
Networks on Chips for
High-End Consumer-Electronics TV System Architectures

Frits Steenhof1, Harry Duque2, Björn Nilsson2, Kees Goossens3, Rafael Peset Llopis1

1 IC Lab, Philips Consumer Electronics, Eindhoven, The Netherlands
2 Department of Information Technology, University of Lund, Sweden

3 Philips Research Laboratories, Eindhoven, The Netherlands
{frits.steenhof,kees.goossens}@philips.com

Abstract

Consumer electronics products, such as high-end (digital) TVs,
contain complex systems on chip (SOC) that offer high compu-
tational performance at low cost. Traditionally, these SOCs are
application-specific standard products (ASSPs) with limited pro-
grammability. We describe why TV SOCs must become more flex-
ible, and why companion chips together with networks on chips
(NOC) are a crucial enabling technology. In particular, networks
that span multiple chips will become important in the near future.

We demonstrate our ideas by extending a commercially-
available SOC for picture improvement in high-end TVs with the
Æthereal NOC. Our first unoptimised results indicate that replac-
ing the original interconnect (consisting of dedicated links and
multiplexers for bypasses) by programmable NOC increases the
SOC area by 4% and its power dissipation by 12%. The new,
flexible SOC allows new tasks to be spliced in at any point in the
task graph. Both analytical performance verification and system
simulations at RTL VHDL show that the extended SOC meets its
functional requirements. Using the Æthereal design flow the ex-
tended architecture was designed, implemented, and verified in 12
person months.

To the best of our knowledge, this is the first application of a
NOC to a commercial SOC. The quantitive results indicate that
even retrofitting a NOC to an existing architecture is beneficial at
acceptable cost.

1 Introduction

Televisions (TV) are consumer-electronics devices that are
split in three segments: low end, mid end, and high end.1 The fo-
cus for low and mid end TVs is primarily on low cost. The ICs in
these products are produced in high volumes, and their function-
ality is highly tuned. Hence single application-specific standard
products (ASSPs) are the preferred implementation. The situation
for high-end TVs significantly differs, however. To be leading in
the market as a whole, branding is important, and it is imperative
to be present in the high-end market segment. High-end products

1Although we focus on TVs in this paper, the arguments presented here
hold for many other consumer-electronics devices, such as mobile phones
and set-top boxes.

serve as demonstrators for the latest technology and highest qual-
ity. Thus, innovation first takes place in the high-end segment, and
after some time the mid and low-end follow. Hence, the focus is
on a high innovation rate and high performance. Price margins
in the high-end segment are considerably higher than in the low
and mid-end. As a result, although smaller in terms of volume,
the turn-over of the high-end segment is comparable to half of the
mid-end segment.

High-end TVs are differentiated by picture quality. Many ad-
vanced techniques are used, such as [9]:

• standard-definition and high-definition pictures: horizontal
and vertical scaling;

• higher picture rates: 100Hz with digital natural motion;
• multiple windows: picture in picture, split windows;
• contrast improvement: sub-pixel-based luminance transient

improvement and dynamic contrast;
• colour improvements: colour-dependent sharpness, green

enhancement, blue stretch, skin-tone correction;
• 3-dimensional digital noise reduction.

A high-end TV contains megabytes of embedded software, and
easily performs 400 GOPS [13, 20].

Companion chips

The SOCs for all market segments are based on the Philips’s
Nexperia Home platform [7]. In fact, all but the simplest TVs use
multiple chips (or dies: system in a package), for which there are
several reasons.

First, external (DDR) memory chips are used to store the large
amounts of data (e.g. video frames for temporal upconversion,
noise reduction, and de-interlacing [9, 13, 20]).

Second, TV SOCs are sold by Philips Semiconductors to cus-
tomers other than Philips Consumer Electronics. To ensure that
this does not conflict with the goal of differentiation for the high-
end segment, only a subset of TV functionality is offered to non-
Philips customers during a certain lead time. In other words, new
differentiating features are not sold to competitors for a certain
period. Conversely, competitors may have proprietary function-
ality for differentiation of their TV sets, which they do not wish
to be integrated in a Philips solution. This leads to the concept

1

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



of a companion chip that encapsulates differentiating functional-
ity. Companion chips are usually made by Philips Consumer Elec-
tronics, and are not available to competitors. The common, non-
differentiating functionality can be sold as a separate chip to other
customers. The larger production volume yields a lower price for
the common functionality.

