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Abstract 
   There has traditionally been significant 
engineering overhead required for the integration 
of multi-vendor tool and IP design methodologies.  
Making design-chain integration efficient is the key 
objective of the SPIRIT Consortium.  This Special 
Session paper provides an insight into how the 
specifications of the SPIRIT Consortium are being 
adopted in the industry today.  We present 3 
production design-flow stories which show 
improved efficiency gained through use of the 
SPIRIT Consortium specifications.  These include 
an IP generator for hierarchical VLIW processor 
design, a full hardware / software SoC integration 
design flow managed through generators, and 
methodology support for a flow from electronic 
system level (ESL) design through to the 65 nm 
CMOS process, 
 
1.  Introduction 
 
   It is a fact that most system-design companies 
integrate tools and IP from multiple vendors to 
handle a system-design as it passes through stages 
of refinement.  Making this integration consistent 
and efficient requires a single, language-and-vendor 
neutral way to express IP and the configuration of a 
SoC design across all its views [1][2].   
  In this paper, we introduce the reader to the 
specifications of the SPIRIT Consortium [3].  This 
consortium is chartered to resolve the issue of 
multi-vendor design-chain integration. The SPIRIT 
Consortium specifications provide a way to 
describe and interpret metadata for IP integration 
and configuration requirements, and enable the 

encapsulation of configurable IP and point-tools as 
SPIRIT-compatible generators. Both of these 
concepts are gaining strong acceptance in the 
industry.   
   The development of the SPIRIT standard has 
been split into two phases, the first (SPIRIT 1.x) is 
to address RTL design and verification flow 
integration, and the second (SPIRIT 2.x) is to 
address electronic system-level (ESL) design. The 
first versions of the SPIRIT standard have already 
been proven on production RTL design exchange.  
  

 
 
Figure 1:  SPIRIT usage in a SoC design 
environment 
 
   The typical usage model for SPIRIT within a 
design-environment is shown in Figure 1.  The 
SPIRIT specification provides an XML schema 
[4][5] and semantics to enable the unified 
authoring, exchange and processing of design meta-
data (indicated in light-blue), and it also provides a 
complete API for meta-data exchange and data-base 
querying (indicated in dark blue). The user of such 
a design environment will be able to gather SPIRIT 
component descriptions (files) together into a 
library, along with SPIRIT-compatible definitions 
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for any bus interfaces referenced within the 
components. The key contents of a SPIRIT 1.x 
component definition include: top-level I/O, bus 
interface declarations, definition of the memory 
map, the various views of the IP including the files 
required to ‘see’ a particular view, and 
implementation constraints which must be met in 
order for the IP to properly function within the 
subsystem.  A design environment (integrated tool 
flow) can instantiate and connect SPIRIT 
components to form a design, which is itself 
represented as a SPIRIT design file expressing 
component instantiation and connectivity. 
   To enable a design-environment to be augmented 
with point-functionality, SPIRIT defines the 
concept of plug-in generators.  Generators can be 
connected using a meta-data dumping mechanism, 
Loose Generator Interface (LGI), or the Tight 
Generator Interface (TGI) which is a full API based 
on SOAP [6] to guarantee language-independent 
generator integration.  
   The SPIRIT v1.2 Specification for RTL design is 
currently entering IEEE standardisation (P1685).  A 
version 2.0 of the SPIRIT standard is also being 
developed as an extension to the SPIRIT 1.2 
specification to address ESL design and 
transactional verification IP.    Versions 1.2 and 2.0 
will be kept compatible so that any design resolved 
to the RT level can be expressed in SPIRIT v1.2 [7] 
to a SPIRIT v2.0 environment.  
The remainder of this paper describes three 

significant industrial adoption examples for the 
SPIRIT v1.1 specification. 
 
2.  Case Study 1.  SPIRIT enabled 
VLIW processor design platform 
 
2.1 Introducing a design generator 
 
   Many innovative IP designs have failed to gain 
traction in the market place because of the 
difficulties of integrating them into full system 
design and verification flows.  This case study 
describes how the Improv Systems Jazz VLIW 
Processor Platform for the creation of processor 
architectures has used the emerging SPIRIT 
standard to solve the flow integration problem. 
   The Jazz Composer Tool Suite allows designers to 
hierarchically create custom VLIW processors and 
platforms.  Each platform consists of multiple 
processor blocks, embedded memories, and 
integration blocks (e.g., AMBA interface).  The 
tool suite includes a tool for creating these 
platforms, and a complete set of generators for 
creating a full RTL database together with EDA 
tool scripts, test benches, and emulation mappings.   

