
Low cost LDPC decoder for DVB-S2

John Dielissen*, Andries Hekstra*, Vincent Berg+

* Philips Research, High Tech Campus 5, 5656 AE Eindhoven, The Netherlands
+ Philips Semiconductors, 2, rue de la Girafe, BP. 5120, 14079 Caen, France

E-mail: john.dielissen@philips.com

Abstract

Because of its excellent bit-error-rate performance, the
Low-Density Parity-Check (LDPC) algorithm is gaining in-
creased attention in communication standards and litera-
ture. The new Digital Video Broadcast via Satellite stan-
dard (DVB-S2) is the first broadcast standard to include
a LDPC-code, and the first implementations are available.
In our investigation of generic LDPC-implementations we
found that scalable sub-block parallelism enables efficient
implementations for a wide range of applications. For the
DVB-S2 case, using sub-block parallelism we obtain half
the chip-size of known solutions. For the required perfor-
mance in the normative configurations for the broadcast
service (90 Mbps), the area is even �

� compared to the small-
est published decoder.

1. Introduction

Since the rediscovery of Low-Density Parity-Check
(LDPC) codes [7] in 1996, many publications of their im-
plementations did appear. LDPC codes are included
in the DVB-S2[1] standard, which is a digital satel-
lite video broadcast standard. For this standard, implemen-
tations have been suggested in [5] and [8]. Because of the
excellent bit-error-rate (BER) performance of the algo-
rithm, LDPC-codes are expected to be part of many fu-
ture standards as well.

In the DVB-S2 standard, the interconnection be-
tween computation kernels is grouped in blocks of 360.
When fully exploiting this block-level parallelism, it re-
sults in an implementation with 360 computation ker-
nels. Such an implementation achieves a throughput rate
of more than 800 Mbps. It is obvious that such an ar-
chitecture is too expensive when only 90 Mbps is re-
quired. However scaling down the architecture to achieve

lower performance is non-trivial. First of all, the algo-
rithm should be re-structured such that downscaling is
possible, and second, during the mapping, freedom in-
side iterations should be recognized and exploited.

In this paper we first discuss the state-of-the-art work. In
Section 3, we briefly explain the LDPC algorithm. We ex-
plain the selected mixture of known technologies which are
used in the new LDPC-decoder. Although the technology
explained in this paper can be applied to a wider range of
applications, the results and the benchmarks are presented
primarily for the DVB-S2 standard, which is explained in
Section 4. In this section, we also discuss the set of LDPC-
codes to which this solution applies. In Section 5 we present
the scalable sub-block architecture, and in Section 6, the ef-
ficiency of the architecture is explained. We end this paper
with conclusions and recommendations for future work.

2. State-of-the-art

One of the most common measures to compare LDPC
decoders, is the level of parallelism. This ranges from
fully parallel [2], via block-level parallel[5, 8], grouped se-
quentially [4], to fully sequentially. In a fully parallel
implementation, all symbol and check-node calcula-
tions (see Section 3), are directly realised in hardware. All
units are interconnected via many wires, leading to con-
gestion in the layout. A fully parallel implementation of
the DVB-S2 decoder is impractical. For DVB-S2, even at
1 MHz, this solution yields a throughput of 1Gbps, cal-
culating ���� operations/second. In a block-level paral-
lel implementation, the code needs the structure that the
interconnect between the symbol- and check-node cal-
culations is grouped. Both known implementations ([5]
and [8]) of an LDPC-DVB-S2 decoder are examples of
this block-level parallelism. To our knowledge, no im-
plementations of sub-block-level parallelism have been
published yet, which is the category in which this de-
coder falls. In a grouped sequential solution [4], the al-

3-9810801-0-6/DATE06 © 2006 EDAA

gorithm loops sequentially through all symbol-nodes,
executing the connected check-node calculations simul-
taneously. This solution requires as many memory ac-
cesses as there are connected check-nodes. Since in
DVB-S2 the number of connected check-nodes varies
from � to ��, this is not an efficient solution. More-
over, the solution would lead to a throughput of 10 Mbps
(�300 MHz), e.g. too low for DVB-S2. Fully serial solu-
tions, traversing symbol-nodes and check-nodes consecu-
tively, would result in an even lower throughput, hence this
solution is also out of scope for an efficient implementa-
tion for DVB-S2.

