
interpretation of the code word independently of the delay
of individual bits. Several delay-insensitive coding
schemes have been proposed, but, effective CMOS
implementations are needed in order to make feasible
asynchronous DI on-chip communication [14], [2]. In fact,
delay-insensitive coding schemes imply an overhead in
terms of area and wire number to be paid. This is the main

N
I

N
I

N
I

N
I

IP
core

IP
core

IP
core

IP
core

IP
core

IP
core

IP
core

IP
core

IP
core

IP
core

switch

switch

switch switch

switch switch

NI NI NI

NI NI NI

link

drawback of the DI codes, and many efforts in the
research area of the asynchronous circuits aim to devise
feasible solutions for delay-insensitive communication.
Verhoeff [15] proposed a technique for modeling DI
codes. Such a method take into considerations three main
factors: efficiency, membership test and
encoding/decoding complexity. Efficiency (WH)
measures the wire overhead with respect to the optimum
binary encoding. Such a parameter is defined as follows:

2log NWH
n

=

where N is the number of values represented and n is the
number of wires which are needed.
The membership test is related to the completion detection
function and the encoding/decoding complexity keeps into
account for the logic overhead due to the encoder and
decoder circuits. Also costs of implementations based on
the Delay-Insensitive Minterm Synthesis (DIMS) have
been analyzed [14].
Dual rail and m-of-n are well known coding schemes
which can be used for on-chip delay-insensitive
communication. In [16], Molina et al. proposed an
implementation of a delay-insensitive chip area
interconnect using dual rail encoding. Bainbridge et al.
proposed a m-of-n scheme for point-to-point on-chip links
[14].
In dual rail coding scheme, n wires are needed for
transmitting a n/2 bit data word. This coding scheme is the
simplest possible and it requires a minimum amount of
additional logic. When dual rail scheme is applied to large
and complex interconnection systems, the cost of doubling
the width of the data-path (both in terms of chip area and,
as a consequence, of propagation delays) may be
unacceptable. Therefore, different coding schemes are
needed, which may allow a reduction in the number of
additional wires, even at the cost of a significant
complication in the coding scheme. The m-of-n scheme is
a coding scheme where exactly m lines out of the n
available for transmission are at logic level one. In a
sense, dual rail coding is nothing but a particular case of
m-of-n coding when one recognizes that a 1 of 2 coding is
applied to each bit. Therefore, one may think of the dual
rail coding as a 1 of 2 coding which is applied to 1-width
“groups” of lines of the original data to be transmitted.
The concept of grouping, which may appear to be forced
in the case of dual rail coding, will have an important
impact on the actual possibility of realizing m-of-n coders
for wider link in our approach.

3.1. Link using Berger codes

The Berger code is a systematic code which is purposely
designed for error detection in data transmission. It is

composed of two parts: the information bits (D, data bits)
and check bits (CR), i.e. the binary representation for the
count of the information bits which are to 0. Obviously,
the width of R part is that needed in order to provide a
correct binary representation of the number D:

2log (1)R D= +⎡ ⎤⎢ ⎥

A detailed discussion of the properties of the Berger code
can be found in [10]. The wires overhead for a system
based on the Berger code is:

RWH
R D

=
+

Therefore, when D increases, WH decreases and one gets
a greater advantage in using this coding scheme.
Berger code has been already proposed as a means for
obtaining DI codes [17]. Our work, however, proposes a
specific architectural implementation for asynchronous,
completely self-timing, on-chip communication system
based on the Berger code.
Fig.3 shows the top-level block diagram for the new
proposed architecture.
Berger code consists of the data bits (information bits) and
the check bits. Before starting with the description of the
new architecture, it is important to stress the fact that this
asynchronous link has been designed for employing the
conventional 4-phase handshake protocol. In the block
diagram shown in Fig.3, no pipeline stage is included.
Clearly, optional pipeline stages can be used in order to
increase the throughput.

Fig. 3: Top-level architecture for the link based on the Berger coding
scheme.

The convenience in using a pipeline mechanism is
strongly dependent on several parameters such as the
transmitter clock frequency, the receiver clock frequency,
the wire delays, the communication protocol between the
transmitter and the receiver, etc. Although this is a quite
complex scenario, it is possible to state that the uniform
distribution of a few pipeline stages along the link
between the transmitter and the receiver does improve the
throughput by a factor approximately equal to the number
of pipeline stages. The situation is quite different when the
pipeline stages are located very close to one another at the
receiving end of the link, as it could be easily obtained
with our design. In such a case, the question arises

whether it is useful or not to have more than one pipeline
stage just in front of the receiver. Simulations have shown
that the improvement that can be obtained is not worth the
complication and additional area. Both the completion
detector and the barrier of c-elements which are needed
for implementing a pipeline stage, makes the
implementation of two pipeline stages too much expensive
with respect to the possible benefits that are obtained.