   The Improv development system, which has been 
in production use for more than five years, already 
uses design meta-data and interfaces that are 
conceptually very close to the SPIRIT standard.  
What was lacking for scaleable integration of the 
Improv tool suite into multiple design 
methodologies was an industry agreed standard 
syntax and semantics for describing components 
and their interconnections.  The SPIRIT schema 
and semantics rules provide that standard, enabling 
the interoperability of IP and tools outside of the 
proprietary Improv database.  
.  
2.2 Making an existing IP generator design 
flow SPIRIT-enabled 
  
   The Improv system is based on an internal 
database for components and a series of generators 
that build customized platforms from that data 
based on user constraints.  The current version of 
this system still relies on internal formats for its 
software definitions and overall system architecture 
but brings this information into a SPIRIT database 
for configuring the hardware platform for 
implementation.   
 

 
 
Figure 2.  Deploying SPIRIT in hardware IP 
generation for the Improv design flow 
 
   To create the SPIRIT enabling of the Improv tool 
suite, the internal database is transformed into a 
parallel SPIRIT database which contains the 
various levels of schema description for 
components, designs, platforms and buses 
(interconnections).  This parallel database approach 
is depicted in Figure 2. External SPIRIT 
components, including those from 3rd-parties, can 
be imported into the design database for final 
configuration and the full design can be exported as 
a SPIRIT compatible description for use by other 
SPIRIT compatible design environments (DEs) and 
EDA tools.   
   The design generators enabled from the SPIRIT 
database are PSA for architecture level, Jazz for the 
processors, HBI for the bus interfaces, and DCI for 
the digital channel interfaces are used to automate 
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the production of an RTL database that constitutes 
the fully configured design. Platform configurations 
are represented as full SPIRIT XML specifications 
including 'hints' files.  The generators read in 
SPIRIT specifications from the platform 
components as input to the generation process.   
   The current integration of the SPIRIT 
specification into the Improv IP generation tools 
allows for direct integration with SPIRIT based 
design and verification tools and flows.  This 
standards based approach has the potential to open 
up the SoC design process to a richer set of 
innovative IP and significantly reduce the bottle 
necks in producing efficient, verified chips.  Even 
greater efficiency benefits are expected from 
migration to a native SPIRIT database, system-level 
model support with the SPIRIT Consortium 
specification v2.0, and the migration of the 
software runtime binary to a SPIRIT compatible 
methodology in future releases. 
 
3.  Case Study 2.  Creating an efficient 
derivative design flow using the SPIRIT 
specifications 
 
3.1 Introducing an SoC design methodology 
 
   Establishing an efficient reuse methodology has 
had priority within the Philips Semiconductor 
organization for many years [8]. IP creation with 
reuse in mind is common practice. A central 
organization operates within the company 
providing reusable IP with configurable 
infrastructure IP, standard communication 
interfaces and memory controller IP. These highly 
reusable components must be described in such a 
way that methods for creating derivatives can be 
automated, including IP configuration and 
integration.  The emergence of well defined 
standards, including the SPIRIT Consortium 
specification, is the reason why reuse is becoming 
highly effective. 
   In most design projects, IP is obtained from 
sources both inside and outside the company.  It is a 
necessity that these IP are able to be rapidly 
imported into complex multi-vendor design-tool 
flows.  To achieve this, the design tools must 
recognize the structure and configurability of the IP 
automatically, and this cannot depend on the IP 
source coding style, design-language and file 
packaging.   
   Many requirements relevant for individual 
reusable IP also need to be apply to subsystems as 
they need to be integrated into a larger chip context.  
This is the next major step in IP re-use, as depicted 
in Figure 3.  Like an IP, a subsystem must be 

transferable from one group to the other. A 
subsystem must be self contained and provide a 
verification view and an implementation view. It is 
most productive to verify IP component properties 
at the component level, and not to repeat 
component verification at the subsystem level. 
Complementary to the verification flow, the 
automation of implementation tasks such as 
synthesis and DFT on subsystems makes these 
processes more repeatable and the validation 
process more straight forward [9].      

 
Figure 3.  The increasing adoption of IP re-
use 
 
   Re-use of subsystems with verification IP and 
automated implementation tasks is a fundamental 
aspect of iterative and derivative design is known as 
the single-build use model.  It drives the need for 
verification IP encapsulation using common 
structural descriptors for integration and 
configuration requirements, as well as capture of 
automatable implementation and verification tasks 
as design-flow generators [10].  
   The Philips flow performs the integration of IP 
blocks by accessing a repository to configure IP and 
then creating a top level RTL description. 
Complementing this, all scripting for the 
verification and implementation is generated with 
Makefiles as the user interface. These enable the 
user to invoke every flow step individually.  The 
script generation takes a matter of seconds, but 
executing of these scripts can take hours. 
 