3. LDPC decoding algorithm

In this paper we use the uniformly-most-powerful be-
lief propagation UMP-BP version, of the LDPC-algorithm,
which is described in [3, 6]. This algorithm achieves a per-
formance level very close to, or sometimes even out per-
forming that of BP decoding, while offering significant
hardware advantages. Let� be the codeword length and�
be the number of parity check equations. The parity check
matrix� consists of� rows and� columns with elements
”0” or ”1”. The rows in the matrix are the parity check equa-
tions, and the set of elements which have a ’1’ in a row are
the arguments of the equation. For a parity check equation
with index �, � � � � � , define the set ���� of code-
word symbol positions that it checks,

���� � ���� � �� �� � � � � � � ����� �� ���

The number of elements in ���� is refered to as ��.
Similarly, for a codeword symbol position �, � � � � � ,
define the set���� of indices of parity check equations that
check the symbol position �,

���� � ���� � �� �� � � � �� � ����� �� ���

The number of elements in ���� is refered to as 	�.
The parity check matrix can be associated with a bipar-
tite graph (
��) called the Tanner graph, shown in Fig-
ure 1. The set of vertices (
) is the union of the set of �
symbol-nodes and the set of � parity check-nodes. The
set of edges (�) consisting of all edges (���) for which
��� � �. Classical iterations of the LDPC algorithm con-
sist of information send from symbol-nodes (�) via the
edges (�) to the check-nodes (�), and back.

1

1

2

3

4

5

6

7

2

3

4

SYMBOL NODES
with degrees J=3

CHECK NODES
with degrees K=5

s
o
f
t

i
n
p
u
t
s

State
vector

Figure 1. Tanner graph of LDPC code

For a given iteration of the UMP-BP algorithm, we de-
fine the following variables:

� �� - The bit, signed input message into symbol-node
�.

�� �
���
��

(1)

�� being the received BPSK symbol value, and �� be-
ing the noise variance.

� ���� - The message sent from symbol-node � to
check-node� in the ��� iteration.

���� � �� 	
�

���������

���
��� (2)

�
��� - The message sent from to check-node � to
symbol-node � in the ��� iteration.

�
�� � ��

��� �
���

���������

�
�����������

�

�
���

���������

�
�������

�
(3)

��� is defined as sign equivalent of the boolean
xor function, e.i. �������� � 	

� �� - The decoder output messages. Unlike the ���’s,
the decoder output message �� uses all available infor-
mation available in a symbol-node �, and is only nec-
essary in the last iteration � .

�� � �� 	
�

������

��� (4)

A straightforward implementation of the UMP-BP al-
gorithm stores the received input message (all ��’s) in the
decoder input memory, shown as the left state vector in Fig-
ure 1. The set of input symbols
�� to the symbol-nodes
constitute the middle state vector (through symbol-nodes),

The set of input symbols ��� to the check-nodes consti-
tutes the right state vector (through check-nodes). Dur-
ing the first half-iteration, all messages ��� are sent from
all symbol-nodes to the check-nodes. During the sec-
ond half-iteration, all messages
�� are sent from all
check-nodes to the symbol-nodes.

