
 1

Industrially Proving the SPIRIT Consortium Specifications
for Design Chain Integration

Moderator: Christopher K. Lennard
 ARM Ltd

Case Study 1: Victor Berman Saverio Fazzari Mark Indovina Cary Ussery
 Cadence Design Systems Improv Systems Improv Systems

Case Study 2: Marino Strik John Wilson
 Philips Semiconductors Mentor Graphics

Case Study 3: Olivier Florent François Rémond Pierre Bricaud
 ST Microelectronics ST Microelectronics Synopsys

Abstract
 There has traditionally been significant
engineering overhead required for the integration
of multi-vendor tool and IP design methodologies.
Making design-chain integration efficient is the key
objective of the SPIRIT Consortium. This Special
Session paper provides an insight into how the
specifications of the SPIRIT Consortium are being
adopted in the industry today. We present 3
production design-flow stories which show
improved efficiency gained through use of the
SPIRIT Consortium specifications. These include
an IP generator for hierarchical VLIW processor
design, a full hardware / software SoC integration
design flow managed through generators, and
methodology support for a flow from electronic
system level (ESL) design through to the 65 nm
CMOS process,

1. Introduction

 It is a fact that most system-design companies
integrate tools and IP from multiple vendors to
handle a system-design as it passes through stages
of refinement. Making this integration consistent
and efficient requires a single, language-and-vendor
neutral way to express IP and the configuration of a
SoC design across all its views [1][2].
 In this paper, we introduce the reader to the
specifications of the SPIRIT Consortium [3]. This
consortium is chartered to resolve the issue of
multi-vendor design-chain integration. The SPIRIT
Consortium specifications provide a way to
describe and interpret metadata for IP integration
and configuration requirements, and enable the

encapsulation of configurable IP and point-tools as
SPIRIT-compatible generators. Both of these
concepts are gaining strong acceptance in the
industry.
 The development of the SPIRIT standard has
been split into two phases, the first (SPIRIT 1.x) is
to address RTL design and verification flow
integration, and the second (SPIRIT 2.x) is to
address electronic system-level (ESL) design. The
first versions of the SPIRIT standard have already
been proven on production RTL design exchange.

Figure 1: SPIRIT usage in a SoC design
environment

 The typical usage model for SPIRIT within a
design-environment is shown in Figure 1. The
SPIRIT specification provides an XML schema
[4][5] and semantics to enable the unified
authoring, exchange and processing of design meta-
data (indicated in light-blue), and it also provides a
complete API for meta-data exchange and data-base
querying (indicated in dark blue). The user of such
a design environment will be able to gather SPIRIT
component descriptions (files) together into a
library, along with SPIRIT-compatible definitions

3-9810801-0-6/DATE06 © 2006 EDAA

 2

for any bus interfaces referenced within the
components. The key contents of a SPIRIT 1.x
component definition include: top-level I/O, bus
interface declarations, definition of the memory
map, the various views of the IP including the files
required to ‘see’ a particular view, and
implementation constraints which must be met in
order for the IP to properly function within the
subsystem. A design environment (integrated tool
flow) can instantiate and connect SPIRIT
components to form a design, which is itself
represented as a SPIRIT design file expressing
component instantiation and connectivity.
 To enable a design-environment to be augmented
with point-functionality, SPIRIT defines the
concept of plug-in generators. Generators can be
connected using a meta-data dumping mechanism,
Loose Generator Interface (LGI), or the Tight
Generator Interface (TGI) which is a full API based
on SOAP [6] to guarantee language-independent
generator integration.
 The SPIRIT v1.2 Specification for RTL design is
currently entering IEEE standardisation (P1685). A
version 2.0 of the SPIRIT standard is also being
developed as an extension to the SPIRIT 1.2
specification to address ESL design and
transactional verification IP. Versions 1.2 and 2.0
will be kept compatible so that any design resolved
to the RT level can be expressed in SPIRIT v1.2 [7]
to a SPIRIT v2.0 environment.
The remainder of this paper describes three

significant industrial adoption examples for the
SPIRIT v1.1 specification.