3.2 Detailed description

With reference to Fig.3, let us number the inputs of the
multiplexer starting from 0 to D (D is the number of wires
carrying data bits) from left to right. Let us also assume
that the multiplexer input which is selected is the one that,
according to the previous numbering, corresponds to the
value CR which is encoded in natural binary on the R
check bits.
In order to better understand the proposed asynchronous
RX block, let us first analyze how the circuit in Fig.4
works. The goal of such a circuit is to detect when all the
data and check bits have been received. Specifically, the
circuit sets the signal done only when all the bits have
been received.
As stated above, detecting when all the signals are stable
is the main problem to solve in DI communications
because delays are not known and can be different for
each different wire.
The idea is that the outputs of the sorter and the check bits
drive the multiplexer according to different directions. For
the sake of clarity, let us take into consideration the
following example. Let us suppose that at the initial state
all the bits (both check and data bits) are zero and that the
string "11101010" represents the data bits to be sent. The
output of the sorter will be initially composed of all zeros
("00000000") and changes to "00000001" after the first
data bit is propagated.
The number of ones at the output of the sorter will grow,
from the rights to the left, until reaching "00011111"
when all the ones have been propagated. Therefore, the 4-
th output of the sorter will be one only when all the data
bits will be received.
Let us now consider the check bits. At the beginning, the
check bits are all zero and therefore the multiplexer input
which is selected is the leftmost one on the left and the
done signal is 0. The signal done does not change even
when a few information bits have been already received.
For the above example, the corresponding check bits will
be "0011". If only one of the 1 bits is received, the second
or the third output of the sorter will be selected and the
done signal will remain to zero. Finally, when all the 1
check bits are received, the 4-th output of the sorter will
be selected and the done signal will be set to one thus
indicating that all the signals have been received.

On the basis of these observations, the operation of the
entire link can be described in some detail. The operation
of the TX section is quite simple:

• The adder has to count the sum of 0s, which is
needed to build the Berger code. Obviously, the
sum of 0s is obtained by inverting the logic state of
the input bits.

• When the Req signal at the input port is at the low
logic state, all the bits of the Berger code are low
because of the presence of the AND barrier.

• The delay on the Req signal guarantees that all the
bits of the Berger code are forwarded only after that
they are stable at the input of the AND barrier (this
because the adder could not be hazard free).

The RX must implement a few mechanisms:

1. Recognizing the situation when all the information
bits are stable, in order to generate one request to
the output port (completion detection).

2. Recognizing the situation when all the information
and check bits are de-asserted, thus allowing to de-
assert the request at the output port.

For implementing the mechanism 1, the use of the two
standard circuits named sorting network (or sorter) and
multiplexing network (or multiplexer) are proposed. The
sorter enables to detect how many 1s are present among
input bits, and several implementations have been
proposed in the literature [18]. With reference to Fig.4, the
operation of the completion detector for the Berger code
can be summarized as follows:
• As soon as the information bits start going from the

logic state 0 to the logic state 1, the same number of
output bits of the sorter goes from the logic state 0 to
the logic state 1 in the order that goes from the right
to the left.

• For each check bit going from logic state 0 to logic
state 1, an input of the multiplexer at the right of the
previous one will be selected and the logic state of
this input will be the one present on the done signal.

• In any case, when either information bits or check bits
are not stable, the selected input of the multiplexer is
at the logic state 0.

• The done signal will go to the logic state 1 only after
that all the 1s contained in the information bits and in
the check bits become stable.

For mechanism 2 implementation, two multi-inputs OR
gates have been used, one for recognizing the situation
when all the information bits are at logic state 0, and one
for recognizing when all the check bits are at the logic
state 1. The outputs of these gates are connected to the
input of another OR gate; this port generates a signal
(namely return in Fig.3) which rises when at least one

information or check bit is high and falls when all the
information bits and check bits are low.
If the done signal goes high, then the Req signal goes
high; on the other hand, if the done signal goes low, the
Req signal cannot return to logic state 0 before the return
signal goes low. For implementing this behaviour, we
have connected the return and done signals to the inputs
of the c-element shown in Fig.3. C-element (or Muller
cell) is a key component for implementing asynchronous
systems [2].

Fig. 4: Completion detector for the link based on the Berger coding

scheme.