 
 
 
3.2 Improving flow integration using 
SPIRIT  
 
   SPIRIT is an important standard to enable the 
single-build use model.  It enables IP integration 
and configurability information to be described by 
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the IP provider such that it is able to be interpreted 
in any SPIRIT compatible environment.  
   The determination of configuration parameters is 
required before the configurable IP can be 
downloaded from a repository. Two mechanisms 
are applied based on the XML information to 
determine IP parameter values. All parameters for 
which no trivial value can be concluded form the 
subsystem context are offered to the user. For about 
75% of the parameters the value can be derived 
automatically using a generator. 
   The SPIRIT XML points to a generator which can 
access the XML information of the complete 
system and all its IP components. This context 
analysis is invoked in the build process. The user 
starts the build process thereby informing the 
system that all interactive design composition tasks 
are completed. 
   Underlying the SPIRIT XML processing is a 
SPIRIT-Enabled Design Environment as depicted 
in Figure 4. The DE can read the SPIRIT XML data 
into a database, enables the designer to configure 
IP, creates the configured designs at the block-
level, and records the IP and design structures and 
configurations.  
 

 
   
Figure 4. An example of a SPIRIT-enabled 
design environment 
 
   It is from this database that the generators access 
the design data to create new design information. 
The new design information derived from the 
SPIRIT XML data typically includes RTL design 
descriptions, software to execute on the design, 
automatic setup of various design and verification 
tools used in the design process as well as many 
other applications. 
  
   One of the key productivity features has been the 
ability to extend the core functionality of our 
SPIRIT DE, the Mentor Graphics Platform Express 
tool.  This enabled links directly to our IP 
repository. Using generators, design context and 
configuration information was extracted from the 

DE’s design database and sent to our IP repository. 
The IP repository creates a correctly configured IP 
package which is returned to the DE, enabling the 
DE to automatically update the design with the 
correctly configured IP. 
 
3.3 Automotive example and conclusions 
 
   The SPIRIT-enabled single-build design-flow is 
being used on production designs. One example is 
an ARM9 processor based design. The on-chip 
AHB based communication infrastructure, serial 
communication interfaces, embedded memory and 
the external memory interfaces were integrated 
using integration automation enabled through the 
SPIRIT Consortium specifications. 
   The benefits of this first project were very clearly 
recognized when the second platform design was 
executed. Many generic solutions were able to be 
reused even though many IP components and much 
of the infrastructure changed which a change in the 
processor.  This complete new AXI based system 
was created in 6 months, a record time, and its use 
will reduce the derivative design time by 50% [11]. 
   By enabling IP integration and configuration 
information to be described with a single XML 
schema, and enabling configurability and tool-
scripting to be captured in generators, SPIRIT has 
played key role enabling the separation between IP 
and tooling.  Philips can create subsystems faster 
and larger than what was possible manually before.  
   The next application of the single-build use-
model will be a heterogeneous multiprocessor 
design with automated flow from component 
composition to ready-for-placement netlist, 
including DFT and to FPGA image for physical 
prototyping. 
 

4.  Case Study 3. A 65 nm SoC design 
based on the emerging SPIRIT standard 
 
4.1 SPIRIT in SoC design methodologies 
 
   With increasing time to market pressure, it is key 
to automate as much as possible the front-end 
design process, implementing ‘correct by 
construction’ system integration and speeding up 
the time from RTL to netlist.  The approach should 
be flexible enough to encompass multi-abstraction 
system model integration, Transaction Level 
Modelling (TLM) to RTL, to enable IP selection, 
system verification and early software 
development. It should also maintain consistent 
system configurability data through to physical 
implementation. Most crucially, this consistency of 
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flow must be easily supported for a SoC built with 
IP blocks from various sources.  
   Past focus on IP reuse has concentrated on design 
quality metrics such as those driven by VSIA [12] 
with the QIP industry quality metrics. While this is 
a critical element in judging the ‘goodness’ of 
design component, it does not address how to 
deliver IP for automated integration of IP blocks 
within tool-flows. The SPIRIT Consortium was 
created to build specifications resolving this issue. 
To ensure success from the beginning, this initiative 
began with a Steering Committee consisting of the 
top 3 EDA vendors, the major processor IP 
provider and two European SoC integrators and 
manufacturers.  The SoC integrators are part of the 
Crolles 2 Alliance and this is considered the most 
advanced nanometer silicon Research and 
Development effort in Europe.  Since its inception, 
the Consortium has built a significant membership 
from leading design-chain and systems integrator 
companies. 
   On the technical side the SPIRIT standardization 
effort can be separated into two parts: the XML IP 
design meta-data, and the API for IP generator and 
point-tool integration. The IP design meta-data 
enables machine-interpretable design IP, integration 
requirement specifications, and consistent 
information across all design views.  The generators 
enable point-tool launch, IP configuration launch, 
and tool-flow integration.  Both of these aspects of 
the SPIRIT specification have been used in the 
creation of the 7200 design. 
 