2. Case Study 1. SPIRIT enabled
VLIW processor design platform

2.1 Introducing a design generator

 Many innovative IP designs have failed to gain
traction in the market place because of the
difficulties of integrating them into full system
design and verification flows. This case study
describes how the Improv Systems Jazz VLIW
Processor Platform for the creation of processor
architectures has used the emerging SPIRIT
standard to solve the flow integration problem.
 The Jazz Composer Tool Suite allows designers to
hierarchically create custom VLIW processors and
platforms. Each platform consists of multiple
processor blocks, embedded memories, and
integration blocks (e.g., AMBA interface). The
tool suite includes a tool for creating these
platforms, and a complete set of generators for
creating a full RTL database together with EDA
tool scripts, test benches, and emulation mappings.

 The Improv development system, which has been
in production use for more than five years, already
uses design meta-data and interfaces that are
conceptually very close to the SPIRIT standard.
What was lacking for scaleable integration of the
Improv tool suite into multiple design
methodologies was an industry agreed standard
syntax and semantics for describing components
and their interconnections. The SPIRIT schema
and semantics rules provide that standard, enabling
the interoperability of IP and tools outside of the
proprietary Improv database.
.
2.2 Making an existing IP generator design
flow SPIRIT-enabled

 The Improv system is based on an internal
database for components and a series of generators
that build customized platforms from that data
based on user constraints. The current version of
this system still relies on internal formats for its
software definitions and overall system architecture
but brings this information into a SPIRIT database
for configuring the hardware platform for
implementation.

Figure 2. Deploying SPIRIT in hardware IP
generation for the Improv design flow

 To create the SPIRIT enabling of the Improv tool
suite, the internal database is transformed into a
parallel SPIRIT database which contains the
various levels of schema description for
components, designs, platforms and buses
(interconnections). This parallel database approach
is depicted in Figure 2. External SPIRIT
components, including those from 3rd-parties, can
be imported into the design database for final
configuration and the full design can be exported as
a SPIRIT compatible description for use by other
SPIRIT compatible design environments (DEs) and
EDA tools.
 The design generators enabled from the SPIRIT
database are PSA for architecture level, Jazz for the
processors, HBI for the bus interfaces, and DCI for
the digital channel interfaces are used to automate

 3

the production of an RTL database that constitutes
the fully configured design. Platform configurations
are represented as full SPIRIT XML specifications
including 'hints' files. The generators read in
SPIRIT specifications from the platform
components as input to the generation process.
 The current integration of the SPIRIT
specification into the Improv IP generation tools
allows for direct integration with SPIRIT based
design and verification tools and flows. This
standards based approach has the potential to open
up the SoC design process to a richer set of
innovative IP and significantly reduce the bottle
necks in producing efficient, verified chips. Even
greater efficiency benefits are expected from
migration to a native SPIRIT database, system-level
model support with the SPIRIT Consortium
specification v2.0, and the migration of the
software runtime binary to a SPIRIT compatible
methodology in future releases.

3. Case Study 2. Creating an efficient
derivative design flow using the SPIRIT
specifications

3.1 Introducing an SoC design methodology

 Establishing an efficient reuse methodology has
had priority within the Philips Semiconductor
organization for many years [8]. IP creation with
reuse in mind is common practice. A central
organization operates within the company
providing reusable IP with configurable
infrastructure IP, standard communication
interfaces and memory controller IP. These highly
reusable components must be described in such a
way that methods for creating derivatives can be
automated, including IP configuration and
integration. The emergence of well defined
standards, including the SPIRIT Consortium
specification, is the reason why reuse is becoming
highly effective.
 In most design projects, IP is obtained from
sources both inside and outside the company. It is a
necessity that these IP are able to be rapidly
imported into complex multi-vendor design-tool
flows. To achieve this, the design tools must
recognize the structure and configurability of the IP
automatically, and this cannot depend on the IP
source coding style, design-language and file
packaging.
 Many requirements relevant for individual
reusable IP also need to be apply to subsystems as
they need to be integrated into a larger chip context.
This is the next major step in IP re-use, as depicted
in Figure 3. Like an IP, a subsystem must be

transferable from one group to the other. A
subsystem must be self contained and provide a
verification view and an implementation view. It is
most productive to verify IP component properties
at the component level, and not to repeat
component verification at the subsystem level.
Complementary to the verification flow, the
automation of implementation tasks such as
synthesis and DFT on subsystems makes these
processes more repeatable and the validation
process more straight forward [9].