Third, companion chips are used to manage the different in-
novation rates in the different market segments (low in low end,
and high in high end). To maximise innovation (and minimise
time to market) in the high-end segment, new functionality is im-
plemented in preferably-programmable, lower-volume companion
chips. Later, this functionality is optimised and merged with the
high-volume main chips, to minimise cost. This so-called water-
fall model is used to manage the migration of functionality from
the high-end to the mid and low-end SOCs.

Fourth, companion chips provide more flexibility than pro-
grammable components in a single SOC. Flexibility can be
achieved in a SOC by including programmable components such
as SIMD [1] and VLIW [22, 24] processors, and embedded
FPGA [6]. However, in all cases the computation and/or storage
capacity of these components is fixed when the SOC is designed.
With companion chips, this decision is taken later, when more is
known about the added functionality, and a better (i.e. cheaper)
fit can be achieved. Moreover, programmable ASSP solutions do
not offer sufficient computational power for the latest high-end
functionality implemented in companion chips, which tend to be
ASICs.

Finally, companion chips reduce development risk. Different
existing or potential new functions will in general have different
requirements. With a single SOC, a superset of all requirements
must be instantiated [20], whereas otherwise multiple specialised
companion chips can be used. The latter also reduces the signifi-
cant risk of developing a single very complex SOC.

In this paper, we aim to prove that NOCs are a mature technol-
ogy that can be applied beneficially even to existing SOC architec-
tures. In particular, retrofitting a NOC in a commercially-available
SOC for picture improvement in high-end TVs, makes that SOC
more flexible and re-usable. Using NOCs across multiple chips
(e.g. a main chip with companion chips) has additional advan-
tages, as described above.

In the remainder of this paper, we first describe a particular
companion chip for high-end TVs, and how it can be used in com-
bination with PNX8550 (also known as Viper2) (Section 2). In
Section 3 we explain why NOCs [3] are a key enabling technology
for building systems containing multiple (companion) chips. A
new SOC architecture for the companion chip, containing a NOC
is defined in Section 4. Section 5 quantitively compares the origi-
nal and extended architectures. Section 6 concludes.

2 Current TV System Architectures

Figure 1 shows an example TV system, with a main TV chip
PNX8550 [13, 21] and a companion chip, each with an external
memory. (Multiple companion chips are also possible.) The main
SOC is the master of the system; it interacts with the user, TV
source, TV display, and peripherals, and it configures the compan-
ion chip(s). The main SOC contains some 60 IP blocks, and the
companion chip (large) 9 IP blocks. The main chip and companion
chip communicate using a high-speed external link (HSEL), which
can be implemented with a proprietary or standard link-level inter-

connect technology, such as PCIExpress [19]. (The connections to
the external memories use the standard DDR(II) interface.) Using
the HSEL, the companion chip(s) can use the external memory of
the main chip, in addition to their own external memory.

Functionality of the system is usually defined as a collection of
hundreds of task graphs (also called modes or use cases). There
are several reasons for the high number of task graphs.

First, the diversity in I/O: some 100 source formats (e.g. VGA,
ATSC, DVB, DAVIC, analogue) and around 50 display types have
different characteristics such as lines, pixels, frequency, and mode
(standard, film).

Second, based on source, display, and user preferences, differ-
ent picture-improvement functionalities, and various GUI modes
(picture in picture, split window, etc.) can be combined.

The third reason is that traditionally a single SOC is defined
that implements all task graphs for all possible applications of the
SOC (“superset approach” [20]). This maximises the production
volume, and hence lowers the cost. However, this results in a com-
plex single-SOC solution. The companion-chip approach splits
the functionality over multiple simpler SOCs. The system is then
composed by mixing and matching a main SOC with (multiple)
different companion chips. Because task graphs will span all chips
it is essential that the composition of main chip and companion
chip(s) is easily programmable. The dashed line in Figure 1 shows
a task graph consisting of 11 IP blocks that spans a main chip,
companion chip, and two memories. Networks on chips will play
an important role here, as we shall see.

