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Abstract

This paper presents a possible interconnection struc-
ture suitable for being used in a flexible LDPC decoder.
The main feature of the proposed approach is the possi-
bility of implementing parallel or semi–parallel decoders
with a reduced communication complexity. To the best of
our knowledge this is the first work detailing the imple-
mentation of a fully flexible LDPC decoder, able to sup-
port any type of code. To prove the effectiveness of this
approach, a complete decoder has been implemented on a
XC2V8000, achieving a decoding throughput of 529 Mbps
on a (1920,640) code.

1 Introduction

Low Density Parity Check (LDPC) codes, firstly intro-
duced for the first time by R. Gallager [1] in 1960, are
a class of powerful, linear block codes able to perform
very close to Shannon AWGN channel bound [2–4]. Be-
side their impressive error–correcting performances, LDPC
codes show an intrinsic parallel structure suited to reach
remarkable decoding throughputs [5, 6]. These two pecu-
liarities have significantly contributed to make LDPC codes
among one of the most promising candidates for next gen-
eration communication standards.

LDPC decoding process is usually represented through a
bipartite graph, also called Tanner Graph, where two class
of Processing Elements (PEs) are mapped onto two classes
of graph’s vertices, (Fig. 1). These processing elements are
usually referred as Variable Nodes (VNs) and Check Nodes
(CNs) and are strictly related to the N ×M Parity–Check
Matrix H associated with the code. VNs are related to the
N columns of H matrix and represent the “code-block” of
the specified LDPC code. The M CNs (which correspond
with the rows of H) represent the M parity-check equation
of the code. Given two distinct processing elements VNj

and CNi, they are interconnected through an edge on the
Tanner Graph if and only if H(i, j) = 1.

The decoding process is applied iteratively sending mes-
sages from VNs to CNs (and vice-versa) updating the re-
ceived soft-information at each PE. To avoid probability
multiplications, most decoders work in logarithmic domain
employing “Log-Likelihood Ratio (LLR)” λ rather than the
received bit, leading to the “Sum-Product” implementation
of the more general “Belief Propagation” algorithm. Ac-
cording to the extrinsic information principle (i.e.a message
is computed excluding any a priori information on the same
message) [2, 6], VNs update the LLR values with the infor-
mation received from the CNs. This process is expressed in
equation (1) where k represents the current iteration, Qji is
the message being sent from VNj to CNi, Rαj is an incom-
ing message produced by CNα and directed to VNj (ex-
cluding the message Rij received on edge ji) while C[j] is
the whole set of incoming messages for VNj .

Qji[k] = λj +
∑

α∈C[j]\{i}

Rαj [k − 1] (1)

TheM Check Nodes evaluate theM parity-check equations
working on the messages received from VNs (Qγi) exclud-
ing message Qji on the same edge ij. In equation (2), R[i]
is the set of all messages received by the CNi from the VNs
connected to it and δij depends on the signs of incoming
messages.

Rij [k] = ψ−1





∑

γ∈R[i]\{j}

ψ(Qγi[k])



 · δij (2)

The ψ in (2) is an non–linear function which actually per-
forms the CN processing according to the Belief Propaga-
tion algorithm. Its general expression is shown by equation
(3).
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Analyzing Fig. 1 a possible implementation of an LDPC
decoder may be deduced in a straightforward manner. De-
pending on the number of processing elements actually in-
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Figure 1. Tanner Graph for small LDPC code

stantiated in the hardware implementation, three decoder
structures have been already proposed in the literature:

• Serial Decoders;

• Partially–Parallel (also called semi–parallel) De-
coders;

• Fully–Parallel (also called Parallel) Decoders.

The Serial solution is made of a single VN/CN pair. The
exchanged message are stored in a central memory. This
architecture exhibits an high flexibility degree: if the imple-
mented code has to be changed, it is sufficient to change the
number of VN and CN operations provided that the mem-
ory is large enough to hold the messages. Unfortunately
the throughput achievable with a Serial solution tends to be
fairly poor. For this reason Serial solutions are practically
not viable for actual decoder implementations.