Figure 3. The increasing adoption of IP re-
use

 Re-use of subsystems with verification IP and
automated implementation tasks is a fundamental
aspect of iterative and derivative design is known as
the single-build use model. It drives the need for
verification IP encapsulation using common
structural descriptors for integration and
configuration requirements, as well as capture of
automatable implementation and verification tasks
as design-flow generators [10].
 The Philips flow performs the integration of IP
blocks by accessing a repository to configure IP and
then creating a top level RTL description.
Complementing this, all scripting for the
verification and implementation is generated with
Makefiles as the user interface. These enable the
user to invoke every flow step individually. The
script generation takes a matter of seconds, but
executing of these scripts can take hours.

3.2 Improving flow integration using
SPIRIT

 SPIRIT is an important standard to enable the
single-build use model. It enables IP integration
and configurability information to be described by

 4

the IP provider such that it is able to be interpreted
in any SPIRIT compatible environment.
 The determination of configuration parameters is
required before the configurable IP can be
downloaded from a repository. Two mechanisms
are applied based on the XML information to
determine IP parameter values. All parameters for
which no trivial value can be concluded form the
subsystem context are offered to the user. For about
75% of the parameters the value can be derived
automatically using a generator.
 The SPIRIT XML points to a generator which can
access the XML information of the complete
system and all its IP components. This context
analysis is invoked in the build process. The user
starts the build process thereby informing the
system that all interactive design composition tasks
are completed.
 Underlying the SPIRIT XML processing is a
SPIRIT-Enabled Design Environment as depicted
in Figure 4. The DE can read the SPIRIT XML data
into a database, enables the designer to configure
IP, creates the configured designs at the block-
level, and records the IP and design structures and
configurations.

Figure 4. An example of a SPIRIT-enabled
design environment

 It is from this database that the generators access
the design data to create new design information.
The new design information derived from the
SPIRIT XML data typically includes RTL design
descriptions, software to execute on the design,
automatic setup of various design and verification
tools used in the design process as well as many
other applications.

 One of the key productivity features has been the
ability to extend the core functionality of our
SPIRIT DE, the Mentor Graphics Platform Express
tool. This enabled links directly to our IP
repository. Using generators, design context and
configuration information was extracted from the

DE’s design database and sent to our IP repository.
The IP repository creates a correctly configured IP
package which is returned to the DE, enabling the
DE to automatically update the design with the
correctly configured IP.

3.3 Automotive example and conclusions

 The SPIRIT-enabled single-build design-flow is
being used on production designs. One example is
an ARM9 processor based design. The on-chip
AHB based communication infrastructure, serial
communication interfaces, embedded memory and
the external memory interfaces were integrated
using integration automation enabled through the
SPIRIT Consortium specifications.
 The benefits of this first project were very clearly
recognized when the second platform design was
executed. Many generic solutions were able to be
reused even though many IP components and much
of the infrastructure changed which a change in the
processor. This complete new AXI based system
was created in 6 months, a record time, and its use
will reduce the derivative design time by 50% [11].
 By enabling IP integration and configuration
information to be described with a single XML
schema, and enabling configurability and tool-
scripting to be captured in generators, SPIRIT has
played key role enabling the separation between IP
and tooling. Philips can create subsystems faster
and larger than what was possible manually before.
 The next application of the single-build use-
model will be a heterogeneous multiprocessor
design with automated flow from component
composition to ready-for-placement netlist,
including DFT and to FPGA image for physical
prototyping.