4. Simulation results and complexity

A VHDL model for the proposed link has been developed,
in order to perform a functional verification. A test-bench
for the design space exploration and the testing of our link
has been designed too. Such a test-bench is built on top of
the modelsim simulator. It includes a transmitter, a
receiver and a software module. Such a software module
allows to set the simulation parameters and it also enables
the acquisition and the evaluation of the results, the
visualization and the optional storing of the simulation
results when the simulation is running or when it stops.
Some tests have been performed by means of our test-
bench. In Fig.5 performance of a link with no pipeline,
with a single pipeline stage and with two pipeline stages
which are very close to one another are reported. The
throughput shown in figure is normalized with respect to
the max value. Pipeline stages have been assumed to be
near to the receiver, the transmitter frequency was
10MHz, and wire delays spanning from 180 to 310 ns
have been used.
An evaluation of the complexity in terms of equivalent
two-input logic gates has been performed. Tab. 1 shows
the results of our evaluation. In the table the number of
bits to be transmitted (n), the cost of the adder (SUM), the
cost of the sorter (SORT), the total cost (C), the number of
added wires (AW), the wire overhead (WH) and the ratio
between the total cost, the number of bits to be transmitted
(C/n) and the latency introduced by the asynchronous
transmitter and receiver (T) are reported. For the above
evaluation we considered that a n-bit sorter can be realized
as a Batcher’s sorting network [18]. Therefore, if the
number of inputs is n, about ½nlog2

2(n) gates are required,
placed on ½log2(n)(log2(n)+1) levels. For the adder we

considered a parallel counter solution. A conventional
CMOS realization of a parallel counter involves a number
of full adders arranged in a tree.

Pipeline impact on the Throughput

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

0 0,5 1 1,5 2 2,5 3 3,5 4

Frequency of the receiver clock (MHz)

Th
ro

ug
hp

ut

Two stages
One stage
Pipe less

Fig. 5. Throughput vs. receiver clock frequency.

Swartzlander reports that the number of FA's for an n-
input counter to be in the order of n-log2(n) [19]. We
assumed that a full-adder can be implemented with 5 gates
and therefore that the adder block needs about 5n gates.
The wire overhead is that due to the sum bits and to the
acknowledgment signal, that is log2(n)+1.
By looking at the table it is possible to conclude that when
the number of bits increases, the wire overhead decreases,
while the cost per bit (C/n) also increases. These results
can be exploited for choosing the suitable link width and,
possibly, by using a proper strategy for grouping a few
links in order to obtain a wider one.

Tab.1. Results of the cost evaluation.

As far as the latency that is introduced by the
asynchronous transmitter and receiver is concerned, it can
be estimated considering the sum of the delays due to the
adder, sorter and multiplexer (see Fig. 3). If we consider
an unitary delay for a gate, a two gates delay for a full
adder and a tree based architecture for the multiplexer (i.e.
2log2(n) gates on its critical paths), the latency can be
estimated as:

2 2
1 log () [log () 9]
2

T n n= ⋅ +

5. Comparisons

In this section we compare the cost of the proposed

asynchronous interface with those of other solutions
presented in previous works. In [14] the authors report the
costs for several asynchronous delay insensitive solutions

expressed as the number of transistors-per-bit for 32-bit
bus. Despite the cost model, which is based on the Delay
Insensitive Minterms Synthesis, is a bit different with
respect to the one used in this paper, we can compare our
solution by considering 6 transistors for every gate (that is
the same number of transistors which is considered in the
above cited paper for two inputs gates). Even if not all the
gates used in this paper can be considered as basic two
inputs gates, this will simplify the evaluation and will give
us results that are on the same order of magnitude of
actual values. Tab.2 reports the number of transistors and
the wire overhead for the proposed solutions and those
presented in [14] in the case of 32-bit bus.

Code WH Cost
Dual-rail 0.5 380

1-of-4 0.5 1340
2-of-4 0.35 3120
3-of-6 0.28 9500
2-of-7 0.37 10070

Piestrak (Berger) 0.14 11700
Proposed Solution (Berger) 0.16 4510

Tab.2. Costs and wire overheads for different DI codes.

As it is possible to observe from Tab.2, the proposed
solution has a cost which is comparable with that of some
m-of-n solutions but with a wire overhead which is about
one half. Furthermore, in comparison with other Berger's
based solutions, it has comparable wire overhead with a
cost that is less than one half.