At the farthest end there are Fully–Parallel solutions: in
this case the decoder is made of N VNs and M CNs re-
spectively. In other words, Fully–Parallel structures directly
maps the Tanner Graph in hardware, trying to exploit as
much as possible the algorithm parallelism. Even if this so-
lution is able to reach extreme throughputs, the associated
hardware costs tend to become prohibitive. In particular,
one can try to evaluate the number of message exchanged
between VNs and CNs in a simplistic case. If be is the aver-
age edge number entering in a generic VN, and letting ce be
the correspondent number for a generic CN, then the total
number of messages can be roughly evaluated as:

MESSnumber = N × be = M × ce

This complexity issue becomes particularly relevant in case
of LDPC codes with large block size. In such cases the
relative area required by the interconnection fabric tends to
be the limiting factor in delay and area of VLSI implemen-
tations. An example of this can be found in the work of
Blanksby et al. [5] where a custom technique had to be de-
veloped in order to route the interconnections between VNs
and CNs. Unfortunately, beside the complexity factor these
structures suffer also from their total lack of flexibility. Be-
ing designed and tailored around a specific case makes par-
allel structures hardly adaptable to different codes, since the
number of PEs and their interconnections remain fixed.

Partially–Parallel structures are a sort of compromise be-
tween the previous two classes. Generally they are com-
posed by Npp ≤ N VNs and by Mpp ≤ M CNs. This
reduced number of PEs makes Partially–Parallel structures
well suited for practical LDPC decoders implementations:
high throughput can be achieved using a proper number of
PEs, while the interconnection among them tends to be less
critical than in the Fully–Parallel case. Unfortunately the
main problem of semi-parallel implementations is the risk
of collisions during the access to the memory which stores
the decoding partial results. Considering N units working
in parallel, N memory banks can be employed to store the
information exchanged between them. The use of memory
instead of dedicated interconnections enables the possibility
to design more flexible structures. For instance all the edges
pertaining to a same subset of VNs can be assigned to the
same memory bank. In this case every VN processor can
access without any particular problem to its memory bank,
but the CN processors should retrieve their data from dif-
ferent memory banks in a scrambled order, according to the
parity check matrix, thus leading to possible collisions.

2 Reconfigurable Interconnection Structure:
A Space–Time Permutation Network

Although several semi-parallel implementations were re-
cently proposed [6–8], they all rely on sub-classes of codes
designed in order to simplify both encoder and decoder im-
plementation. This means that even if the proposed ap-
proaches are able to achieve remarkable decoding perfor-
mances, they cannot be applied to a generally designed
code. To overcome these limitations, Tarable et al. [9]
proposed a fairly different approach: rather than a joint
code-decoder design, they introduce, in any previously de-
fined code, a Permutation Network that properly scrambles
the messages in order to avoid memory collisions. This is
achieved without imposing any constraints in the designed
code. To do this, the basic structure of a semi-parallel de-
coder has to be modified. In particular, before and after the
memory banks, used to store the exchanged metrics, two
Crossbar Switches (XBars) are inserted to scramble data
(Fig. 2). This scrambling is obtained by means of permuta-
tion laws (denoted with β and β′ in Fig. 2), which control
the switches in the crossbars, to prevent two messages from
being stored in the same memory bank in the same time slot.
The combination of memories and crossbars performs both
a spatial (crossbars) and temporal (memories) permutation
of the exchanged messages.

It is supposed that, at both sides of the decoder (VNs
and CNs), a node partitioning is given, each subset of nodes
being assigned to a different processor. The partitioning
should be made so that each processor at a given side out-
puts about the same number of messages. We suppose that
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Figure 2. Implementation of the Permutation
Network

the scheduling of the processor outputs is also given.
In [9], an algorithm to compute the mapping function is

described, working for any LDPC code. Let us introduce
a mapping function M, with the following meaning: given
an ordering of messages, the i-th message is stored in the
M(i)-th memory bank. The permutation laws β and β ′ di-
rectly depend on M. The algorithm, which accepts as its
input the node partitioning and the scheduling of the pro-
cessor outputs, can be divided into two successive steps,
described in the following:

First step: Any step that produces a preliminary map-
ping function with the property that no memory collisions
are originated. However, there are some messages for which
the mapping function is not determined yet, called blanks.