In the following section we discuss how companion chips and
NOCs together can reduce the complexity of the system solution.

3 The role of NOCs for
TV SOC Architectures

In the introduction we identified the trend to partition system
functionality over multiple chips or dies (system in a package). Ul-
timately, however, the multiple chips implement a single system.
Hence it is important to be able to design a system as a whole, and
then to be able to seamlessly distribute it over multiple chips. Al-
ternatively, a given combination of (companion) chips should be
easily combined to a working system.

Networks on a chip [3–5, 11] promise to ease the design of
complex SOCs because they: (a) structure and manage wires in
deep submicron technologies, (b) use wires efficiently through
sharing, (c) scale better than busses, (d) are programmable for
multiple and new task graphs, and (e) decouple computation
from communication through well-defined interfaces, enabling IP
blocks and interconnect to be designed in isolation, and to be inte-
grated more easily.

The rationale for networks on a chip has been the need for scal-
able high-performance interconnects for SOCs, but until now, their
scope has been limited to a single chip. We propose that the scope
of NOCs should be extended to transparently span multiple chips.

Networks on different chips are connected through high-speed
external links (HSEL). There are a number of issues to be resolved,
such as different characteristics of on-chip and off-chip links per-
haps requiring bridges, end-to-end flow control, addressing, and
routing. Basic solutions for all these issues have been identified
for the Æthereal NOC.

As a result, we obtain the flexibility to easily combine multiple
(companion) chips to a single system, i.e. compose task graphs on



Figure 1. The main TV chip, companion chip, and external memories.

different chips to a single task graph. In particular, when a com-
panion chip is an FPGA, new systems can be built very quickly.
If the FPGA is configured with a number of IP blocks intercon-
nected by a NOC [15,18] (routers, network interfaces, and perhaps
a HSEL bridge as suggested by the dark boxes in Figure 1), then
low-cost main chips implemented as an ASIC or ASSP can be eas-
ily and quickly combined with the latest features implemented in
FPGA.

Currently, systems are built from several companion chips that
are combined in an ad hoc manner. NOCs should make this pro-
cess more structured, simpler, and faster.

To illustrate and quantify the role of NOCs in companion chips,
we modified an existing TV companion chip by replacing its ded-
icated interconnect by a NOC with a port dedicated to a HSEL.
Section 4 describes the original and modified architectures, which
are compared quantitively in Section 5.

4 TV SOC Architecture with NOC

In this section we briefly describe the architecture of a
commercially-available TV companion chip, and a version of the
SOC extended with a NOC.

4.1 Original architecture

The TV companion chip contains 9 IP blocks for enhancing
video (some IP are large subsystems). Their processing order is
fixed, except for one IP block (horizontal scaler H), which can
appear at one of two places in the processing pipeline. The inter-
connect for the SOC consist of dedicated links (wires), and some
bypass logic (multiplexers) for the horizontal scaler. Video data
enters and leaves the companion chip through a single HSEL. De-
pending on the mode and location in the processing chain, pixel
data is 8, 9, or 10 bits in 4:4:4, 4:2:2, or 4:2:0 Y:U:V format. Pixel
data is augmented with 4 bits of side-band information (e.g. end
of field). All IP blocks use a streaming data protocol (DTL peer-
to-peer streaming data [23]).

The goal of enhancing the SOC with a NOC is to improve its
flexibility and scope for re-use. For example, an improved version
of an algorithm implemented by an IP block may have become
available, and we would like to upgrade it. Or, a new function

becomes available, and we would like to insert it in the processing
pipeline, which may require changing the order of IP blocks.