One of the key elements in LDPC decoding is the iter-
ative nature. In practical decoders, the worst case number
of iterations ranges from 30 to 50, depending on the re-
quired performance. In 2001, Yeo at.al. [9], started a tech-
nology called ”staggered decoding”: intermediate results
are used within an iteration, and in fact it is similar to the
step from Jacobi iteration to Gauss-Seidel iteration in nu-
merical mathematics. In other publications the technique is
also known under ”turbo decoding LDPC”, ”shuffled de-
coding”, and ”layered decoding”. In the remainder of this
article we refer to this technology as Gauss-Seidel itera-
tions. In the traditional implementations, the messages cal-
culated during the previous iteration must be stored until its
last access, and concequently new messages must be stored
in other locations. However in Gauss-Seidel iterations the
messages can be overwritten immediately, and this technol-
ogy therefore leads to half the message memory require-
ments. The second, and most important benefit of Gauss-
Seidel iteration is the factor two reduction in the number of
iterations required to meet a certain BER performance. Also
in the implementations published in [5], and [8], this tech-
nique is used.

The complexity of calculating check-nodes (3) is re-
duced when its arguments arrive consecutively [6]. For
the first part of (3) the property that the ��� of ”all
but one”, is equal to the ��� of ”all and the one” can
be used. This results in storing individual signs, and ad-
ministrating a running ���-value. For the second part
of (3), it can be observed that the magnitudes leav-
ing a check-node have only two values: either the over-
all minimum or the overall one-but minimum in the case
the corresponding input delivered the minimum. Magni-
tude calculations thus result in tracking a running mini-
mum, a running one-but-minimum, and the index of the
incoming edge providing the minimum. Instead of stor-
ing the �� outgoing check-node messages, this set of
data can be stored as one compressed vector[4] which en-
tails the magnitude of the minimum, the one-but-minimum,
the index of the minimum, and �� signs. For 5-bit magni-
tudes this relates to �����	
��������

��
bits, against �� 	 ��

bits per message otherwise. For DVB-S2, the lowest ��

equals 4, resulting in only marginal reduction. How-
ever, since the number of messages is larger for some of
the higher rates in the code, a message memory compres-
sion of approximately a factor 2 is achieved.

In [9], Yeo et.al. suggests to store the sum of all, e.g. ��,
and to use the next calculations:

���� � ����
� �
���

�� (5)

This type of calculations is very beneficial com-
pared to equation (2), when ���� consists of many
elements, as is the case in DVB-S2. Note that in ”stag-
gered decoding” [9] ommites the second term in equa-
tion (5), which is a step that we do not do because of the
BER performance degradation. The novel calculation form
used in our solution is to store �� in the symbol mem-
ory, and to store all
�� for one � in a compressed way
(noted as
�) in the memory. The calculations are orga-
nized check-node centric: the algorithm loops through all
check-nodes, and for each check-node, the�� correspond-
ing ��’s are retrieved in consecutive cycles. By on-the-fly
decompression of
�, the �����’s are reconstructed. Af-
ter �� cycles, the new
� is known, and the ��’s in the
memory can be updated. Note that by these intermedi-
ate updates of ��, the next check-node uses a newer version
of the symbol-node within an iteration, and Gauss-Seidel it-
eration are conducted. With these Gauss-Seidel iterations
both the memory reduction and the halving of the num-
ber of iterations, as shown in [9], are established.

Where in the check-node equation (3), only the minima
of all except its corresponding input, [10] has shown sev-
eral different correction techniques which can be applied
to increase the BER performance, even beyond the ideal
BP algorithm. Also the application of a fudge-factor, e.g.
a constant, with which the output of the minimum function
is multiplied, improves the performance. In fact, with nor-
malisation the performance of the UMP-BP algorithm be-
comes similar to the (more difficult to calculate) BP algo-
rithm [3].

4. LDPC code for DVB-S2

The specification of a code can in general be done by
presenting its �-matrix. The rows in the matrix are the par-
ity check equations, and the set of elements which have a
’1’ in a row are the arguments in that equation. If e.g. there
is a ’1’ in the second column of a row, and a ’1’ in the col-
umn 365, the symbols ’2’, and ’365’ participate in one
equation. The structure within the DVB-S2 code, re-
vealed in the �-matrix, can be observed in Figure 2. Note
that the code consists of interconnect blocks of ��� � ���.
There are ��� � � parity symbols, and also ��� � � par-
ity equations. The block length for all specified rates is
64800 symbols. The diagonals should be seen as the line of
’1’s in the matrix. These lines have a clear div-mod struc-
ture.