Second step: This step accepts the preliminary mapping
function output in the first step and fills all blanks. The
iterative procedure of completing the mapping function is
called annealing. The result is a valid collision-free map-
ping function for the given LDPC code.

Given the mapping function, the permutation laws β and
β′, as well as the timing of memory banks accesses, can
easily be derived. Interested readers can find more details
in [9].

3 Proposed Approach

As mentioned above, this mapping algorithm is able to
tackle any LDPC code since it is able to find proper per-
mutation laws. Moreover for any given code the permu-
tation laws is always the same, so they can be computed
offline each time a new code is addressed and then “down-
loaded” in the decoder. Thus it seems a very promising can-
didate for the implementation of flexible structure. On the
other hand the proposed algorithm requires two Crossbar
Switches to scramble the messages. This structure have to
be fully connected, since each input could be connect to
any output. This means that a straightforward implemen-
tation of these blocks requires an interconnection matrix
of N × N = N2 multiplexers (muxes), where N is the
number of input/output of the Crossbars. Moreover each
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Figure 3. Benes Network vs. Crossbar Switch
architectures

multiplexer have to dispatch messages represented over a
finite number of bits. Even if simpler switching elements,
e.g. OR gates, are employed rather than muxes, the cross-
bar switches are already to far complex for actual imple-
mentation since complexity is still dominated by the fairly
high amount of required switching elements. From all these
premises it easy to infer that for actual implementation of
decoders the straightforward realization of the proposed
scheme (based on Crossbar Switches) is infeasible when the
number of I/O assume values in the order of 128 or more
ports. This means that actual implementations must rely on
switching fabrics that can provide full connections from in-
puts to output, but with a complexity lower than O(N 2).

The problem of low-complexity, fully-connected, non-
blocking switching structures was already addressed in the
Networking community some years ago. When, as in our
case, auto-routing capabilities are not required (permuta-
tion laws are always the same for a specific code and are
compute offline only when the code varies) effective solu-
tion are Benes Networks [10]. This structure provide full
connectivity requiring only 2 log2(N) − 1 layers of N/2
2 × 2-switching elements thus an overall complexity pro-
portional to O(N log2(N)). In Figure 3 we report the great
complexity improvements achievable, in terms of equiva-
lent gates vs. required inputs N , when adopting Benes Net-
work rather than Crossbar Switches. Even when OR gates
rather than muxes are employed as switching elements the
Benes Network overcomes the Crossbar Structures due to
the reduced number of basic routing elements involved.
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3.1 Low–Traffic Belief Propagation Algorithm

Node processing equations (1) and (2) can be rearranged
as in eq. (4) and (5):

Qji[k] = λj +
∑

l∈C[j]

Rlj [k − 1] −Rij [k − 1]

= Sj −Rij [k − 1] (4)

Rij [k] = ψ−1





∑

γ∈R[i]\{j}

ψ(Qγi[k])



 · δij

= ψ−1





∑

l∈R[i]

ψ(Qli[k]) − ψ(Qji[k])



 · δij

= ψ−1 [PSi − ψ(Qji[k])] · δij (5)

In eq (4) Sj is the total sum of all messages entering VNj ,
including the intrinsic λ, and similarly the symbol PSi in
(5) represents the sum of terms obtained by applying opera-
tor ψ to all messages incoming in CNi. Both equations can
be obtained by means of a tree of adders, which calculate Sj

and PSi amounts, followed by a final stage of subtracters
to evaluate the output messages; in addition CN processing
also requires that the ψ operator is applied to the subtracter
output.

Starting from these rearranged processing equations, in
[11], a sensible reduction in the amount of data to be ex-
changed among processing nodes is achieved by dispatch-
ing the total sums Sj and PSi instead of Qji and Rij

messages; this simplification enables the implementation of
flexible decoding architectures. These modification in the
decoding algorithm lead to a different version of the tradi-
tional Belief Propagation; as proposed by the authors we
will refer to this approach as Low–Traffic Belief Propaga-
tion Algorithm or LTBPA.