4.2 New architecture

To address these issues, we should replace the dedicated inter-
connects of the main chip and the companion chip by a NOC. We
have sketched how the former could be done in [13]. In this pa-
per we take one more step, and replace the dedicated interconnect
of the companion chip by an Æthereal NOC [12, 25], as shown in
Figure 2. The NOC is shown on a shaded background, with its
components (routers R, network interface kernels K, and network
interface shells S). The number of master (M) and slave (S) ports
are shown at each NI. The NOC enables a programmable order of
IP blocks. The SOC’s input and output are shown by the HSE-
LIO block, which directly connects to two processing blocks, for
legacy reasons. A new HSEL to attach another companion chip,
such as an FPGA, is directly connected to two master and two
slave NI ports. The IP blocks include a horizontal scaler (H), two
new blocks (NB1, NB2), and a control processor (C), which will
be discussed below.

The dashed line in Figure 2 illustrates a task graph that includes
a new block (NB2) on another companion chip.

4.3 Multiple data formats

A particular IP block may, in different modes, receive or send
pixel data in different formats, but a network interface (NI) ker-
nel port has a fixed width (e.g. 32 bits). The function of the NI
shell [25] is to efficiently pack 8, 9, or 10 bit pixels in 4:4:4, 4:2:2,
or 4:2:0 formats in multiple words of 32 bits, depending on the
mode. In the original architecture 4 bits of side-band information
were sent with every pixel, even though the information changed
only very infrequently. With dedicated point-to-point wires, this is
optimal in terms of bandwidth and power dissipation. For a NOC,
however, highly repetitive information wastes shared bandwidth
and dissipates power. Hence, in the new architecture side-band
information is sent only when it changes. A 32-bit word there-
fore contains a 1-bit header, identifying it as a data message or a
control message. The former consists of three pixels (of 8, 9, or
10 bits), and the latter of three 4-bit side-band information items.



Figure 2. Architecture of companion chip with
network on chip.

In this way the volume of side-band information is reduced from
12%-33% in the original SOC to 1% in the new version. A sim-
ple multi-format NI shell was implemented, to pack 4:4:4, 4:2:2,
4:2:0 pixels in 3, 2, and 1 words respectively. This shows that
decoupling of protocol-specific functionality (in the NI shell) and
the protocol-independent functionality (in the unchanged NI ker-
nel) works well in practice [25].

4.4 Task graphs

The companion chip implements hundreds of hard-real-time
task graphs. The NOC must support all of them, with a guar-
anteed bandwidth and latency. At the time this experiment
was performed, automatic NOC dimensioning based on multiple
task graphs was not yet supported by the Æthereal NOC design
flow [11]. A NOC instance and IP mapping was therefore speci-
fied by hand.2 However, configuring a given NOC with multiple
task graphs is automated, and entails buffer sizing, path finding,
TDMA slot allocation, etc. [14, 25]. For all task graphs, the per-
formance verification tool in the Æthereal design flow analytically
verifies that the NOC hardware and NOC configuration correctly
implement the specified task graph [10]

Recall that the reason to insert a NOC in the companion chip
is to be able to replace existing IP blocks with new functionality,
or to insert new functionality at any point in the task graph. New
functionality is implemented on another companion chip, commu-
nicating using a new HSEL. For example, two new IP blocks (NB1
and NB2 in Figure 2) on the new companion chip with a master
and slave port each, can be inserted anywhere in the task graph.
(An example is given by the dashed line in Figure 2.) The task
graphs were modified to reflect this requirement. The worst-case

2Multi-task-graph NOC mapping and configuration have been auto-
mated since this work [14, 16].

task graph contains 17 connections with a cumulative bandwidth
requirement of 2 GByte/sec. The mapping of IP blocks to NIs bal-
ances the bandwidth over the NOC to reduce contention, and thus
the number of TDMA slots, buffer sizes, and latency.

4.5 NOC

As a result of the (verified) NOC dimensioning and configu-
ration, a 2× 2 mesh with routers of arity 3, 4, and 5 is used. The
TDMA slot table contains 20 slots. A total of 10 IP blocks are con-
nected to the 8 NIs, using 38 NI ports with one connection each.
One additional port per NI (8 total) is used for programming the
NOC [25]. The number of master (M) and slave (S) IP ports of
each NI is shown in Figure 2.

A new NI shell architecture (see 4.3) was designed and im-
plemented. The RTL VHDL of the complete NOC (routers, NI
kernels, and NI shells) is automatically generated by the Æthereal
design flow. The NOC was integrated with the unmodified RTL of
the IP blocks of the original companion chip.