4. Case Study 3. A 65 nm SoC design
based on the emerging SPIRIT standard

4.1 SPIRIT in SoC design methodologies

 With increasing time to market pressure, it is key
to automate as much as possible the front-end
design process, implementing ‘correct by
construction’ system integration and speeding up
the time from RTL to netlist. The approach should
be flexible enough to encompass multi-abstraction
system model integration, Transaction Level
Modelling (TLM) to RTL, to enable IP selection,
system verification and early software
development. It should also maintain consistent
system configurability data through to physical
implementation. Most crucially, this consistency of

 5

flow must be easily supported for a SoC built with
IP blocks from various sources.
 Past focus on IP reuse has concentrated on design
quality metrics such as those driven by VSIA [12]
with the QIP industry quality metrics. While this is
a critical element in judging the ‘goodness’ of
design component, it does not address how to
deliver IP for automated integration of IP blocks
within tool-flows. The SPIRIT Consortium was
created to build specifications resolving this issue.
To ensure success from the beginning, this initiative
began with a Steering Committee consisting of the
top 3 EDA vendors, the major processor IP
provider and two European SoC integrators and
manufacturers. The SoC integrators are part of the
Crolles 2 Alliance and this is considered the most
advanced nanometer silicon Research and
Development effort in Europe. Since its inception,
the Consortium has built a significant membership
from leading design-chain and systems integrator
companies.
 On the technical side the SPIRIT standardization
effort can be separated into two parts: the XML IP
design meta-data, and the API for IP generator and
point-tool integration. The IP design meta-data
enables machine-interpretable design IP, integration
requirement specifications, and consistent
information across all design views. The generators
enable point-tool launch, IP configuration launch,
and tool-flow integration. Both of these aspects of
the SPIRIT specification have been used in the
creation of the 7200 design.

4.2 Deploying SPIRIT in the 7200 chip
design flow

 Designed to cover high-end set top box
requirements, this 65 nm chip features dual HD
MPEG4 decode, audio decoding, HDD and DDR2
interfaces and extensive set of communication
channels (Sata, Ethernet…). The master bus is
running at 200MHz, with several internal DSPs.
Estimated synthesized gate count is 24 million, and
the circuit embeds 6 Mbits of static RAM. The
circuit is built using 40 design IP components
(sourced internally and externally) and 30 custom
blocks. The architecture, depicted in Figure 5, is
composed of 8 major functional subsystems.

Figure 5. Overview of the 7200 Set Top Box
SoC architecture

 Originally every SoC library element was
available as a standard ST IP package. A custom ST
toolset has been developed to automatically derive
the SPIRIT component XML from existing IP data,
and add this as part of the standard ST IP package.
It extracts in batch mode boundary description, bus
interface, memory map, but also records references
to existing views such as SDC, RTL and TLM.
 Once the XML descriptions for the components
are available, a SPIRIT based tool is used to build
the SoC. This is done within Synopsys
CoreAssembler, a SPIRIT-compatible tool that uses
automatic protocol based connection to enable
correct-by-construction bottom-up IP assembly.
Once any remaining ad-hoc wire connectivity has
been completed for the system, the SPIRIT On-
Chip Bus Generator is called to configure the bus
micro architecture. Finally, the core level signals
and interfaces are exported to match the top-down
definition of the pad-ring of the chip. This process
of design assembly can be either interactive using
the CoreAssembler GUI, or batch-mode using the
tool’s TCL interface. This enables batch replay of
the assembly to update the design database quickly
and reliably after design specification changes.
 Using the design XML database, many different
tasks are addressed: the assembled netlist and the
promoted SDC constraints are extracted to start the
flow into hardware implementation [13] and
physical design exploration. Several simulation
models can be built that reflect different views of
the same system thanks to an internally developed
netlister with the ability to mix different levels of
the SoC components (RTL, TLM, Instruction Set
Simulation). This enables standard RTL verification
as well as early development of application
software and drivers. The memory maps are also
automatically consolidated at SoC level, taking into
account the various address shifts introduced by the
On-Chip Bus. A C-language program is then
generated and executed on the embedded processor

 6

to verify system level memory map and integrity of
register accesses.