The adoption of the Benes Networks as switching struc-
ture can give significant improvements, in terms of required
complexity; nevertheless a straightforward implementation
of Tarable’s scheme as in Fig. 2 is still too complex for a
practical implementation since two Benes Networks are still
necessary. On the other hand, the adoption of the low com-
plexity interconnection framework [11], can be beneficial
also when Tarable scheme is implemented. This is because
the simplified formulation relying on the modified Variable
and Check Nodes, as they derive from equations (4) and (5),
is independent from the decoder implementation.

Since in this formulation only global messages Si and
PSj are dispatched great simplifications are achievable
since the outputs of the memories of Fig. 2 must not be
scrambled again. This means that only one Benes Network
is required in the actual decoder implementation. More-
over also the memory requirements are reduced since only

Table 1. Complexity comparison between BPA
and LTBPA versions of an 8–input CN proces-
sor.

Architecture Frequency Area
[MHz] µm2

BPA CN 307 51 109
LTBPA CN 265 59 208

global amounts are store rather than all the messages. Start-
ing from these premises, a block scheme of the simplified
flexible decoder is easily obtainable as in Fig. 4. Moreover,
the adoption of LTBPA strategy in Tarable’s scheme has an-
other beneficial side effect. In the preliminary version of
this algorithm, memory access should be performed accord-
ingly to a well-defined scheduling; in the LTBPA version,
on the other hand, the adoption of particular scheduling is
not so central in terms of reduction of memory access, i.e.
the latency of the interconnection network. Thus simple
sequential accesses (for each memory bank) it is the most
effective strategy to reduce “interconnection” latency. This
is mainly related to the storage of global amount Si and
PSj , rather than single messages, that is able to greatly sim-
plify the overall interconnection structure with fairly little
increase of complexity in the processing elements.

4 Implementation results

As introduced in the previous section, LTBPA is able to
reduce the interconnection requirements moving some com-
plexity into the nodes. As a direct consequence, VNs and
CNs internal architecture become pretty identical (eq. (4)
and (5)), opening the possibility to reuse the same processor
performing different tasks. An interesting point is to evalu-
ate how these modifications impact on the CN/VN area. In
this way it is possible to devise if and how the LTBPA repre-
sents a viable way to obtain a reduced-complexity, flexible
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Figure 4. Tarable’s Scheme with LTBPA strat-
egy: simplified block scheme
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Table 2. Complexity estimations for the LTBPA
algorithm. The percentages are referred to a
traditional BPA implementation.

PE Area Increase +50%
PE Number Decrease −50%
Benes Network Decrease −50%
Number Decrease 1/Wc
RAM bits

LDPC decoder.
As a case study we then described in VHDL an 8-input,

parallel CN employing the ”original” structure as well as an
LTBPA version. Each of these nodes has been completed
characterized by performing a logical synthesis using an ST
Microelectronics 0.13 µm standard-cell library. To better
understand the hardware impact of this variation two sce-
narios have been investigated:

• Logical synthesis without timing constraints, useful
to highlight how the increased complexity impacts on
timing performance of the node;

• Logical synthesis with time constraints. This sec-
ond experiment is useful to understand how many re-
sources are needed to achieve the same timing perfor-
mance of the simpler case.

In table 1 the results for the first scenario are shown. In
this case we observe a reduction in the maximum clock fre-
quency of nearly 15% with respect to the original BPA CN,
associated with an increase in area occupation of the same
percentage.

In the second investigation we have found that the
LTBPA node is actually able to reach the same timing per-
formance of the first one but at the expense on an increase
in area of almost 50%. Even if the figure can be read as
a significant complexity increase, it is important to remark
how the total number of processors is decreased by a factor
of two, due to the fact that a CN processor can now play
the role of a VN as well. From all the considerations, it is
possible to derive a sort of ”rough” advantages estimation
of the final decoder structure. The summary of this study is
reported in table 2. As anticipated in 3.1, LTBPA allows to
save one Benes Network since data can be read from mem-
ories in natural order. This figure represents a dramatic save
in terms of area occupation, especially if one thinks that a
128 × 128 Benes network requires 388722 µm2 (ST Mi-
croelectronics 0.13 µm). On the last row of the table the
number of required RAM bits is shown. Thanks to LTPBA
reduced traffic, this number decreases of a factor that is at
least equal to the minimum between the column weight Wc

and the row weight Wr. Since generally for LPDC codes

R
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R
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R

Figure 5. Pipelined Benes Network. Simple
Example: 8 × 8 Network

Wc < Wr, we can assume that the gain here is proportion-
ally to Wc.