4.2 Deploying SPIRIT in the 7200 chip 
design flow 
 
   Designed to cover high-end set top box 
requirements, this 65 nm chip features dual HD 
MPEG4 decode, audio decoding, HDD and DDR2 
interfaces and extensive set of communication 
channels (Sata, Ethernet…).  The master bus is 
running at 200MHz, with several internal DSPs. 
Estimated synthesized gate count is 24 million, and 
the circuit embeds 6 Mbits of static RAM. The 
circuit is built using 40 design IP components 
(sourced internally and externally) and 30 custom 
blocks. The architecture, depicted in Figure 5, is 
composed of 8 major functional subsystems. 

 
Figure 5.  Overview of the 7200 Set Top Box 
SoC architecture 
 
   Originally every SoC library element was 
available as a standard ST IP package. A custom ST 
toolset has been developed to automatically derive 
the SPIRIT component XML from existing IP data, 
and add this as part of the standard ST IP package. 
It extracts in batch mode boundary description, bus 
interface, memory map, but also records references 
to existing views such as SDC, RTL and TLM. 
   Once the XML descriptions for the components 
are available, a SPIRIT based tool is used to build 
the SoC. This is done within Synopsys 
CoreAssembler, a SPIRIT-compatible tool that uses 
automatic protocol based connection to enable 
correct-by-construction bottom-up IP assembly.  
Once any remaining ad-hoc wire connectivity has 
been completed for the system, the SPIRIT On-
Chip Bus Generator is called to configure the bus 
micro architecture. Finally, the core level signals 
and interfaces are exported to match the top-down 
definition of the pad-ring of the chip. This process 
of design assembly can be either interactive using 
the CoreAssembler GUI, or batch-mode using the 
tool’s TCL interface. This enables batch replay of 
the assembly to update the design database quickly 
and reliably after design specification changes.  
   Using the design XML database, many different 
tasks are addressed: the assembled netlist and the 
promoted SDC constraints are extracted to start the 
flow into hardware implementation [13] and 
physical design exploration. Several simulation 
models can be built that reflect different views of 
the same system thanks to an internally developed 
netlister with the ability to mix different levels of 
the SoC components (RTL, TLM, Instruction Set 
Simulation). This enables standard RTL verification 
as well as early development of application 
software and drivers. The memory maps are also 
automatically consolidated at SoC level, taking into 
account the various address shifts introduced by the 
On-Chip Bus. A C-language program is then 
generated and executed on the embedded processor 
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to verify system level memory map and integrity of 
register accesses. 
 
4.3 Benefits of SPIRIT in the ST design flow 
 
There are several immediate advantages seen in the 
adoption of SPRIT into the design flow: 1. the 
adoption of the SPIRIT specifications allowed the 
ST flow to be built on an open format database, 
thus enabling the development and integration of a 
custom toolset;  2. the protocol based design 
capture has shown a significant productivity 
increase compared to traditional wire level design 
entry as the fully scripted implementation responds 
easily to design respins due to design specification 
changes; 3. the cost of design flow adoption is 
reduced as automatic translators allow the creation 
of an XML ‘system-design skeleton’ from 
RTL/SDC data; and 4. the unifying the SoC 
description both for implementation, verification 
and early software development prevents costly 
iterations arising from misalignment of separate 
design databases.  
   These design flow advantages demonstrated on a 
real life system design are helping to guarantee the 
broad-based adoption of a SPIRIT-compatible 
methodology within ST Microelectronics. 
 
5. General conclusions 
 
   The benefits of IP re-use methodologies have 
been understood for many years, culminating in the 
vision of full subsystem and platform re-use [14].  
While the vision has been correct, the 
implementation and design-chain support for that 
high degree of complex configurable IP re-use has 
been lacking. 
   The specifications of the SPIRIT Consortium are 
designed to address the needs of complex IP re-use 
in multi-vendor flows.  By using the W3C 
standards for meta-data exchange [4][5], the 
specifications are able to guarantee description of 
IP integration and configuration requirements that 
are independent of IP architecture, IP authoring 
style, and design language.  The use of SPIRIT 
Consortium APIs, also using W3C standards [6], 
enables the encapsulation of configurable IP 
generators and implementation processes in a 
design-environment neutral way. 
   The SPIRIT Consortium specifications are getting 
significant adoption in the industry, from the IP and 
EDA suppliers through to system integrators.  The 
case studies presented here represent just a few of 
the growing number of multi-vendor design-flow 
integration successes being achieved through use of 
the SPIRIT Consortium specifications.   
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