H=
 Q
 *
360

Systematic = (180-Q)*360 Parity = Q*360

360

0,1,2,3... 0,Q,2Q,..,1,Q+1,2Q+1..

Figure 2. H-matrix of DVB-S2 LDPC code

The code is specified for rates �
� to 	

�� , (e.g. Q=135..18).
��, being the number of symbol-nodes to which a check-
node is connected, differs for each rate, but is constant for
all equations within a rate 1. 	�, being the number of check-
nodes to which a symbol-node is connected differs for all
rates, and differs for symbol-nodes within a rate. 	� can
vary between 13 and 1.

The architecture presented in this paper can handle all
codes where the parity matrix has the (scrambled) quasi
cyclic structure shown in Figure 2.

5. Proposed LDPC decoding architecture

The center of the architecture is formed by the data
path, shown in Figure 3. As explained in Section 3,
the �����’s are formed by subtracting the decom-
pressed
�� from the sequentially arriving ��’s. These
���’s are stored, and are simultaneously used to calcu-
late the new vector (running minimum, one-but minimum,
index, and xor). During the next �� cycles the men-
tioned operations are repeated for the next parity check
equation, while for the current parity check equation,
the
�� are calculated by decompressing the new vec-
tor. These
�� are added to the ��� from the storage,
which results in the new ��. The data path thus pro-
duces the ����’s of one parity equation, while receiving
the����’s for the next equation. To avoid conflicts, the or-
der of the parity equations must be statically scheduled
such that two consecutive equations have no symbol-nodes
in common. When achieving this, a code with a con-
stant �� can conduct one data path calculation per
clock cycle. In other cases, no-operations need to be in-
serted.

Although the ”running vector calculator” suggest that
only the minimum, one-but minimum, index and signs are

1 there is one equation which is connected to one symbol-node less

vector
decompress

vector
decompress

running vector
calculation

sub

add

λn

Λmn

λnm

Λmn

λn

Λm

Λm

Figure 3. data path of architecture

calculated, more complex calculations, as suggested in Sec-
tion 3 can be incorporated without much effort and at
low cost. The proposed data-path can handle one connec-
tion between a check-node and a symbol-node per clock
cycle. For code-rate �

� , there is an averate of � connec-
tions per symbol-node, and for 30 Gauss-Seidel iterations,
running at 300 MHz, one data path, can handle a through-
put of 2.27 Mbps. This implies that for the targeted 90
Mbps, � � � data paths are required. To allow some in-
put/output overhead, � � � data paths are required. The
scalability of our solution is in the choice of �: Depending
on the clock frequency, number of iteration, and through-
put requirements, a � can be chosen such that the area
is as small as possible. Note that � must be a divider of
block-level parallelism inside the code. The top-level archi-
tecture, which includes these � data paths is shown in Fig-
ure 4.

barrel
shifter

barrel
shifter

data
path
0 data

path
1

data
path
D-1

IO
controller

address
generator

λ-memory

Λ-memories

Figure 4. top-level architecture

The architecture shows that � words �� are packed
into one word in the �-memory. These ��’s are ro-
tated over a certain angle by the barrel shifter [5], and
passed on to the � data paths. After �� clock cycles the

�� are returned, and are rotated back over the same an-
gle. In this way the �� always have the same position in the
�-memory. Note that this allows the decoder to stop any-
where in an iteration, and produce the output. There is
always a valid �� in a predetermined place in the mem-
ory.

Although the architecture suggests � different FI-
FOs for the
-memories, in practice it consists of a few sin-
gle port memories in which the vectors are read, and written
efficiently. The �-memory is �*8 bits wide dual-port mem-
ory of ��� � �
�

�
words.