Finally, to validate the proposed approach, a complete
LTBPA–based LDPC decoder have been implemented us-
ing as a target an high–end FPGA device from XILINX.
As a case study we choose to implement a partially parallel
LTBPA decoder with 128 PE. From a first logical synthesis
it turns out that the architecture critical path is located in
the Benes Network itself. In particular using 8 bit messages
the maximum operative frequency varies from 109 MHz (8
PEs case) down to 54 MHz when 128 PEs are used. For
the aforementioned reasons we decided to insert a variable
number of pipeline stages inside the Benes Network, try-
ing to mitigate the severe critical path performance limit.
In Figure 5 we report the structure of the pipelined solu-
tion. It is interesting to note how with the insertion of just
one level of pipeline registers the network is able to operate
again at 100 MHz. A deeper investigation shown that the
insertion of additional levels of registers doesn’t increase
significantly the maximum frequency, since the critical path
moves from the data path to the internal control signals. In
the end we decided to use a single pipeline stage for 128
case. Moreover, we decide to pipeline also the control sig-
nals needed by the switching network. In this way it has
been possible to obtain a completely pipelined design, able
to accept a new set of 128 messages and the associated per-
mutation every clock cycle. In table 3 we report the logical

Table 3. Logical synthesis results for a 128–
PEs array on a X2V8000 FPGA from XILINX.

Block RAMs 48 28%
Register bits 3 323 3%
Total LUTs 18 723 20%
Max. Freq. 99 MHz

synthesis results for the 128 PEs array. We use a Virtex-II
FPGA from Xilinx reaching a maximum clock frequency of
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99 MHz.
Then we decide to map on the array two different LDPC

codes in order to obtain an estimate of the maximum achiev-
able throughput. The former is a (504,252) LDPC code with
rate 1/2, while the latter is a (1920,640) LDPC with rate
1/3. The most important feature of the proposed decoder
architecture is the possibility of being adapted to different
codes without having to change the hardware used. Basi-
cally all it’s needed is to change the control bits and the
address employed by the Benes Network. These changes
can be pre–computed for each given code and stored in a
proper memory: then these data can be downloaded on the
on–chip memories which holds the routing informations for
the array.

As far as the decoding performance are concerned, the
proposed core was able to achieve a throughput of 657
Mbps and 529 Mbps per iteration for the two considered
cases. This data represents a remarkable achievement since
it has been reached on such a flexible platform, not tai-
lored around any specific class of codes. A flexible solu-
tion has already been proposed in the literature by Kienle
et al. [12]: they present an ASIC implementation able to
achieve a throughput of 22 Mbps for a (10200, 5100) LDPC
code. A fair comparison is hard to obtain since the target
technology is completely different, the employed code is
not comparable, etc . . . . Nonetheless the performance of
the presented core enable us to be confident about this solu-
tion.

5 Conclusions and future works

In this work we present a flexible LDPC decoder able
to being adapted to a wide variety of codes. We tackle the
connectivity problem using a recently proposed method in
conjunction with a low–complexity switching network. To
improve the decoder efficiency we also resort to a promising
modified version of the traditional BPA, called LTBPA. The
resulting architecture exhibits remarkable performance.

As far as the future developments are concerned three
possible directions have been identified. First we are inter-
ested in using the same structure also for last–generation
international standard codes (such as DVB-S2 or IEEE
802.16e). Then a next step will be to move towards a com-
plete ASIC implementation in order to leverage the perfor-
mance of this core. Finally we will possibly look into the
design and the implementation of an hardware accelerator
to speed-up the simulation of large LDPC codes.
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