4.6 Configuration and simulation

The Æthereal NOC is (re)configured at run time with the re-
quired task graph using memory-mapped IO [12]. We modelled a
control processor that is directly connected to the NOC (block C in
Figure 2). In a definitive implementation the MIPS control proces-
sor on the main chip [13] would run the embedded reconfiguration
software. This is not an issue, because the NOC is programmed
using the NOC itself as a control interconnect, and the location of
the control processor in the NOC is not important. Moving the
reconfiguration software to another processor requires no changes
to either NOC or embedded software.

To simulate the entire original system (main chip PNX8550,
companion chip, and two DDR memories), the RTL VHDL de-
scription of the companion chip was used, together with a high-
level C model of the main chip. The same set-up was used for the
modified companion chip, i.e. original RTL VHDL of IP blocks
and RTL VHDL of the NOC were simulated with a high-level
model of the main chip. Both simulation and analytical perfor-
mance verification proved the new architecture functionally cor-
rect.

In the next section we compare original and extended compan-
ion chip architectures quantitively.

5 Results

The original companion chip uses wires for direct IP block to
IP block connections, with multiplexers for a few bypasses. This
is obviously hard to beat in terms of area and power dissipation
(maximum correlation of data). In this section we look at the addi-
tional cost to provide the flexibility of a second HSEL and flexible
IP block interconnection provided by the NOC.

5.1 Frequency

The original companion chip runs at 100 MHz in a CMOS 0.13
micron technology. In the extended version, the IP blocks run at
100 MHz, and the NOC at 300 MHz, in a CMOS 0.13 micron
technology. The NOC can run up to 500 MHz but the raw link



bandwidth of 1.2 Gbit/sec (32 bits times 300 MHz) is sufficient
for the task graphs.

5.2 Area

The area of the new companion chip is 4% larger than the orig-
inal. Figure 3 shows that the routers cause 22% of the increase in
area, the NI kernels 60%, and the NI shells 18%. The area num-
bers of the NI kernels and routers are produced by the Æthereal
design flow, based on extrapolations of a number of router and
NI instances (testable, lay-out with back-annotated timing). These
area numbers are for a NOC running at 500 MHz; they will be an
over-estimate because here the NOC runs at only 300 MHz. The
routers support both guaranteed-throughput (GT) and best-effort
(BE) traffic. The BE traffic class is only used for configuration,
and using GT also for this traffic would reduce the router area by
a factor 4 [12]. The NI kernels use most area (60%) because they
implement the per-connection buffers at the edge of the network,
containing a total of 2608 32-bit words. There are a total of 46 NI
ports each supporting one connection (38 functional ports, and one
port per NI (8 total) for programming the NOC). With two queues
per port (one for each of the request and response traffic), queues
are on average 28 words deep (2608 words / ((38+8) × 2) queues).

Figure 3. Relative contributions to increase in
area.

5.3 Power dissipation

The Æthereal design flow produces power dissipation estimates
through flit-level simulation of the NOC [8] and then computing
the power dissipation of the entire NOC using the power dissipa-
tion models of the NOC components. For the most demanding task
graph, the power dissipation increases by 12%. Figure 4 shows
that the largest percentage (54%) is due to the NOC clock, fol-
lowed by the NOC wires (18%). Wire lengths of IP block to NI of
0.8mm, and intra-NOC wires of 1.1mm were used. The high cost
of clocking is caused by Æthereal’s synchronous implementation,
to offer performance guarantees (guaranteed throughput and la-
tency). Note that the frequency of the NOC is constant for all task
graphs, and dimensioned for the worst case (most demanding task
graph). Promising recent results show that scaling the frequency
and operating voltage of the NOC based on the required load per
task graph can lead to average savings of 50% [17]. A 6% increase
in power dissipation is acceptable for stationary systems.

Figure 4. Relative contributions to increase in
power dissipation.