The main difference between our architecture, and the ar-
chitectures proposed by [5, 8], is that here only � � �
data paths are necessary, whereas [5, 8] need 360. Further-
more, our shuffling network only rotates over � elements,
while the state-of-the art solution rotates over 360. Ap-
plying our data path 360 times would lead to a through-
put of more than 800 Mbps. The downscaling proposed in
[5, 8], consist of separate symbol-node and check-node cal-
culations (factor 2), and multiple clock cycles per calcula-
tion. This however does not lead to a smaller barrel shifter,
or to significant smaller data path logic. The solution cho-
sen in our approach is to use high speed, high through-
put data paths, and to instantiate less of these data paths.
This approach leads to a linear scaling of data path area
with throughput, and a quadratic reduction in complex-
ity of the barrel shifters. The number of data paths cho-
sen must however be a divider of the quasi-cyclic sub-block
size.

The remaining question to be answered in this sec-
tion is how the �-memory is partitioned in order to en-
able this scalable architecture. In Section 4 we showed that
the DVB-S2 parity check matrix � consists of blocks of
��� � ���. All symbol-nodes connect to all parity check
equation once, according to the diagonal shown inside.
The group of 360 ��’s are distributed over �
�

�
words con-

taining � ��’s each. The ��’s are grouped such that for
� � � symbol-node 0, 8, 16, ..., 352 are in one word, 1,
9, 17, ..., 353, are in one word, etc. In this way, it is as-
sured that no matter where the diagonal starts, the 45
corresponding symbol-nodes belonging to the 45 par-
ity equations at distance 8, are in the same word.

In Figure 5, this structure is explained with two blocks
of 15. In the first block, the diagonal starts at 0, while in
the second block the diagonal starts at �� 	 � (this is the
third block, starting at 30). This implies that for one par-
ity check equation, the symbols 0 and 39 are required, for
the next 1, and 40, and for the last in this group 14, and
38. When applying a � � �, three ��’s are stored in one

word. The 3 check-nodes calculated in parallel are high-
lighted horizontally in Figure 5. For these calculations, first
symbol-nodes 0, 5, and 10 are required. Since they be-
long to one word (first block, first word), they are re-
trieved in one clock cycle. In the next clock cycle,
symbol-nodes 39, 44, and 34 of the next block are re-
quired, and they also belong to one word (third block,
fourth word). They have to be rotated left over one posi-
tion in order to match the same order as the previous re-
trieved word.

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

30
31
32
33
34

35
36
37
38
39

40
41
42
43
44

0 5 10 34 39 44

Figure 5. memory partitioning

For the next set of 3 parity check equations, first symbol-
nodes 1, 6, and 11 are required, and during the next clock
cycle, the symbol-nodes 40, 30, and 35 of the next block are
required, which belong again to one word, left rotated over
two positions. In fact, this rotation by one position more
compared to the previous set, can be accounted for by the
overflow in rows: we went from row 4 (containing 34, 39,
44) to row 0 (containing 30, 35, 40). It is the task of the bar-
rel shifters, presented in Figure 4 and mentioned earlier in
this section, to facilitate these rotations.

6. Results

In this section we compare the area results of two
known solutions ([5], and [8]) with the architecture pro-
posed here. Since in [5] only total area figures are given,
the decomposition of area is done based on the ra-
tios in the chip-photos. This area includes test-logic and
utilization overhead. From [8] the area figures are taken di-
rectly, and are scaled by a factor of 2 in order to resem-
ble 90 nm CMOS results. Our own results are obtained by
means of logic synthesis towards a 90 nm CMOS tech-
nology. Both our area results and the one presented in [8]
exclude test overhead and layout utilization factors. The fig-

ures are shown in Table 1. Although our input memory is
bigger, the total memory area is approximately half com-
pared to [5] and [8]. This is mainly due to the compression
of messages. The memory required for the application is in-
dependent 2 of the parallelism factor chosen. All three
solutions have 6 bit inputs values, and 6 bit message val-
ues.