4.3 Benefits of SPIRIT in the ST design flow

There are several immediate advantages seen in the
adoption of SPRIT into the design flow: 1. the
adoption of the SPIRIT specifications allowed the
ST flow to be built on an open format database,
thus enabling the development and integration of a
custom toolset; 2. the protocol based design
capture has shown a significant productivity
increase compared to traditional wire level design
entry as the fully scripted implementation responds
easily to design respins due to design specification
changes; 3. the cost of design flow adoption is
reduced as automatic translators allow the creation
of an XML ‘system-design skeleton’ from
RTL/SDC data; and 4. the unifying the SoC
description both for implementation, verification
and early software development prevents costly
iterations arising from misalignment of separate
design databases.
 These design flow advantages demonstrated on a
real life system design are helping to guarantee the
broad-based adoption of a SPIRIT-compatible
methodology within ST Microelectronics.

5. General conclusions

 The benefits of IP re-use methodologies have
been understood for many years, culminating in the
vision of full subsystem and platform re-use [14].
While the vision has been correct, the
implementation and design-chain support for that
high degree of complex configurable IP re-use has
been lacking.
 The specifications of the SPIRIT Consortium are
designed to address the needs of complex IP re-use
in multi-vendor flows. By using the W3C
standards for meta-data exchange [4][5], the
specifications are able to guarantee description of
IP integration and configuration requirements that
are independent of IP architecture, IP authoring
style, and design language. The use of SPIRIT
Consortium APIs, also using W3C standards [6],
enables the encapsulation of configurable IP
generators and implementation processes in a
design-environment neutral way.
 The SPIRIT Consortium specifications are getting
significant adoption in the industry, from the IP and
EDA suppliers through to system integrators. The
case studies presented here represent just a few of
the growing number of multi-vendor design-flow
integration successes being achieved through use of
the SPIRIT Consortium specifications.

6. References:
[1] Lennard, Granata, “The Meta-Methods: Managing

design risk during IP selection and integration”.
European IP 99 Conference, November 1999

[2] John Wilson, “IP Reuse Simplifies SoC Design and
Verification”, EE Times, 10 November 2004

[3] SPIRIT Consortium, “SPIRIT 1.1 Specification”,
www.spiritconsortium.org, June 2005

[4] World Wide Web Consortium, “Extensible Markup
Language (XML) 1.0” Third Edition, 2004

[5] World Wide Web Consortium, “XML Schema Part 1:
Structures”, Second Edition; “XML Schema Part 2:
Datatypes” Second Edition, 2004

[6] SOAP Specifications: www.w3.org/TR/soap
[7] Grun, Shin, Baxter, Noll, Madl, Lennard,

“Integrating a Multi-Vendor ESL-to-Silicon Design
Flow using SPIRIT”. IP SoC Conference, December
2006

[8] Geoff Mole, “Philips Semiconductors Next
Generation Architectural IP ReUse Developments for
SoC Integration” IP SoC Conference, December 2004

[9] Ron Wilson, “Revolutionary Pay-Off”. EE Times, 28
February 2005

[10] Denis Bussaglia, “Automated Implementation Flows
based on IP-level constraints and synthesis intent in
XML”. IP SoC Conference, December 2005

[11] Philips Semiconductors SJA2510 SoC press release
www.semiconductors.philips.com/news/content/file_
1191.html

[13] Bricaud, Pierre-Keating, Michael, “Reuse
Methodology Manual for SoC Designs”. Springer

[14] Alberto Sangiovanni-Vincentelli, Grant Martin, “A
Vision for Embedded Systems: Platform-Based
Design and Software Methodology”. IEEE Design
and Test of Computers, Volume 18, Number 6,
November-December, 2001, pp. 23-33.

	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06