5.4 Latency

Latency is not a major concern in streaming systems, such as
the video-processing application. But in any case, for the most de-
manding task graph, the additional latency introduced by the NOC
for the whole processing pipeline of the companion chip (HSEL
input to HSEL output) is 126 microseconds, or just 10%. Part
of the increase in latency is due to the NOC latency, but most
is caused by the fact that the connections in the task graphs are
not dimensioned for the peak bandwidth of the IP blocks, but
for the average bandwidth. As a result, non-uniform processing
speeds (in particular, above-average bursts) increase the total la-
tency. Allocating more than average bandwidth will reduce the
total latency. In computing the performance of the system as a
whole, both the guaranteed communication performance and the
computation performance must be taken into account therefore [2].
The latency discussed above does not include the time to config-
ure the NOC, which is 118 microseconds, because this happens
infrequently (when the task graph changes).

5.5 Simulation and verification

It requires some 10 hours to simulate one standard-definition
frame on the RTL VHDL of the original companion chip and a
high-level C model of the main chip. The extended version of
the companion chip simulates 15% to 60% slower, depending on
the task graph. This is due to the additional circuitry introduced by
the NOC. Moreover, the NOC clock is a factor three faster than the
original clock, leading to an increase in the number of simulation
events.

The analytical performance verification tool [10], which is part
of the Æthereal design flow takes only seconds to verify a task
graph. The SOC performance (the timing of the data) can be veri-
fied analytically, but limited simulations are still required to verify
the functional behaviour (the data values).

5.6 Design flow

The Æthereal NOC design flow comprises NOC generation,
configuration, simulation, and performance verification [11]. As
described in Section 4.4, all but the first step were used. The NOC
was dimensioned manually, together with an IP block port to NI
port mapping. Recent enhancements to the design flow automate



multi-task-graph NOC mapping and configuration [14, 16, 17], re-
moving the need for manual mapping. The NOC topology and
IP mapping are specified in XML from which an RTL VHDL im-
plementation of the NOC, test benches, etc. as well as SystemC
transaction-level models are then automatically created.

The automatic configuration (path finding, TDMA slot alloca-
tion), performance verification (which includes NI kernel buffer
sizing), and simulation were all extensively used. Adding a new
task graph is quick and easy: run the configuration and verifica-
tion tools, and compile the embedded configuration software for
the embedded processor. If a new task graph does not fit on the
given NOC, the configuration and verification tools give a warn-
ing.

Without the automation provided by the design flow the new
companion chip architecture would not have been defined, imple-
mented, and verified in only 12 months by two designers who were
new to both NOCs and picture-improvement SOCs.

5.7 Flexibility

The increased area, power dissipation, and latency are the price
we pay for the increased flexibility and re-use potential of the com-
panion chip. In combination with, for example, an FPGA com-
panion chip, two new IP blocks (or sub task graphs) can replace
(upgrade) any IP block in the processing pipeline on the compan-
ion chip. Alternatively new functionality can be spliced in at any
point in the existing processing pipeline.

6 Conclusions

For the high-volume consumer-electronics domain, we have
shown that splitting a single complex application-specific standard
product (ASSP) in a smaller main chip with (multiple) compan-
ion chips is advantageous. In particular, if all the chips are NOC-
based, then the NOCs on the different chips can behave transpar-
ently like a single NOC, easing the creation of a single multi-chip
system.

In this context, we presented the application of the Æthe-
real NOC to a commercially-available high-performance SOC for
TV image improvement. This SOC is a companion chip to the
PNX8550 (Viper2) SOC. Retrofitting a NOC in an existing archi-
tecture, optimised for a different application-specific interconnect
(wires and a by-pass) only required the creation of a new network
interface (NI) shell. The existing Æthereal design flow enabled
the design and implementation of a fully-functional RTL VDHL
system to be verified by multi-chip system simulations, as well as
analytical performance verification. The unoptimised new SOC
architecture, containing a NOC, is only 4% larger in area, and has
a 12% higher power dissipation than the original design. It was
designed, implemented, and verified in only 12 person months.

The quantitive results indicate that changing an existing opti-
mised architecture to use a NOC is already beneficial at acceptable
cost. Architectures designed from the start with a NOC intercon-
nect are sure to gain even more. The results indicate NOCs are a
technology that can soon be used in commercial products.