90 nm CMOS [5] [8] New
area in 135Mbps 255Mbps 90Mbps
mm� @ 41 it @ 30 it @ 30 it

input mem 1.4 1.0 1.8
message mem 3.8 4.5 1.2
ctrl - 0.04 0.1

func. logic 8.2 5.4 0.8
ctrl - 0.1 0.1
shuffling 0.8 0.3 0.2
BCH+encoders (1.6) NA NA

total 15.8 (14.2) 11.34 4.1

Table 1. Area cost of LDPC decoder

The decoders in [5] and [8] differ 35% in area, which
can be accounted to the difference between making chip
and conducting synthesis. This leads to the observation that
both solutions have approximately the same area. The pro-
posed architecture however has an area which is a factor 2.7
smaller compared to [5, 8]. For this solution, 8 memories are
necessary (against 65 in the [5] solution). Furthermore, the
solution replaces a (difficult to layout) 360x barrel shifter,
with a 45x barrel shifter. The throughput difference between
[8] and our solution is a factor 2.8. When however upscal-
ing the throughput of our solution to the [8] solution, we
need to increase the number of data paths to ���

��� � ���,
which will map to ��� data paths, e.g. an increase of � �� .
This will roughly let the area increase to 6 mm�, approxi-
mately half compared to the [8] numbers.

Due to the long simulation times (months) it is time-
consuming to evaluate the BER performances of word-
width’s and techniques discussed in Section 3 downto the
required level of � ���	. To reduce this simulation time to
days, the proposed architecture has also been mapped to an
FPGA, and performances evaluations are ongoing.

7. Conclusions

In this paper we have shown that scalable sub-block par-
allelism enables efficient implementations. For the investi-
gated DVB-S2 case, this sub-block parallelism leads to a

2 different parallelism factors lead to different ratios, which might have
different utilizations

design which is half the size of known solutions. For the re-
quired performance in the normative configurations in
the broadcast service (90 Mbps), the area is �

� com-
pared to the smallest published decoder. The described
technique can be adapted to any block LDPC-code giv-
ing it a wider application scope than DVB-S2.

Recommendations for future work include finding more
efficient solutions for codes having varying numbers of
symbol-nodes connected to check-nodes, and replacing the
dual-port symbol-node memories with single port equiva-
lents.

References

[1] Digital video broadcasting (dvb); second generation. In ETSI
EN 302 307 v1.1.1, 2005.

[2] A.J. Blanksby and C.J. Howland. A 690-mW 1-Gb/s 1024-
b, rate-1/2 low-density parity-check code decoder. In IEEE
Journal of Solid-State Circuits, volume 37, pages 404 – 412,
3 2002.

[3] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X Hu.
Reduced-complexity decoding of LDPC codes. In IEEE
Transactions on Communications, volume 53, pages 1288–
1299, 2005.

[4] Mauro Cocco, John Dielissen, Marc Heijligers, Andries
Hekstra, and Jos Huisken. A scalable architecture for LDPC
decoding. In IEEE Proceeding of DATE, 2004.

[5] P. Urard et.al. A 135Mb/s DVB-S2 compliant codec based
on 64800b LDPC and BCH codes. In IEEE Solid-state Cir-
cuits Conference (ISSCC), 2005.

[6] M. Fossorier and Jinghu Chen. Near optimum universal be-
lief propagation based decoding of low-density parity check
codes. In IEEE Transactions on Communications, vol-
ume 50, pages 406–414, 2002.

[7] R.G. Gallager. Low density parity check codes. In IRE
Transations on Information Theory, volume 8, pages 21–28,
1962.

[8] F. Kienle, T. Brack, and N. Wehn. A synthesizable IP core
for DVB-S2 LDPC code decoding. In IEEE Conference on
Design Automation and Test in Europe (DATE), 2005.

[9] E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam. High
throughput low-density parity-check decoder architectures.
In IEEE proceedings of GLOBECOM, volume 5, pages
3019–3024, 2001.

[10] J. Zhao, F. Zarkeshvari, and A. Banihashemi. On implemen-
tation on min-sum algorithm and its modifications of de-
coding low-density parity-check (LDPC) codes. In IEEE
transactions on communications, volume 53, pages 549–
554, 2005.

	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06