6. Conclusions

In this paper a new solution for asynchronous delay-
insensitive on-chip communication has been proposed.
NoC paradigm appears to be the future architecture of the
VLSI systems. At present, a GALS approach seems to be
the only one able to support the challenge of building
high-scalable systems. However, effective CMOS
implementations of asynchronous delay-insensitive links
are needed. We proposed a technique for building
asynchronous links based on the Berger coding scheme.
The results of our evaluation show that a 64-bit link can
be built paying a wire overhead by 10% and 30 equivalent
two-input gates per wire. As general rule, we discovered
that when the number of bits to be transmitted increases,
the wire overhead decreases and the gate overhead
increases. We also developed a VHDL model of our link
and a test-bench for the design space exploration and the
testing has been implemented.

References

[1] L. Benini and G. De Micheli, “Networks on chips: A new

SoC paradigm”, Computer, 35(1): 70-78, Jan. 2002.

[2] A. Davis and S.M. Nowick, “An Introduction to
Asynchronous Circuit Design", Technical Report UUCS-
97-013, Computer Science Department, University of Utah,
Sep. 1997.

[3] J. Sparso, “Future networks-on-chip; will they be
Synchronous or Asynchronous?” SSoCC’04, 13-14 Apr.
2004.

[4] S. Moore, G. Taylor, R. Mullins, P. Robinson, "Point to
Point GALS Interconnect", Proc. Of ASYNC'02,
Manchester, UK, Apr. 2002.

[5] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, A.
Scandurra, “Spidergon: a novel on-chip communication
network”, Proc. IEEE International Symposium on System-
on-Chip 2004. 16-18, p. 15, Nov. 2004.

[6] P. Guerrier and A. Grenier, “A Generic Architecture for
On-Chip Packet-Switched Interconnections,” Proc. IEEE
Design Automation and Test in Europe (DATE 2000),
IEEE Press, Piscataway, N.J., 2000, pp. 250-256.

[7] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez,
and C. A. Zeferino, “SPIN: A scalable, packet switched,
on-chip micro-network,” in Proc. Design Automation Test
Eur., 2003.

[8] M. Coppola, S. Curaba, M.D. Grammatikakis, G.
Maruccia, F. Papariello, “OCCN: A NoC Modeling
Framework for Design Exploration”, Journal on System
Architecture, vol. 50, pp. 129- 163, February 2004.

[9] L. Benini, G. De Micheli, D. Bertozzi, A. Jalabert, S.
Murali, R. Tamhankar, S. Stergiou, “NoC Synthesis Flow
for Customized Domain Specific Multiprocessor Systems-
on-Chip”, IEEE Transaction on parallel and distributed
systems, Vol. 16, No. 2, Feb. 2005.

[10] J.M. Berger, “A note on error detection codes for
asymmetric binary channels”, Inform. Contr., vol. 4, pp.
68-73, Mar. 1961.

[11] R. Dobkin, R. Ginosar, C. Sotiriou, “Data Synchronization
Issues in GALS SOCs”, Proceedings, Tenth. International
Symposium on Asynchronous Circuits and Systems
(ASYNC’04), April 2004, pp. 170 - 179.

[12] T. Chelcea, S. M. Nowick, “Robust Interfaces for Mixed-
Timing Systems”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Volume: 12, Issue: 8, Aug.
2004, pp. 857-873.

[13] A. Scandurra, S. Pisasale, D. Mangano, “STBus
Asynchronous Decoupler: an answer to the IP integration
issues in future technologies", IP-SOC 2004, Dec. 2004.

[14] W.J. Bainbridge, W.B. Toms, D.A. Edwards, S.B. Furber,
“Delay-Insensitive, Point-to-Point Interconnect using m-of-
n Codes”, Proc. IEEE Ninth International Symposium on
Asynchronous Circuits and Systems (ASYNC’03).

[15] T. Verhoeff, “Delay-insensitive codes: an overview”,
Distributed Computing, 3(1):1-8, 1988.

[16] P.A. Molina, Peter Y.K. Cheung, “A Quasi Delay-
Insensitive Bus Proposal for Asynchronous Systems”, 3rd
International Symposium on Advanced Research in
Asynchronous Circuits and Systems (ASYNC '97).

[17] S.J. Piestrak, “Membership test logic for Delay-Insensitive
codes”, Proc Async ’98, San Diego, California, April 1998,
pp194-204.

[18] K.E. Batcher, “Sorting Networks and their Applications”,
Spring Joint Computer Conference 1968.

[19] E.E Swartzlander, “Parallel Counters”, IEEE Trans.
Computers 1973.

	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GulimChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MingLiU
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Sshlinedraw
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vietnamesefont
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 /ITA (Usare queste impostazioni per creare documenti PDF adatti per la stampa e la visualizzazione di documenti aziendali. I documenti PDF possono essere aperti con Acrobat e Reader 5.0 e versioni successive.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