References

[1] A. A. Abbo, et al. Power consumption of performance-scaled SIMD
processors. In PATMOS, 2004.

[2] M. Bekooij, et al. Predictable embedded multiprocessor system de-
sign. In SCOPES, 2004.

[3] L. Benini and G. De Micheli. Networks on chips: A new SoC
paradigm. IEEE Computer, 35(1):70–80, 2002.

[4] T. Bjerregaard and J. Sparsø. A router architecture for connection-
oriented service guarantees in the MANGO clockless network-on-
chip. In DATE, 2005.

[5] E. Bolotin, et al. QNoC: QoS architecture and design process for
network on chip. J. of Systems Architecture, 50(2–3), Feb. 2004.

[6] A. Danilin, M. Bennebroek, and S. Sawitzki. A novel toolset for the
development of FPGA-like reconfigurable logic. In FPL, 2005.

[7] J. A. de Oliveira and H. van Antwerpen. The Philips Nexperia digital
video platform. In G. Martin and H. Chang, editors, Winning the SoC
Revolution. Kluwer Academic, 2003.

[8] J. Dielissen, et al. Power measurements and analysis of a network
on chip. Technical Note 2005/00282, Philips Research, Apr. 2005.

[9] O. P. Gangwal, et al. Understanding video pixel processing applica-
tions for flexible implementations. In Euromicro, 2003.

[10] O. P. Gangwal, et al. Building predictable systems on chip: An
analysis of guaranteed communication in the Æthereal network on
chip. In P. van der Stok, editor, Dynamic and Robust Streaming In
And Between Connected Consumer-Electronics Devices, volume 3
of Philips Research Book Series, chapter 1. Springer, 2005.

[11] K. Goossens, et al. A design flow for application-specific networks
on chip with guaranteed performance to accelerate SOC design and
verification. In DATE, 2005.

[12] K. Goossens, J. Dielissen, and A. Rădulescu. The Æthereal network
on chip: Concepts, architectures, and implementations. IEEE De-
sign and Test of Computers, 22(5):21–31, Sept-Oct 2005.

[13] K. Goossens, et al. Interconnect and memory organization in SOCs
for advanced set-top boxes and TV — Evolution, analysis, and
trends. In J. Nurmi, H. Tenhunen, J. Isoaho, and A. Jantsch, edi-
tors, Interconnect-Centric Design for Advanced SoC and NoC, chap-
ter 15, pages 399–423. Kluwer, 2004.

[14] A. Hansson, et al. A unified approach to constrained mapping and
routing on network-on-chip architectures. In CODES+ISSS, 2005.

[15] T. Marescaux, et al. Interconnection networks enable fine-grain dy-
namic multitasking on FPGAs. FPL, 2002.

[16] S. Murali, et al. A methodology for mapping multiple use-cases on
to networks on chip. In DATE, 2006.

[17] S. Murali, et al. Mapping and configuration methods for multi-use-
case networks on chips. In ASP-DAC, 2006.

[18] V. Nollet, et al. Centralized run-time resource management in a
network-on-chip containing reconfigurable hardware tiles. In DATE,
2005.

[19] PCI-SIG. PCI Express Base Specification Revision 1.0a, Apr. 2003.
[20] R. Peset Llopis. Is there a future for differentiating ICs for high-end

televisions? Presented at the International Seminar on Application-
Specific Multi-Processor SoC (MPSOC), July 2004.

[21] Philips. Nexperia PNX8550 Home Entertainment Engine, Dec.
2003.

[22] Philips. Nexperia PNX15xx Series Data Book, Dec. 2004.
[23] Philips Semiconductors. Device Transaction Level (DTL) Protocol

Specification. Version 2.2, July 2002.
[24] S. Rathnam and G. Slavenburg. Processing the new world of inter-

active media. Signal Processing Magazine,, 15(2), Mar. 1998.
[25] A. Rădulescu, et al. An efficient on-chip network interface offering

guaranteed services, shared-memory abstraction, and flexible net-
work programming. IEEE Trans. on CAD of Integrated Circuits and
Systems, 24(1):4–17, Jan. 2005.


	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06



